luth, meudon, 21.02.2013 siegfried eggl. asteroid deflection - why bother? chelyabinsk 15.02.2013...

60
LUTH, Meudon, 21.02.2013 Siegfried Eggl

Upload: clement-cobb

Post on 17-Dec-2015

220 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

LUTH, Meudon, 21.02.2013Siegfried Eggl

Page 2: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Asteroid Deflection - Why Bother?

Chelyabinsk 15.02.2013

D=7-17m

M~7000 t

Shallow entry

Page 3: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Asteroid Deflection - Why Bother?

D~45m

M~???

Missed...

Page 4: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

MPC 2013

Page 5: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry
Page 6: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Currently Known NEOs > 1km: (1268)

Aerospaceweb.org

Asteroid Deflection - Why Bother?

Page 7: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

1. Where do NEOs come from?

2. How many are there?

3. How many are dangerous?

4. What can we do about them?

Currently Asked Questions

Page 8: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Near Earth Object Family Tree

Solar System Minor Planets

NEO: within Mars orbit (9614)

Space Debris

Near Earth Comets

Near Earth AsteroidsPHO (1377)

IAU MPC 16.02.2013

Page 9: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Where do NEOs come from?

NEO lifetime ~ 106 yrs, constant replenishment necessary

Page 10: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry
Page 11: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

~600 000 MBOsNEO lifetime ~ 106 yrs

Page 12: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Yarkovsky Thermal Effect

diurnal seasonal

Bottke et al. 2006

Page 13: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

~600 000 MBOs

Page 14: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

How many NEOs are there?

What percentage do we know?

Page 15: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

NEO numbers

IAU MPC 16.02.2013

NEOs: 9614

NEOs > 1km: 1268

PHOs: 1377

Is that „all“?

Page 16: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Wide-field Infrared Survey Explorer

NASA mission 2010, 40 cm optics ,IR : 3-25 μm

NEOWise (PI: Mainzer, A.)

Page 17: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry
Page 18: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Wide-field Infrared Survey Explorer

Discovery Totals

NEAs: 129PHAs: 21

Comets: 17Total: 146

Page 19: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry
Page 20: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry
Page 21: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

How many are potentially dangerous?

Page 22: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Potentially Hazardous Objects

PHOs (1377) : MOID <0.05 AU,

H<=22mag (D<150m)

Page 23: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Minimum Oribt Intersection Distance

PHO (1377) : MOID <0.05 AU, H<=22mag

(D<150m)

http://orsa.sourceforge.net/atwork.html

Page 24: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

JPL 2013

Page 25: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

JPL 2013

Page 26: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

How dangerous are PHOs?

Torino Scale:

0-10: according to impact risk

and impact consequences

Palermo Scale:

compare risk of individual impact

probability to background

(LOG)

Page 27: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry
Page 28: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

The Palermo Scale

PS= log10 R R...Relative Risk

R=PI / (f x DT) PI ...Imp. Prob. DT...Time to Imp. f .....BG Imp. Prob.

f= 0.03 x E -4/5 E...Imp. Energy (Mt)

Object Palermo Torino

Apophis -3.33 0

2007 VK184 -1.57 1

Page 29: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Impact probability?2 body scattering

b... Impact parameter

b

Page 30: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Impact probability

orbit uncertainty

Impact probability: 1/3

Clones

Page 31: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Impact probability 3D

b-plane

Uncertainty Ellipse

Page 32: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Keyholes, 99942 Apophis

Bancelin (2012)

x 10

0 [k

m]

[km]

b-plane 2029

Page 33: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Line Of Variation2011 AG5

Yeomans et al. (2012)

σζ

σξ

b-plane

LOV

a: 1.43 aue: 0.39i: 3.7°H: 21.86

Page 34: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Yeomans et al. (2012)

2011 AG5 close encounter 2023

Page 35: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

What can we do?

Page 36: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

TOO EXPENSIVE

Page 37: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

NEOShield

•study mitigation concepts (science+industry)

•mitigation prerequisites (asteroid physical properties, orbital uncertainty)

•prepare for demo-mission

•propose international emergency strategy

Page 38: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

•study mitigation concepts (science+industry)

•mitigation prerequisites (asteroid physical properties, orbital uncertainty)

•prepare for demo-mission

•propose international emergency strategy

Page 39: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

What can we do?

Teaches us a lesson not to focus all attention on one object...

Tim Warchocki, National Research Council Report (2010)

Page 40: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

NeoShield

Gravity TractorBlast Deflection

Impactor +Solar Sail+Ion Beam Shepherd

Page 41: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Kinetic Impactor

Page 42: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Kinetic Impactor

Naïve calculation

Momentum delivered by impactor = mimpact. ΔV

Momentum change of NEO = MNEO δvNEO

mimpact. ΔV = MNEO δvNEO

So mass of impactor required, mimpact. = MNEO δvNEO / ΔV

NEO: D = 150 m, density = 2.0 g cm-3, DT = 10 years,

miss distance required = 3 x R_Earth, ΔV achievable = 10 km s-1,

mimpact. = 21 tonnes!

(cf. Ariane 5 payload capacity: 10 metric tons to GTO).

Page 43: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Kinetic Impactor

Somewhat less naïve calculation

mimpact. = MNEO δvNEO / (ΔV x β),

β …. “momentum multiplication factor” due to momentum carried off by the collision ejecta.

NEO: D = 150 m, density = 2.0 g cm-3, DT = 10 years, miss distance required = 3 x R_Earth, ΔV achievable = 10 km s-1,

β = 5??:

mimpact. = 4.3 tonnes (cf. previous 21 tonnes with β = 1)

(cf. Ariane 5 payload capacity: 10 metric tons to GTO).

??? β ???

AVOID DESTRUCTION OF NEO!!!

Page 44: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Kinetic Impactor

Numerical Simulations

Laboratory ExperimentsJutzi, Benz, Michel (2008)

Page 45: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Deep Impact (NASA, 2005)Target: Comet 9P/Tempela: 3.124 au, e: 0.517, i: 10.5° m: 7-8 1013 kg

Impactor mass: 384kgChange in pericenter: 10mChange in Period: 1s

Page 46: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Kinetic Impactor

Two test mitigation mission proposals in Europe:

•Don Quichote (Deimos, Belló et al. (2003), NEOShield) Single Asteroid

•AIDA/DART (Cheng, A. F., Rivkin, A., Galvez, A., et al. 2012. ) Binary Asteroid

DON‘T TARGET/PRODUCE PHOs!

Page 47: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

• Achieve high ΔV (retrograde orbit, hit NEO at pericenter, impactor mass…)

• Yet low enough ΔV for accurate targeting: auto GNC!

• Avoid destruction

• Need prior information on NEO (spin, structure, mass)

• Full phase for targeting

Kinetic Impactor Difficulties

Saks et al. (2012)

Page 48: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Blast Deflection

Page 49: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Blast Deflection vs Kinetic Impactor

mass of kinetic impactor = 4.3 tonnes , ΔV = 10 km s-1,

K.E. = 2.1 x 1011 J ~ 5.0 x 10-5 Mt (1 Mt = 4.184×1015 J).

Yield of largest H-bomb tested ~ 50 Mt! (1961).

R-36 Russian ICBM ~ 20 Mt to LEO

Even if not all of the energy will be imparted on NEO, still “afterglow” propulsion

Limiting NEO diameter ~ 3 km

Page 50: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Why Not Nuke Everything?

•Non weaponization of space (Outer Space Treaty)

•Avoid destruction (radioactive debris!)

•Prior information on NEO composition needed

•Not tested at all (buried, surface, stand-off blast?)

Page 51: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Gravity Tractor

Page 52: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Gravity Tractor

Gravity between NEO and Spacecraft acts as tow-rope

Big advantages: No contact, no prior knowledge of NEO composition needed.

Challenges: Very feeble acceleration, very tricky station keeping close to NEO (acc ~r-2), need precise shape/rotation model, no thrusting onto NEO, binarity!

LONG TIMESCALE/PRE KEYHOLE MEASURE

Page 53: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

GLOBAL ISSUES

•Finding PHAs (sky coverage)

•Determination of NEO orbit

•Advance determination of NEO properties

•Getting Reconnaicance/Mitigation Missions there in time.

Page 54: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

V=18

Page 55: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

V=21

Page 56: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Orbit Determination

CEU: Current Ephemeris Uncertainty

Arc <10 days

250 days

Page 57: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Priority List Of Obs RequirementsPre-Mitigation Reconnaissance

Observational techniques

Relevant propertiesto estimate impact probabilities, and timeframes

High priority: Orbital state vector Absolute Magnitude

Ground / SpacePhotometryAstrometryRadarLidarFlybyRendezvous

Data-mining

Low priority:

Mass Multiplicity Spin rate Spin orientation Shape Thermal properties Albedo/Surface properties

+ Spectroscopy

PRIORITY OF NEO PROPERTIES FOR ORBIT REFINEMENT

Page 58: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Transfer Time

S/C rendez-vous missions offer great state vector accuracy but it takes some time to get them there.(delta v calculated following Shoemaker & Helin 1978)

Page 59: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

CONCLUSIONS

NEOs pose a threat – which can be mitigated, if we are prepared.

NEOShield: • Comprehensive study of NEO mitigation (Industry+Science)• 3+ mitigation techniques studied in detail• Demo missions are suggested• Global issues are identified • An international mitigation strategy shall be proposed

Merci pour votre attention!

Page 60: LUTH, Meudon, 21.02.2013 Siegfried Eggl. Asteroid Deflection - Why Bother? Chelyabinsk 15.02.2013 D=7-17m M~7000 t Shallow entry

Scott Manley