m. f. goffman first lecture functions: macroscopic electronic properties molecular wires diodes...

66
M. F. Goffman First Lecture Functions: macroscopic electronic properties Molecular Wires Diodes Switches and storage elements Negative Differential Resistance (NDR) elements Chemical structure • Transport mechanisms are determined by Metal-molecule coupling Weak coupling regime e e Molecule Strong coupling regime Molecule

Upload: magdalen-tabitha-walton

Post on 25-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

First Lecture

• Functions: macroscopic electronic properties

Molecular Wires

Diodes

Switches and storage elements

Negative Differential Resistance (NDR) elements

Chemical structure

• Transport mechanisms are determined by Metal-molecule coupling

Weak coupling regime

ee

Molecule

Strong coupling regime

Molecule

Page 2: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Second Lecture

• Functions: macroscopic electronic properties

Molecular Wires

Diodes

Switches and storage elements

Negative Differential Resistance (NDR) elements

Chemical structure

• Transport mechanisms are determined by Metal-molecule coupling

Weak coupling regime

ee

Molecule

Strong coupling regime

Molecule

1

2

Qualitative Picture

3 Final Remarks

Page 3: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Molecular Conduction: Qualitative Picture

Energy Diagram showing the molecular levels relative to the electrochemical potential of electrodes

Potential Profile across the molecule due to the applied bias.

Two Basic Ingredients:

Page 4: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

M0

Strong Coupling to Metallic Electrodes ()

Isolated Molecule

E

HOMO

LUMO

Discrete Energy Levels Broadening of the energy levels ()

M0 Mn Fractional charge transfer

Which is the location µF with respect to HOMO-LUMO levels?

E

Local Density of States

Fermi level µF

Mn

Chemically bonded

Page 5: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Location of the Fermi Energy

UPS Experiments (UV Photo Electron Spectroscopy )

h e-

S S e h

E

Local Density of States

Mn

h

e-

e-

µF

h

EµF# e

per

seco

nd

EµF

HOMO

Vacuum Level

Vacuum Level

e-

EH

OM

O

UPS spectrum

# e

per

seco

nd

Page 6: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

1.5 1.0 0.5 0.0 -0.50.0

0.2

0.4

0.6

0.8

1.0

1.2

Inte

nsity

(10

4 coun

ts p

er s

econ

d)

Binding energy-µF (eV)

UPS Experiment on Self-assembled Monolayer on Au

SeCOCH3CH3COSeS

S

S

Se3

h e-

he-

HOMO FE E µ

Page 7: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Energy Diagram

µ L=µR

-V/2 V/2L R L R

µ L

µR

eV

At equilibrium (V=0)

But how are µL and µR disposed with respect to the molecular levels?

Potential profile inside the molecule

Page 8: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Potential Profile

To the lowest approximation Molecular Levels shift "rigidly" by

(r) / 2V V with 0 1 molV

e (r)molV

Let us denote this average potential as:

Taking the molecular levels as our reference, the electrochemical potential of electrodes are shifted by

L F Vµ µ e R F eVµ µ 1

This voltage division factor has a profound effect on Current-Voltage Characteristics

-V/2 V/2L R

Potential Profile

-V/2

V/2

(r)molVrV

Page 9: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Energy Level Diagram (=0)

=0 Molecular levels remain fixed to µ L

V>0 HOMO Conduction V<0 LUMO Conduction

I-V Characteristics can look asymetric Positive branch (V>0) and Negative branch (V<0) involve different Molecular levels

µ L

µR

eV

LUMO

HOMO

µ L

µR

eV

LUMO

HOMO

Page 10: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Energy Level Diagram (=1/2)

=1/2 Molecular levels shift with respect to µ L by half the applied bias

µ L

µR

eV/2

LUMO

HOMO

µ L µR

eV/2

LUMO

HOMO

Conduction takes place through the nearest molecular level (HOMO in this case) for either bias polarity.

Page 11: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Toy Model

(1) Location of with respect to µF

(2) Broadening L,R due to contacts (LR)

Toy Moldel: single level (HOMO or LUMO) that incorporates relevant ingredients:

(3) Potential Profile

L R

µ L µR

Page 12: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Discrete One-Level Model

-V/2 V/2L R

µ L

LR

L

-0.2

-0.1

0.0

0.1

0.2

0.0 0.5 1.0

f

E-µ

F (

eV)

µR

R

0.0 0.5 1.0-0.2

-0.1

0.0

0.1

0.2

E-µ

F (

eV)

f

B/ k T

1f Fermi function

1 e

Current as a "balancing act" L Rf µ N f µ

Page 13: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Discrete One-Level Model

-V/2 V/2L R

µ L

LR

-0.2

-0.1

0.0

0.1

0.2

0.0 0.5 1.0

f

E-µ

F (

eV)

L L

available state

L

s

Outflow N 1 f µ

L L

available states

LInflow f µ 1 N

L L L LLI e Inflow Outflow e N f µ

The net flux across left junction will be

L

Page 14: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Discrete One-Level Model

-V/2 V/2L R

LR

The net flux across right junction will be

RR RI e N f µ

µR

R

0.0 0.5 1.0-0.2

-0.1

0.0

0.1

0.2

E-µ

F (

eV)

f

Page 15: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Discrete One-Level Model

At the steady state IL+IR=0 (no charge accumulation in the molecule)

L RL

R

R

L

f µ f µN

L RL

RL R

RL

eI I f µ f µI

R LR L R RI I e N f µ e N f µ 0

The current through the metal-molecule-metal structure will be

Page 16: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2-40

-30

-20

-10

0

10

20

30

40

I (µ

A)

V (Volts)

µ L µR

µ L

µR

µ L

µR

One-level Model: Current (I) vs. Voltage (V)

L

R

L R

F

F

F

V

V

µ µ e / 2

µ µ e / 2

µ 0.4eV

0.1eV 0.2eV

L R

L RL RI

ef µ f µ

Let us take into account Broadening of the level

F2 µ

Page 17: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Broadening

We replace the discrete level by a Lorentzian density of states:

µ L

µR

L

R

2 2

1D E

2 E / 2

L

LL

R

RR

eD E f E µ fI E µ dE

Expression of the current will be modified

We could write in the Landauer-Büttiker form

L RL R

L R

eT E f E µ f E µ dE where T E 2I D E

2

I let for you the demostration that the maximum value of 2

V2

Ie

G /

Page 18: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2-20

0

20

40

60

80

100

120

140

G (

µS)

V (Volts)

One-level Model: Current (I) vs. Voltage (V)

Next: Potential Profile

L

R

L R

F

F

F

V

V

µ µ e / 2

µ µ e / 2

µ 0.4eV

0.2eV 0.1eV

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2-40

-30

-20

-10

0

10

20

30

40

Broadened Discrete

I

(µA)

V (Volts)

Conductance Quantum

Page 19: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Potential Profile

The potential profile VMOL(r) will be obtained by solving

r 0r e n/ Poisson's Equation

MOLV

A solution can be visualized in terms of a capacitance circuit model:

-V/2 V/2L R -V/2 V/2

CL CR

L Re n C / 2 CV V/ 2

2R Le C C

U e n eVC C

Charging Energy Eadd rSolution of r 0

MOLV

Fn N f µ : change in the number of electrons @ equilibrium

The potential U that raises the position of the level is

r MOLV

Page 20: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Self Consistent Solution

Fadd0 0 0

U(N)

N VE f µ D E D E U N

L

L R

RRLf E µ f E µN D E U N dE

Iterative Procedure for calculating N and U self-consistently

L R

LL R

R

eD E U N f µ f dI E E µ E

Page 21: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

µ L

µR

V>0

One-level Model: Current (I) vs. Voltage (V)

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.20

20

40

G (

µS)

V (Volts)

IV asymetric

Coupling asymetry + charging

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2-30

-20

-10

0

10

20

30

Eadd

=0.0 eV E

add=0.3 eV

I

(µA)

V (Volts)

µ L

µR

V<0

Positively charges the molecule

shift down

L R0.2eV 0.1eV

Page 22: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Summary

addWhen transport can be described using a "self-consistent field" meE thod

Asymetric IVs asymetric coupling + charging effect (Eadd) even if transport is associated with a single level (symetric molecule)

HOMO conduction I is lower for positive bias on the stronger contact

LUMO conduction I is higher for positive bias on the stronger contact

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2-30

-20

-10

0

10

20

30

Eadd

=0.0 eV E

add=0.3 eV

I (µ

A)

V (Volts)

• I increases when is crossed at V~2(µF-)

• I increases over a voltage width +kBT

• I dragged out by charging Eadd

Page 23: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Realistic Models

Non-Equilibrium Green's Function (NEGF) Formalism

Let us rewritte the previous eq. in terms of a Green Function G(E)

1G E

E i / 2

Then the density of states will be proportional to the so called Spectral function defined as

† A EA E i G E G E D E

2

The mean number of excess electrons N and the current can be written as

2 2

1 2

1

1 2

2

12 2

2N dE G E f E µ G E f E µ

2

2eI dE G E f E µ f E µ

Page 24: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

NEGF Formalism

For a multilevel Molecule (n levels) all quantities are replaced by a corresponding matrix (n x n )

Hamiltonian Matrix

Broadenning Matrix

D E A E / 2 Spectral Function

N Density Matrix

U U Self consistent

Potential

H

1G E

E i / 2

†1G E i

E S H

A pedagogical tutorial: S. Datta, Nanotechnology 15, S433 (2004).

H : Molecule + surface atoms

: Coupling to bulk contacts

U : appropriate functional

Page 25: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Experiments on Molecular Wires

Well coupled to electrodes (at least one of them)

Page 26: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Molecular Wires

A) How conductance depends on the length L of the wire?

L~nmLarge delocalized systems

Conductance is a property of the Metal-Molecule-Metal structure

B) How conductance depends on the binding group of the wire?

C) How conductance depends on the structure of the wire?

Page 27: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

How one can measure transport properties of molecular wires?

1) STM: Scanning Tunneling Microscope

2) Break-junctions

Electronmigration-induced

Mechanically controlled

3) Shadow evaporation on Self-assembled Monolayers (SAMs)

Page 28: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Adsorption

MBE: Molecular "Beaker" Epitaxy

Organization

SolutionThiol-endedMolecules

Au (111)

STM Image

s s s s s s s s sAu (111)

Tip

Page 29: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

A) How conductance depends on L?

Page 30: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Conductive AFM on Self-Assembled Monolayers

Sakaguchi et al., APL 2001

=0.41Å-1 for oligothiophene=1.08 Å-1 for alkanethiol

Measured

Theory

=0.33Å-1 for oligothiophene=1.0 Å-1 for alkanethiol

Page 31: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Langlais et al., PRL 1999

t m v

m v

I G ( )exp( ) since

G ( ) exp( ) wi

x x

x

z z

x th

Conductance depends exponentially on L

STM on specially designed molecular wire

Page 32: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Explanation

-V/2V/2

L R

µ L

µR

eV

At low voltages µF is far from HOMO and/or LUMO Tunneling Transmission

M. P. Samanta et al., PRB 53, R7626 (1996).

Page 33: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

B) How conductance depends on the binding group of the molecular wire?

Page 34: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Experiments are needed

Conductance of molecular wires: Influence of molecule-electrode binding. S.N. Yaliraki, M.

Kemp, and M.A. Ratner, J. Am. Chem. Soc. 121(14), 3428 (1999)

Se > S

Theoretical studies

Molecular alligator clips for single molecule electronics. Studies of group 16 and isonitriles

interfaced with Au contacts. J.M. Seminario, A.G. Zacarias, and J.M. Tour

J. Am. Chem. Soc. 121(2), 411 (1999)

S > Se

X=S T3

X=Se Se3XCH3COX

S S

S

Influence of the binding group of electroactive molecules

X = S or Se

Page 35: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Influence of the binding group: Se vs S

Investigation of T3 and Se3S

SCOCH3CH3COSS

S

SeCOCH3CH3COSeS

S

S

T3

Se3

T3

Se3

“Identical” HOMOs quite similar IPs

6.50 eV

6.52 eV

Page 36: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Sample Preparation

Adsorption

Organization

Solution

ConductingMolecules

Au (111)

SolutionThiol-endedInsulating Molecules

Insertion

Page 37: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

STM tip

28 nm T3,Vt = +0.78V, It = 10.7pA

L. Patrone et al, Chem. Phys.281(2002)325PRL 91(03) 096802

Molecular structure - transport properties relationship

h

x

SSCOCH3CH3COS

S

S

SeCOCH3CH3COSeS

S

S

T3

Se3

Page 38: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

STM tip

28 nm T3,Vt = +0.78V, It = 10.7pA

L. Patrone et al, Chem. Phys.281(2002)325PRL 91(03) 096802

Molecular structure - transport properties relationship

h

x

SSCOCH3CH3COS

S

S

SeCOCH3CH3COSeS

S

S

T3

Se3

Page 39: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

STM tip

28 nm T3,Vt = +0.78V, It = 10.7pA

L. Patrone et al, Chem. Phys.281(2002)325PRL 91(03) 096802

Molecular structure - transport properties relationship

The apparent height is a (relative) measure of the conductance of the molecular junction

h

x

SSCOCH3CH3COS

S

S

SeCOCH3CH3COSeS

S

S

T3

Se3

Page 40: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

S vs Se: Experimental comparison

It It

STM tip

28 nm T3,Vt = +0.78V, It = 10.7pA

L. Patrone et al, Chem. Phys. 281(2002)325

T3

Se3

Topography: 1.0 nm

Topography: 1.0 nm

STM on T3 and Se3 Molecules inserted in a dodecanethiol Matrix

Page 41: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Se give rise to a more efficient transport than S

0 1 2 3 4 5 6 7 8 9 1011

Se3

Vt=+0.78VIt=3.5pA

Nu

mb

er

of

mo

lecu

les

(a.u

.)

Apparent height (Å)

T3

-1 0 10

1

2

3

4

5

6

Ap

pa

ren

t h

eig

ht

(Å)

Tunneling bias (V)

T3 (S)

Se3 (Se)

Se3 > T3

S vs Se: Experimental comparison

Page 42: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Current-Voltage characteristic

IV

eV

I

2(EF-EHOMO)

Se3

T3

EF

HOMOLUMO

Position of the HOMO level/ Fermi level

(EF-EHOMO) : T3 > (EF-EHOMO) : Se3

EF-EHOMO

eV

Page 43: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

UPS (UV Photoelectron Spectroscopy)

1 monolayer adsorbed onto gold

Position of the HOMO / Fermi level

20 15 10 5 00.0

0.5

1.0

1.5

Inte

nsity

(1

04 co

un

ts p

er

se

co

nd

)

Excitation: He II, hexc

= 40.8 eV

Binding energy-µF (eV)

Au/Se3 Au/T3 Au

T3 : EF -EHOMO > Se3: EF -EHOMO

1.5 1.0 0.5 0.0 -0.5 -1.0 -1.50.0

0.2

0.4

0.6

0.8

1.0

1.2

Inte

nsity

(10

4 cou

nts

per

seco

nd)

Binding energy-µF (eV)

Au/Se3 Au/T3 Au

Page 44: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

C) How conductance depends on the structure of the wire?

Page 45: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

C) Comparaison of backbone conductance

Kushmeric, Ratner et al JACS 2003

OPV > OPE OPV vs Othiophene?

Page 46: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

0 1 2 3 4 5 6 7 8 9 10 11

OPV2Vt = +0.78 VIt = 1.9 pA

Num

ber

of m

olec

ules

(a.

u.)

Apparent height (Å)

0 1 2 3 4 5 6 7 8 9 10 11

T3Vt = +0.78 VIt = 1.9 pA

Num

ber

of m

olec

ules

(a.

u.)

Apparent height (Å)

CH3COSSCOCH3

OPV2 (12.67 Å)

CH3COS SCOCH3

S S

ST3 (15.6 Å)

2.0 Å

4.2 Å

OPV2 : HOMO - EF 0.7 eVOPV3: HOMO - EF 0.35-0.7 eV

OPV3 (19.04 Å) CH3COS

SCOCH3

7.3 Å

C) Influence of the conjugated body: T3 vs OPVn

OPVs are more conducting than Othiophene

Page 47: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Which is the IV characteristic of a Metal-single molecule-Metal device?

Page 48: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Single Molecule Measurement

Conducting AFM on Alkanedithiol on a alkanethiol matrixX.D. Cui et al., Science 2001.

Metallic substrate

Tip

Page 49: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Single Molecule Measurement

N. J. Tao, Science 2003.Conductance histograms with STM

Page 50: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Contacting Single Molecules

Mechanically Controlled break-junctions

Advantages

High stabilityaccuracy l/z~10-5

Freshly exposed metal surfaces

Drawbacks

No image of contacted moleculesNo gating

l

z

J. M. van Ruitenbeek et al Rev. Sci. Instrum. 67 (1995) 108

Page 51: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Mechanically Controlled break-junctions (MCBJs)

Experimental procedure

Page 52: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

MCBJs Results on Different Molecules (@300K)

-1 0 1-1.0

-0.5

0.0

0.5

1.0

Cur

rent

A)

Bias (V)

0.0

0.4

0.8

1.2

1.6

Con

duct

ance

S)

SS S

SS

Single Molecule IV characteristics ?

M. A. Reed et al, Science 278 (1997) 252

Kergueris et al PRB 59(1999)12505

Reichert et al PRL 88(2002)176804

Page 53: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Probably Yes!

• "Lock-in" behavior• Similar molecules (length, binding groups) with different spatial symmetry gives corresponding behaviour on IVs• modeling consistent with a single moleculeNEGF Formalism calculation

J. Heurich et al., PRL 88, 256803 (2002).

Page 54: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Conclusions for Molecular Wires

B) The role of the binding group has been decoupled from that of the rest of the molecule:

Se yields a better molecule-metal coupling efficiency than S since the Fermi level is nearer to the HOMO level.

At low Voltage Bias

A) Exponential dependence on L is confirmed.

C)

ContactV 0

LGG I / V e

IVs

Phenylene-Vinylene (OPV) is more efficient than thiophene as backbone.

Single Molecule IV characteristics can be measured. Qualitative agreement between experiments and theory

Page 55: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

2. Diodes

Aviram & Ratner Theoretical Proposal (1974)

V>0

V<0

Rectifying behavior: expected from asymmetry of the D-A structure

-V/2 LV/2

R

Page 56: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

The Langmuir-Blodgett technique

Solution

eau

moléculesa

b

Single Molecular Film formation

Hydrophobic part

Transfer to a solid substrate

Special design of the molecule

Page 57: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

2. Diodes

Metzger et al.,JACS 119, 10455 (1997).

Al

Al

Experimental Realization

Spacer: -conjugated

Some differencesAviram & Ratner Metzeger et al

Spacer: -saturated

aliphatic chain (donor side)

Is Rectification due to the Aviram & Ratner mechanism ?

Answer: No!

Page 58: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Which is the Rectification Mechanism

Aviram & Ratner

Spacer: -saturated Spacer: -conjugated

Metzeger et al

Donor and Acceptor molecular orbitals remain localized

LUMO

HOMO

DFT calcultion: HOMO and LUMO delocalized

Page 59: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Rectification Mechanism: Asymmetric Coupling

Metzger et al.,JACS 119, 10455 (1997).

aliphatic chain (donor side) D A

10.1

l2 1

l

As a first approximation

Al

Al

D

A

Potential Profile

-V/2

V/2

r

V

-V/2

V/2

l

l

Asymetric Coupling can be used for fabricating Diodes.

Page 60: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Using asymmetric coupling for Diode function

N. Lenfant et al., Nanoletters 3, 741 (2003).

-1.0 -0.5 0.0 0.5 1.0

-30

-20

-10

0

10

VT

Cur

rent

den

sity

(µA

.cm

-2)

Voltage (V)

-40

-20

0

20

40

-1 0 1

I (n

A)

COO

S

Thiophene

Si

O

OO

Substrate

(CH12)15

Si

O

OO

Substrate

(CH12)15

COO

Phenyl

Two step fabrication:Self-assembly of alkyl chains-conjugated groups

Control measurement on Alkyl chains

n-doped Silicon

Al Al

n-doped Silicon

Page 61: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

2. Diodes and NDR

N. P. Guisinger et al, Nanoletters 4, 55 (2004)

NDR behavior: due to resonance conditionsThe NDR bias varies by as much as 1 V from experiment to

experiment

Page 62: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

3. Switches

At least two different stable states different conductance (high /low)

D A D+ A-

Reduction-Oxidation (Redox) process

RR'

R

R'

Conformation Change

light-triggered

Open form Closed form

UV

600nm

R R R R

Recent review: Masahiro Irie, Chem. Rev.100, 1685 (2000).

Collier at al., Science 285, 391 (1999)Collier at al., Science 289, 11721 (2000)D. R. Stewart at al., NanoLett. 4, 133 (2004)

Page 63: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Light-triggered Switches

0

0.5

1

1.5

2

2.5

3

250 350 450 550 650 750 850

open

closed

Switches in Toluene

Ab

sorp

tion

(nm)

Closed

Open

TypicallyCourtesy of D. Dulić and S.J. van der Molen

Does it work in a solid state device ?

Page 64: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Breakjunction experiment

=546 nm

=313 nm

One way Photochromism

No switching back !?

Why closing is quenched?

OPEN QUESTION

D. Dulić et al, PRL 91,207402 (2003).

Page 65: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

Final Remarks

• Conductance properties of single molecules can be probed. However reproducibility and stability remains a challenge.

• More experiments are needed in order to refine theory and more theoretical calculation are needed to design interesting experiments (feedback!).

• Molecular Diodes can be obtained using asymetric coupling.

• Molecular Electronics on silicon can be a way of fabricating hybrid devices taking profit of the powerful infrastructure of the silicon-based IC industry Resonant tunneling devices.

• Light Triggered switches are promising molecules. Tuning of the coupling between the active part and the electrodes are needed to get reversible operation.

Page 66: M. F. Goffman First Lecture Functions: macroscopic electronic properties  Molecular Wires Diodes Switches and storage elements Negative Differential Resistance

M. F. Goffman

MCBJs Results on Different Molecules (@4K)

-1500 -1000 -500 0 500 1000 1500

-200

0

200

400

OPV3 @ 4 K

I (nA

)

V (mV)-200 -100 0 100 200

-1.0

0.0

1.0

Experiment (10 sweeps) DFT Calc

Rin

g

Rin

g

C=

C

C=

C

C-H

op

C-H

op

d 2I/d

V 2 (

µA

.V -

2 )

V (mV)

High stability (>10 hs) at 4K

d2I/dV2 spectrum Fingerprint of the molecule ?

A. Isambert, D. Dulić, JP Bourgoin, M. F. Goffman, unpublished

Improved Stability

CH3COS

SCOCH3