m. mandlmayr, m. schwalsberger · 11/7/2017  · overview almost optimal test functions for pure...

31
Discontinuous-Petrov-Galerkin for pure Convection M. Mandlmayr, M. Schwalsberger Supervisor: O.Univ.-Prof. Dr. Ulrich Langer November 7, 2017 M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 1 / 31

Upload: others

Post on 21-Jan-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Discontinuous-Petrov-Galerkin for pure Convection

M. Mandlmayr, M. Schwalsberger

Supervisor:O.Univ.-Prof. Dr. Ulrich Langer

November 7, 2017

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 1 / 31

Page 2: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Overview

1 Introduction

2 Guidline to DPG

3 1D Problem

4 2D Problem

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 2 / 31

Page 3: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Overview

Almost optimal test functions for pure convection

Locally computed test functions

Trial space: Discontinuous polynomials & fluxes

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 3 / 31

Page 4: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Recap

Energy Norm: ‖u‖E := sup‖v‖V =1

b(u, v)

T : U −→ V , (Tu, v)V = b(u, v) ∀v ∈ V

Optimal Test Space: Vn = T (Un)

Resulting solution un is optimal:

‖u − un‖E = infwn∈Un

‖u − wn‖E

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 4 / 31

Page 5: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

4 Steps guideline

4 steps are needed to obtain a DPG-method:

1 Mesh dependent variational formulation with interelementdiscontinuities

2 Accurate trial spaces

3 Approximate optimal test functions per element:

Approximate T: (Tnun, vn)V = b(un, vn) ∀vn ∈ Vn

Tn : Un −→ Vn is injectiveVn = Tn(Un);

4 Solve a symmetric positive definite system.

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 5 / 31

Page 6: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Problem

Pure Convection or Transport-Equation:

β∇u = f in Ω

u = u0 on Γin := x ∈ ∂Ω|β(x) · n(x) < 0

Mesh dependent variational formulation:Find u ∈ L2(Ω), q ∈ L2(Γh) :

b((u, q), v) = l(v) ∀v ∈ Hβ(K ) := v ∈ L2|β∇v ∈ L2

b((u, q), v) :=∑K

∫K −u(β· ∇)v dx +

∫∂K\Γin

sgn(β · n)qv ds

l(v) =∑K

∫K fv dx +

∫∂K∩Γin

(β · n)u0v ds

The flux is introduced as q := |β · n|u and serves as sole couplingcomponent.

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 6 / 31

Page 7: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Finite Trial Spaces

The construction of trial spaces reflects the concept of optimal testspaces.

u

Accurate approximation by polynomialsCorresponding test functions restricted on the same element

q

Simple approximation (scalars for 1D) per faceCorresponding test functions on two neighboring elements

The test functions in Hβ(K ) are also discontinuous over the elements.

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 7 / 31

Page 8: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Model problem 1D: setting

Let

β = 1

K = (x1, x2),

then Hβ(K ) = H1((x1, x2)).To obtain a Hilbertspace, we choose the inner product:

(v ,w)V =

∫ x2

x1

v ′w ′dx + v(x2)w(x2)

The bilinear form of the Problem is given by

b ((u, q), v) = −∫ x2

x1

uv ′dx + qv(x2).

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 8 / 31

Page 9: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Model problem 1D: trialspace

The next step is to select a space of trialfunctions for (u, q):

Up = Pp (K )× R

where Pp denotes the polynomials on K of degree less or equal p

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 9 / 31

Page 10: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Model problem 1D: optimal testspace

The optimal testfunctions vu,q := T (u, q) must satisfy:(v(u,q),w

)V

= b((u, q),w) ∀w ∈ H1(Ω)

i.e. for vq = T (0, q)∫ x2

x1

v ′qw′dx + vq(x2)w(x2) = w(x2)

respectively for vu = T (u, 0)∫ x2

x1

v ′uw′dx + vu(x2)w(x2) = −

∫ x2

x1

uw ′dx

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 10 / 31

Page 11: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Model problem 1D: optimal testspace

The optimal testfunctions are

v(0,1)(x) = 1

v(u,0)(x) =

∫ x2

xu(s)ds.

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 11 / 31

Page 12: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Model problem 1D multielement: setting

Given:

β = 1

Ω = (x1, xn) split into elements (xi , xi+1),

Chosen inner product:

(v ,w)V =n∑

i=1

∫ xi

xi−1

v ′w ′dx + αivup(xi )w

up(xi )

vup(xi ) = v(xi − 0) denotes the limit from the left.vdn(xi ) = v(xi + 0) denotes the limit from the right.The bilinear form is:

b((u, q), v) =n∑

i=1

[−∫ xi

xi−1

uv ′dx + qivup(xi )− qi−1v

dn(xi−1)

]

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 12 / 31

Page 13: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Model problem 1D multielement: trialspace

The trialspace is set to

Uh := (wh, q1, · · · , qn) : wh|(xi−1,xi ) ∈ Pp, qi ∈ R

with the understanding that q0 = 0.

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 13 / 31

Page 14: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Model problem 1D multielement: optimal testfunctions

As we allowed discontinuity between the elements , the optimaltestfunction can be computed seperately for each element. Therefore wecan use the result of the one elemental case to obtain for w ∈ Pp(xi , xi+1):

v(w ,0,··· ,0)(x) =

∫ xi+1

xw(s)ds

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 14 / 31

Page 15: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Model problem 1D multielement: optimal testfunctions

For the optimal testfunction vi corresponding to the unit flux at xi , it is abit more tricky, it has to fullfill∫ xi

xi−1

v ′iw′dx + αiv

upi (xi )w

up(xi ) = wup(xi )

for all w ∈ H1(xi−1, xi ) and∫ xi+1

xi

v ′iw′dx + αi+1v

upi (xi+1)wup(xi+1) = −wdn(xi )

for all w ∈ H1(xi , xi+1).

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 15 / 31

Page 16: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Model problem 1D multielement: optimal testfunctions

And this yields that

vi (x) =

1αi

for x ∈ (xi−1, xi )

x − 1+αi+1xi+1

αi+1for x ∈ (xi , xi+1)

0 elsewhere

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 16 / 31

Page 17: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Model problem 1D multielement:statements

Theorem

The energy norm is given by

||(u, q1, · · · , qn)||2E =n∑

i=1

|qi − qi−1|2

αi+

∫ xi

xi−1

|u − qi−1|2.

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 17 / 31

Page 18: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Model problem 1D multielement:statements

Theorem

For all u ∈ L2(x0, xn) and all q = (q1, · · · , qn) ∈ Rn, the inf sup conditions

||u||2 + ||q||2h ≤ γ||(u, q1, · · · , qn)||2E

holds, where ||u|| denotes the L2(x0, xn) norm,||q||h =

∑ni=1 |qi−1|(xi − xi−1), and γ = max(3κ, 2), with

κ =∑n

l=1

∑l−1j=1 αj(xl − xl−1).

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 18 / 31

Page 19: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Model problem 1D multielement:statements

Theorem

The test space can be characterized as

Vh = v : v |K ∈ Pp+1for all elements K

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 19 / 31

Page 20: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Model problem 1D multielement:statements

Theorem

The solution (uh, qh,1 · · · , qh,n) of this DPG is independent of αi.

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 20 / 31

Page 21: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Model problem 1D multielement:statements

Theorem

The error in the fluxes qh,i is zero, i.e. qh,i = qi .

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 21 / 31

Page 22: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Model problem 1D multielement:statements

Theorem

The solution uh equals the L2 projection of the exact solution.

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 22 / 31

Page 23: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

2D DPG-A Assumptions

For the 2D problem we need some assumptions:

divβ = 0

Babuska-Aziz is fulfilledimplies that β has no closed loops

Initial mesh is sufficiently fine

Inner product:

(v , δv )V :=∑K

∫K ∂βv∂βδv dx +

∫K vδv dx

The trial space is chosen as:

wh|K ∈ Pp(K )φh|E ∈ Pp+1(E )

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 23 / 31

Page 24: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Optimal Test Function

We need to find test functions v ∈ Pp+2 for a basis of the trial space:∫K ∂βv∂βδv + vδv dx =

∫K u∂βδv dx +

∫∂K sgn(β · n)qδv ds

δv ∈ Hβ(K ) can be impractical, instead we choose δv |K ∈ Pp+2(K ) aslocal approximationThe linear system can consequently be solved by standard methods.

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 24 / 31

Page 25: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Streamline Coordinates

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 25 / 31

Page 26: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

2D DPG-X

Solve the equation for the optimal test function analytically.Different inner product:

(v , δv )V :=∫K ∂βv∂βδv dx +

∫∂outK

vδv dx

vu is a polynomial with degree p + 1 along the streamline coordinateand degree p in some second coordinate.

vφout is the constant extension along streamlines

vφin is a linear function along streamlines

When viewed on a streamline the results are the same as in 1D.Introduces discontinuitiesOnly implemented for constant β, possibly approximations for general case

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 26 / 31

Page 27: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Summary

DPG-1 is the method from their first paperWe have the following results:

DPG-1 and DPG-X have similar test spaces

DPG-X and DPG-A result in pos. def. symmetric matrices

DPG-A is the easiest to implement

DPG-A and DPG-X can be extended to the convection-dominateddiffusion case

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 27 / 31

Page 28: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Numerical results h-refinement

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 28 / 31

Page 29: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Numerical results hp-refinement

p = 1, 2, 3, 4, 5; one line for each pM. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 29 / 31

Page 30: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

Literature

L. Demkowicz and J. Gopalakrishnan. A class of discontinuousPetrov-Galerkin methods. I: The transport equation. Comput.Methods Appl. Mech. Eng., 199(23-24):1558-1572, 2010.

L. Demkowicz and J. Gopalakrishnan. A class of discontinuousPetrov-Galerkin methods. II: Optimal test functions. Numer.Methods Partial Differ. Equations, 27(1):70- 105, 2011.

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 30 / 31

Page 31: M. Mandlmayr, M. Schwalsberger · 11/7/2017  · Overview Almost optimal test functions for pure convection Locally computed test functions Trial space: Discontinuous polynomials

The End

M. Mandlmayr, M. Schwalsberger (JKU) Pure Convection November 7, 2017 31 / 31