macroscopic description of bio-inspired strategies for swarm …hg94/labtalk.pdf · 2019-02-20 ·...

38
Macroscopic description of bio-inspired strategies for swarm robotic systems Gissell Estrada-Rodríguez 1 Together with H. Gimperlein 1 , K. J. Painter 1 , J. Štoček 1 and Edinburgh Centre for Robotics 1 Maxwell Institute and Heriot-Watt University (Edinburgh) Math Biology Group Meeting

Upload: others

Post on 15-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Macroscopic description of bio-inspiredstrategies for swarm robotic systems

    Gissell Estrada-Rodríguez 1

    Together with H. Gimperlein 1, K. J. Painter 1, J. Štoček 1 andEdinburgh Centre for Robotics

    1Maxwell Institute and Heriot-Watt University (Edinburgh)

    Math Biology Group Meeting

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Bacterial chemotaxis

    Immune cells

    Swarm behaviour

    Nonlocal movement

    Human movement

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 2 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Results of this talk

    I We derived macroscopic fractional PDE descriptions fromthe movement strategies of the individual robots:

    I Hyperbolic limit: Alignment dominates.I Parabolic limit: Competition between long trajectories

    and alignment.

    I Showed that the system allows efficient parameterstudies for search and targeting problems.

    (Inspired by Lévy walks of E. coli and immune cells.)

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 3 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Bio-inspired strategy

    Classical case of chemotaxis: the individual runs for sometime τ , it stops at (x, t) and chooses a new direction at random.τ follows a Poisson process. Patlak-Keller-Segel equations.

    ∂tu = ∇ · (C (u, ρ)∇u − χ(u, ρ)∇ρ),∂tρ = Dρ∆ρ+ f (u, ρ).

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 4 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Bio-inspired strategy

    Classical case of chemotaxis: the individual runs for sometime τ , it stops at (x, t) and chooses a new direction at random.τ follows a Poisson process. Patlak-Keller-Segel equations.

    ∂tu = ∇ · (C (u, ρ)∇u − χ(u, ρ)∇ρ),∂tρ = Dρ∆ρ+ f (u, ρ).

    Absent/sparse attractant ⇒ change in τ distribution:

    Figure 1: Movement ofDictyostelium cells. From L. Li etal., PLoS one (2008).

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 4 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Bio-inspired strategy

    In this talk: τ with long tail fractional diffusion orchemotactic equations that involve non-local, fractionaldifferential operators.

    Evidence: (1) E. Korobkova et al., Nature (2004), (2) L. Li etal., PLoS one (2008), (3) T. Harris et al., Nature (2012).

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 4 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Bio-inspired strategy

    In this talk: τ with long tail fractional diffusion orchemotactic equations that involve non-local, fractionaldifferential operators.

    Evidence: (1) E. Korobkova et al., Nature (2004), (2) L. Li etal., PLoS one (2008), (3) T. Harris et al., Nature (2012).

    Biology:

    Robotic systems:

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 4 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Nonlocal diffusion = Lévy walk

    Diffusion (Brownianmotion):

    〈x2〉 ∝ t

    Nonlocal diffusion (Lévymotion):

    〈x2〉 ∝ t2/α, 1 ≤ α ≤ 2

    Note: The systems we study don’t directly follow a Lévyprocess in space.

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 5 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Movement of individual robots

    We assume that each individual moves in Rn according to thefollowing rules:

    I Running probability: ψi (xi , τi ) =(

    ς0ς0+τi

    )α, α ∈ (1, 2) .

    I Collision avoidance (elastic reflection): the new direction isθ′i = θi − 2(θi · ν)ν, with normal ν =

    xi−xj|xi−xj | .

    I The stopping frequency during a run phase is βi (xi , τi ).

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 6 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Movement of individual robots

    We assume that each individual moves in Rn according to thefollowing rules:

    I With probability ζ ∈ [0, 1] it chooses a new direction θ∗iaccording to the turn angle distribution

    k(·, θi ; θ∗i ) = k̃(·, |θ∗i − θi |) where∫S k(·, θ; θ

    ∗)dθ = 1.

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 6 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Movement of individual robots

    We assume that each individual moves in Rn according to thefollowing rules:

    I With probability (1− ζ) the robot aligns with the directionof the neighbors according to Φ(Λi · θi ) where

    Λi (xi , t) =J (xi , t)|J (xi , t)|

    , J (xi , t) = nonlocal flux .

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 6 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Long time dynamics: long range movement +alignment

    Theorem: As ε→ 0, the first two moments of the solution tothe kinetic equation describing the previous movement satisfythe following fractional diffusion equation1

    ∂tu +∇ · w = 0 , w − `G (u)

    F (u)Λw = − 1

    F (u)Cα∇α−1u ,

    where Λw is the mean direction, ` is the strength of thealignment, F (u) is the collision term, G (u) depends on ζ andCα is the diffusion coefficient.

    1Estrada-Gimperlein. “Interacting particles with Lévy strategies: Limitsof transport equations for swarming robotic systems”. In: Submitted,arXiv:1807.10124v3 (2018).

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 7 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Short time dynamics: alignment dominates

    Theorem: As ε→ 0, the solution p to the kinetic equationdescribing the previous movement admits an expansion

    p(x, t, θ) = Φζ(θ)u(x, t) + ε(µ+1)(α−1)p1 +O(ε2(µ+1)(α−1))

    with Φζ(θ) = (1− ζ)Φε(Λ · θ) + ζ. The functions u and Λsatisfy the following system of equations2

    ∂tu + zc0(1− ζ)∇ · (uΛ) = 0 ,u(C0∂tΛ + C1Λ · ∇Λ) + C2P⊥∇u = 0 .

    Here P⊥ = 1− Λ⊗ Λ and z , C0, C1 and C2 depend on ζ andΦε(Λ · θ).

    2Estrada-Gimperlein. “Interacting particles with Lévy strategies: Limitsof transport equations for swarming robotic systems”. In: Submitted,arXiv:1807.10124v3 (2018).

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 8 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Macroscopic PDE description

    The macroscopic model for the movement of interactingrobots is given, in the limit, by the following theorem.

    Theorem:a As ε→ 0, the macroscopic density u(x, t) satisfythe following fractional diffusion equation:

    ∂tu = nc0∇ ·(

    1F (u)

    (Cα∇α−1u

    ))where F (u) comes from the collisions and Cα is the diffusionconstant that only depends on microscopic parameters.

    aDragone-Duncan-Estrada-Gimperlein-Štoček et al. “Efficient quantitativeassessment of robot swarms: coverage and targeting Levy strategies”. In:Preprint (2019).

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 9 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Macroscopic PDE description

    The macroscopic model for the movement of interactingrobots is given, in the limit, by the following theorem.

    Theorem:a As ε→ 0, the macroscopic density u(x, t) satisfythe following fractional diffusion equation:

    ∂tu = nc0∇ ·(

    1F (u)

    (Cα∇α−1u

    ))where F (u) comes from the collisions and Cα is the diffusionconstant that only depends on microscopic parameters.

    aDragone-Duncan-Estrada-Gimperlein-Štoček et al. “Efficient quantitativeassessment of robot swarms: coverage and targeting Levy strategies”. In:Preprint (2019).

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 9 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    PDE description vs. individual robots simulations

    Macroscopic PDE system with Neumann b.c.,

    ∂tu −∇ · (Cα∇α−1u) = 0 in Ω× [0,T ).

    Since Ω = [220cm× 180cm], % = 7.5cm and c = 3cm/s we getε = 0.005, cn = 3, γ = 1/2, c0 = 3 · 0.005γ .Initial condition: u0(x) = max

    (0, 1.2 exp −4N|x |

    2

    0.075 − 0.2).

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 10 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    PDE description vs. individual robots simulations

    Macroscopic PDE system with Neumann b.c.,

    ∂tu −∇ · (Cα∇α−1u) = 0 in Ω× [0,T ).

    Since Ω = [220cm× 180cm], % = 7.5cm and c = 3cm/s we getε = 0.005, cn = 3, γ = 1/2, c0 = 3 · 0.005γ .Initial condition: u0(x) = max

    (0, 1.2 exp −4N|x |

    2

    0.075 − 0.2).

    Robots simulations: run distance r is generated from a Lévyprocess. The new positions are computed, for θ = π ∗ rand, as

    xnew − xcurrent = r cos(θ),ynew − ycurrent = r sin(θ) .

    Initial robots’ positions:

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 10 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Area coverage

    We investigate area cov-erage for different valuesof α and N.

    Macroscopic:

    1t

    ∫ t0

    ∫Ω

    min(u,1|Ω|

    )dxds.

    Robotic simulations:

    # cells visitedtotal # of cells

    Similar work: by A. Bertozzi’sgroup (2018), arXiv:1806.02488and IEEE Transactions. 1 1.2 1.4 1.6 1.8 2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Covera

    ge a

    t T

    = 1

    200 s

    Macroscopic simulation

    Average of webots simulations

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 11 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Hitting times (from robots)

    From the robots simulations3:

    3Dragone-Duncan-Estrada-Gimperlein-Štoček et al. “Efficientquantitative assessment of robot swarms: coverage and targeting Levystrategies”. In: Preprint (2019).

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 12 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Hitting times (from PDE)

    We seek the first time at which the density of the solution inthe target position T , reaches a certain threshold δ, i.e., weseek t0 such that

    δ =

    ∫T

    ∫Ωu(x− y, t0)u0(y)dydx.

    The robots simulation are compared to:

    I Analytic hitting time4: Considers Ω = Rn and the initialconditions are given by delta functions.

    I Numerical hitting time: We consider the numericalsolution when Ω = �.

    4Estrada-Gimperlein-Painter-Štoček. “Space-time fractional diffusion incell movement models with delay”. In: M3AS 29 (2019), pp. 65–88.

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 13 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Hitting times (from PDE)

    We seek the first time at which the density of the solution inthe target position T , reaches a certain threshold δ, i.e., weseek t0 such that

    δ =

    ∫T

    ∫Ωu(x− y, t0)u0(y)dydx.

    The robots simulation are compared to:

    I Analytic hitting time4: Considers Ω = Rn and the initialconditions are given by delta functions.

    I Numerical hitting time: We consider the numericalsolution when Ω = �.

    4Estrada-Gimperlein-Painter-Štoček. “Space-time fractional diffusion incell movement models with delay”. In: M3AS 29 (2019), pp. 65–88.

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 13 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Hitting times (from PDE)Define

    t0 'δπ

    2αCα vol(T )∑

    i |x0 − xi |−α−2 .

    Here x0 is the centre of the target T , and xi corresponds to theinitial positions of the robots.5

    1 1.2 1.4 1.6 1.8300

    400

    500

    600

    700

    800

    900

    1000

    1100

    1200

    Avera

    ge h

    itting tim

    e

    Tile 1 centered at (-0.45,-0.55)

    Tile 2 centered at (-0.55,0.55)

    Macroscopic simulation for Tile 1

    Analytic estimate

    5Dragone-Duncan-Estrada-Gimperlein-Štoček et al. “Efficientquantitative assessment of robot swarms: coverage and targeting Levystrategies”. In: Preprint (2019).

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 14 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Kinetic equation for the 2-particle equation

    For the N-individual system the density σ = σ(xi , t, θi , τi )evolves according to a kinetic equation

    ∂tσ + cN∑i=1

    (∂τi + θi · ∇xi )σ = −N∑i=1

    βiσ .

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 15 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Kinetic equation for the 2-particle equation

    For the 2-individual system the densityσ = σ(x1, x2, t, θ1, θ2, τ1, τ2) evolves according to a kineticequation

    ∂tσ + c2∑

    i=1

    (∂τi + θi · ∇xi )σ = −2∑

    i=1

    βiσ .

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 15 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Kinetic equation for the 2-particle equation

    For the 2-individual system the densityσ = σ(x1, x2, t, θ1, θ2, τ1, τ2) evolves according to a kineticequation

    ∂tσ + c2∑

    i=1

    (∂τi + θi · ∇xi )σ = −2∑

    i=1

    βiσ .

    σ̃τ1∣∣τ1=0

    =

    ∫SQ(θ1, θ

    ∗1)

    ∫ t0β1σ̃τ1(x1, x2, t, θ

    ∗1, θ2, τ1)dτ1dθ

    ∗1 ,

    where

    Q(θ1, θ∗1) = ζk(x1, t, θ

    ∗1; θ1) + (1− ζ)Φ(Λ1 · θ1) .

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 15 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    General strategy

    I Integrate out the microscopic quantity τ1,2.

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 16 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    General strategy

    I Integrate out the microscopic quantity τ1,2.I We now aim to derive an effective transport equation for

    the one-particle density function

    p(x1, t, θ1) =1|S |

    ∫ t0

    ∫ t0

    ∫Ω2

    ∫Sσdθ2dx2dτ1dτ2 .

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 16 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    General strategy

    I Integrate out the microscopic quantity τ1,2.I We now aim to derive an effective transport equation for

    the one-particle density function p = p(x1, t, θ1).I The density p satisfies the following kinetic equation

    ∂tp + cθ1 · ∇x1p = (1− ζ)Φ(Λ1 · θ1)(B(x1, t) ∗ u(x1, t)

    )(t)︸ ︷︷ ︸

    Alignment

    −(1− ζT1)∫ t

    0B(x1, t − s)p(x1 − cθ1(t − s), s, θ1)ds︸ ︷︷ ︸

    Long-range movement

    + Collision term,

    where u(x1, t) =∫S p(x1, t, θ1)dθ1, the operator B depends on

    the power-law running probability ψ1(x1, τ1).

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 16 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    General strategy

    I Integrate out the microscopic quantity τ1,2.I We now aim to derive an effective transport equation for

    the one-particle density function p = p(x1, t, θ1).I The density p satisfies the following kinetic equation

    ∂tp + cθ1 · ∇x1p = (1− ζ)Φ(Λ1 · θ1)(B(x1, t) ∗ u(x1, t)

    )(t)

    − (1− ζT1)∫ t

    0B(x1, t − s)p(x1 − cθ1(t − s), s, θ1)ds

    + Collision term.

    I Parabolic scaling (x, t, τ, c) 7→ (xns/ε, tn/ε, τn/εµ, c0/εγ)for µ, γ > 0. The diameter of each particle is small, % = εξ,while the number of particles N is large so that(N − 1)% = εξ−ϑ, with ξ − ϑ < 0.

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 16 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    General strategy

    I Conservation equation

    ε∂tu(x1, t) + εnc0∇ · w(x1, t) = 0 ,

    where w(x1, t) =∫S θ1p(x1, t, θ1)dθ1 .

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 16 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    General strategy

    I Conservation equation

    ε∂tu(x1, t) + εnc0∇ · w(x1, t) = 0 ,

    where w(x1, t) =∫S θ1p(x1, t, θ1)dθ1 .

    I Use a quasi-static approximation for B̂ = L[B],

    B̂ε(x1, ελ+ ε1−γc0θ1 · ∇) ' B̂ε(x1, ε1−γc0θ1 · ∇) .

    I Molecular chaos assumption˜̃σ(x1, x1 ± εξν, t, θ1, θ2) = p(x1, t, θ1)p(x1, t, θ2) +O(εξ) .

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 16 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    General strategy

    I Conservation equation

    ε∂tu(x1, t) + εnc0∇ · w(x1, t) = 0 ,

    where w(x1, t) =∫S θ1p(x1, t, θ1)dθ1 .

    I Use a quasi-static approximation for B̂ = L[B],

    B̂ε(x1, ελ+ ε1−γc0θ1 · ∇) ' B̂ε(x1, ε1−γc0θ1 · ∇) .

    I Molecular chaos assumption˜̃σ(x1, x1 ± εξν, t, θ1, θ2) = p(x1, t, θ1)p(x1, t, θ2) +O(εξ) .

    ∂tu +∇ · w = 0 , w − `G (u)

    F (u)Λw = − 1

    F (u)Cα∇α−1u .

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 16 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Short-time behaviour

    I Hyperbolic scaling: xn = εx/s, tn = εt, τn = τεµ .

    I The space and time variables are on the same scale

    ε(∂tp + c0θ · ∇p) = (1− ζ)Φε(Λ · θ)∫ t

    0Bε(x, t − s)u(x, s)ds

    − (1− ζT )∫ t

    0Bε(x, t − s)p(x− cθ(t − s), s, θ)ds .

    So in this case no-quasistatic approximation.

    I Obtain a generalized Chapman-Enskog expansion for p.

    I Conservation equation: ∂tu + zc0(1− ζ)∇ · (uΛ) = 0 .

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 17 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Short-time behaviour

    I Hyperbolic scaling: xn = εx/s, tn = εt, τn = τεµ .

    I The space and time variables are on the same scale

    ε(∂tp + c0θ · ∇p) = (1− ζ)Φε(Λ · θ)∫ t

    0Bε(x, t − s)u(x, s)ds

    − (1− ζT )∫ t

    0Bε(x, t − s)p(x− cθ(t − s), s, θ)ds .

    So in this case no-quasistatic approximation.

    I Obtain a generalized Chapman-Enskog expansion for p.

    I Conservation equation: ∂tu + zc0(1− ζ)∇ · (uΛ) = 0 .

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 17 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Short-time behaviour

    I Hyperbolic scaling: xn = εx/s, tn = εt, τn = τεµ .

    I The space and time variables are on the same scale

    ε(∂tp + c0θ · ∇p) = (1− ζ)Φε(Λ · θ)∫ t

    0Bε(x, t − s)u(x, s)ds

    − (1− ζT )∫ t

    0Bε(x, t − s)p(x− cθ(t − s), s, θ)ds .

    So in this case no-quasistatic approximation.

    I Obtain a generalized Chapman-Enskog expansion for p.

    I Conservation equation: ∂tu + zc0(1− ζ)∇ · (uΛ) = 0 .

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 17 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Short-time behaviour

    I Hyperbolic scaling: xn = εx/s, tn = εt, τn = τεµ .

    I The space and time variables are on the same scale

    ε(∂tp + c0θ · ∇p) = (1− ζ)Φε(Λ · θ)∫ t

    0Bε(x, t − s)u(x, s)ds

    − (1− ζT )∫ t

    0Bε(x, t − s)p(x− cθ(t − s), s, θ)ds .

    So in this case no-quasistatic approximation.

    I Obtain a generalized Chapman-Enskog expansion for p.

    I Conservation equation: ∂tu + zc0(1− ζ)∇ · (uΛ) = 0 .

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 17 / 19

  • Introduction

    Bio-inspiredstrategy

    Anomalousdiffusion

    Swarmroboticsystems

    Results I

    Result II

    Individualrobotssimulations’comparison

    MacroscopicPDEdescription

    Conclusions

    Related work

    I Networks. Superdiffusion in complex domains.

    Estrada-Estrada-Gimperlein, arXiv:1812.11615, (2018).I Chemotaxis for E. coli and space-time fractional diffusion

    models for immune cells:Estrada-Gimperlein-Painter, SIAP, (2018) andEstrada-Gimperlein-Painter-Stocek, M3AS, (2019).

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 18 / 19

  • References

    Thanks! Any question?

    www.macs.hw.ac.uk/∼ge5

    Dragone-Duncan-Estrada-Gimperlein-Štoček et al.“Efficient quantitative assessment of robot swarms:coverage and targeting Levy strategies”. In: Preprint(2019).

    Estrada-Gimperlein. “Interacting particles with Lévystrategies: Limits of transport equations for swarmingrobotic systems”. In: Submitted, arXiv:1807.10124v3(2018).

    Estrada-Gimperlein-Painter-Štoček. “Space-time fractionaldiffusion in cell movement models with delay”. In: M3AS29 (2019), pp. 65–88.

    Gissell Estrada-Rodríguez Bio-inspired strategies 27/11/2018 19 / 19

    IntroductionBio-inspired strategyAnomalous diffusionSwarm robotic systemsResults IResult IIIndividual robots simulations' comparisonMacroscopic PDE descriptionConclusionsAppendix

    fd@rm@0: fd@rm@1: