ltc6240/ltc6241/ltc6242 - single/dual/quad 18mhz, low ...ltc6240/ltc6241/ltc6242 1 624012fe...

32
LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC ® 6240/6241/LTC6242 are single, dual and quad low noise, low offset, rail-to-rail output, unity gain stable CMOS op amps that feature 1pA of input bias current. Input bias current is guaranteed to be 1pA max on the single LTC6240. The 0.1Hz to 10Hz noise of only 550nV P-P , along with an offset of just 125μV are significant improvements over traditional CMOS op amps. Additionally, noise is guaranteed to be less than 10nV/√Hz at 1kHz. An 18MHz gain bandwidth, and 10V/μs slew rate, along with the wide supply range and low input capacitance, make them perfect for use as fast signal processing amplifiers. These op amps have an output stage that swings within 30mV of either supply rail to maximize the signal dynamic range in low supply applications. The input common mode range extends to the negative supply. They are fully speci- fied on 3V and 5V, and an HV version guarantees operation on supplies up to ±5V. The LTC6240 is available in the 8-pin SO and the 5-pin SOT- 23 packages. The LTC6241 is available in the 8-pin SO, and for compact designs it is packaged in a tiny dual fine pitch leadless (DFN) package. The LTC6242 is available in the 16-pin SSOP as well as the 5mm × 3mm DFN package. n Photo Diode Amplifiers n Charge Coupled Amplifiers n Low Noise Signal Processing n Medical Instrumentation n High Impedance Transducer Amplifier n 0.1Hz to 10Hz Noise: 550nV P-P n Input Bias Current: 0.2pA (Typ at 25°C) 1pA Max (LTC6240) n Low Offset Voltage: 125μV Max n Low Offset Drift: 2.5μV/°C Max n Gain Bandwidth Product: 18MHz n Output Swings Rail-to-Rail n Supply Operation: 2.8V to 6V LTC6240/LTC6241/LTC6242 2.8V to ±5.5V LTC6240HV/LTC6241HV/LTC6242HV n Low Input Capacitance n H-Grade Temperature Range: –40°C to 125°C n Single LTC6240 in 5-Pin Low Profile (1mm) ThinSOT™ Package and 8-Pin SO for PCB Guard Ring n Dual LTC6241 in 8-Pin SO and Tiny DFN Packages n Quad LTC6242 in 16-Pin SSOP and 5mm × 3mm DFN Packages Low Noise Single-Ended Input to Differential Output Amplifier Noise Voltage vs Frequency L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners. TYPICAL APPLICATION DESCRIPTION FEATURES APPLICATIONS + R2 200k C1 10pF C2 10pF +2.5V –2.5V 6241 TA01a R4 4.99k R1 200k V IN V OUT + V OUT 1/2 LTC6241 + 1/2 LTC6241 C3 10pF R3 4.99k C4 10pF FREQUENCY (Hz) 20 10 NOISE VOLTAGE (nV/√Hz) 30 40 50 60 1 100 1k 100k 6241 TA01b 0 10 10k T A = 25°C V S = ±2.5V V CM = 0V

Upload: others

Post on 22-Sep-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

1624012fe

Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output,

CMOS Op Amps

The LTC®6240/6241/LTC6242 are single, dual and quad low noise, low offset, rail-to-rail output, unity gain stable CMOS op amps that feature 1pA of input bias current. Input bias current is guaranteed to be 1pA max on the single LTC6240. The 0.1Hz to 10Hz noise of only 550nVP-P, along with an offset of just 125μV are signifi cant improvements over traditional CMOS op amps. Additionally, noise is guaranteed to be less than 10nV/√Hz at 1kHz. An 18MHz gain bandwidth, and 10V/μs slew rate, along with the wide supply range and low input capacitance, make them perfect for use as fast signal processing amplifi ers.

These op amps have an output stage that swings within 30mV of either supply rail to maximize the signal dynamic range in low supply applications. The input common mode range extends to the negative supply. They are fully speci-fi ed on 3V and 5V, and an HV version guarantees operation on supplies up to ±5V.

The LTC6240 is available in the 8-pin SO and the 5-pin SOT-23 packages. The LTC6241 is available in the 8-pin SO, and for compact designs it is packaged in a tiny dual fi ne pitch leadless (DFN) package. The LTC6242 is available in the 16-pin SSOP as well as the 5mm × 3mm DFN package.

n Photo Diode Amplifi ersn Charge Coupled Amplifi ersn Low Noise Signal Processingn Medical Instrumentationn High Impedance Transducer Amplifi er

n 0.1Hz to 10Hz Noise: 550nVP-Pn Input Bias Current:

0.2pA (Typ at 25°C) 1pA Max (LTC6240)

n Low Offset Voltage: 125μV Maxn Low Offset Drift: 2.5μV/°C Maxn Gain Bandwidth Product: 18MHzn Output Swings Rail-to-Railn Supply Operation:

2.8V to 6V LTC6240/LTC6241/LTC6242 2.8V to ±5.5V LTC6240HV/LTC6241HV/LTC6242HV

n Low Input Capacitancen H-Grade Temperature Range: –40°C to 125°Cn Single LTC6240 in 5-Pin Low Profi le (1mm)

ThinSOT™ Package and 8-Pin SO for PCB Guard Ringn Dual LTC6241 in 8-Pin SO and Tiny DFN Packagesn Quad LTC6242 in 16-Pin SSOP and 5mm × 3mm

DFN Packages

Low Noise Single-Ended Input to Differential Output Amplifi er Noise Voltage vs Frequency

L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

DESCRIPTION FEATURES

APPLICATIONS

+

R2200k

C110pF

C210pF

+2.5V

–2.5V

6241 TA01a

R44.99k

R1200k

VIN

VOUT+

VOUT–1/2

LTC6241

+

–1/2

LTC6241

C310pF

R34.99k

C410pF

FREQUENCY (Hz)

20

10

NO

ISE V

OLT

AG

E (

nV

/√H

z)

30

40

50

60

1 100 1k 100k

6241 TA01b

010 10k

TA = 25°CVS = ±2.5VVCM = 0V

Page 2: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

2624012fe

Total Supply Voltage (V+ to V–) LTC6240/LTC6241/LTC6242 ...................................7V LTC6240HV/LTC6241HV/LTC6242HV ....................12VInput Voltage .......................... (V+ + 0.3V) to (V– – 0.3V)Input Current ........................................................ ±10mAOutput Short-Circuit Duration (Note 2) ............ Indefi niteOperating Temperature Range LTC6240C/LTC6241C/LTC6242C ..........–40°C to 85°C LTC6240I/LTC6241I/LTC6242I .............–40°C to 85°C LTC6240H/LTC6241H/LTC6242H ....... –40°C to 125°C

(Note 1)

Specifi ed Temperature Range (Note 3) LTC6240C/LTC6241C/LTC6242C .............. 0°C to 70°C LTC6240I/LTC6241I/LTC6242I .............–40°C to 85°C LTC6240H/LTC6241H/LTC6242H ....... –40°C to 125°CJunction Temperature ........................................... 150°C DHC, DD Package ............................................. 125°CStorage Temperature Range .................. –65°C to 150°C DHC, DD Package .............................. –65°C to 125°CLead Temperature (Soldering, 10 sec)................... 300°C

ABSOLUTE MAXIMUM RATINGS

LTC6240 LTC6240

OUT 1

V– 2

TOP VIEW

S5 PACKAGE5-LEAD PLASTIC TSOT-23

+IN 3

5 V+

4 –IN–+

TJMAX = 150°C, θJA = 250°C/W

1

2

3

4

8

7

6

5

TOP VIEW

NC

V+

OUT

NC

NC

–IN

+IN

V–

S8 PACKAGE8-LEAD PLASTIC SO

+

TJMAX = 150°C, θJA = 190°C/W

LTC6241 LTC6241

TOP VIEW

DD PACKAGE8-LEAD (3mm 3mm) PLASTIC DFN

5

6

7

8

4

3

2

1OUT A

–IN A

+IN A

V–

V+

OUT B

–IN B

+IN BB

A

TJMAX = 125°C, θJA = 43°C/WUNDERSIDE METAL CONNECTED TO V–

(PCB CONNECTION OPTIONAL)

1

2

3

4

8

7

6

5

TOP VIEW

V+

OUT B

–IN B

+IN B

OUT A

–IN A

+IN A

V–

S8 PACKAGE8-LEAD PLASTIC SO

B

A

TJMAX = 150°C, θJA = 190°C/W

LTC6242 LTC6242

16

15

14

13

12

11

10

9

17

1

2

3

4

5

6

7

8

OUT D

–IN D

+IN D

V–

+IN C

–IN C

OUT C

NC

OUT A

–IN A

+IN A

V+

+IN B

–IN B

OUT B

NC

TOP VIEW

DHC PACKAGE16-LEAD (5mm 3mm) PLASTIC DFN

B

A

C

D

TJMAX = 125°C, θJA = 43°C/WUNDERSIDE METAL CONNECTED TO V– (PCB CONNECTION OPTIONAL)

GN PACKAGE16-LEAD PLASTIC SSOP

1

2

3

4

5

6

7

8

TOP VIEW

16

15

14

13

12

11

10

9

OUT A

–IN A

+IN A

V+

+IN B

–IN B

OUT B

NC

OUT D

–IN D

+IN D

V–

+IN C

–IN C

OUT C

NC

B

A

C

D

TJMAX = 150°C, θJA = 135°C/W

PIN CONFIGURATION

Page 3: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

3624012fe

LEAD FREE FINISH TAPE AND REEL PART MARKING* PACKAGE DESCRIPTION SPECIFIED TEMPERATURE RANGE

LTC6240CS5#PBF LTC6240CS5#TRPBF LTCRR 5-Lead Plastic TSOT-23 0°C to 70°C

LTC6240HVCS5#PBF LTC6240HVCS5#TRPBF LTCRS 5-Lead Plastic TSOT-23 0°C to 70°C

LTC6240IS5#PBF LTC6240IS5#TRPBF LTCRR 5-Lead Plastic TSOT-23 –40°C to 85°C

LTC6240HVIS5#PBF LTC6240HVIS5 #TRPBF LTCRS 5-Lead Plastic TSOT-23 –40°C to 85°C

LTC6240HS5#PBF LTC6240HS5#TRPBF LTCRR 5-Lead Plastic TSOT-23 –40°C to 125°C

LTC6240HVHS5#PBF LTC6240HVHS5#TRPBF LTCRS 5-Lead Plastic TSOT-23 –40°C to 125°C

LTC6240CS8#PBF LTC6240CS8#TRPBF 6240 8-Lead Plastic SO 0°C to 70°C

LTC6240HVCS8#PBF LTC6240HVCS8#TRPBF 6240HV 8-Lead Plastic SO 0°C to 70°C

LTC6240IS8#PBF LTC6240IS8#TRPBF 6240I 8-Lead Plastic SO –40°C to 85°C

LTC6240HVIS8#PBF LTC6240HVIS8#TRPBF 240HVI 8-Lead Plastic SO –40°C to 85°C

LTC6240HS8#PBF LTC6240HS8#TRPBF 6240H 8-Lead Plastic SO –40°C to 125°C

LTC6240HVHS8#PBF LTC6240HVHS8#TRPBF 240HVH 8-Lead Plastic SO –40°C to 125°C

LTC6241CDD#PBF LTC6241CDD#TRPBF LBPD 8-Lead (3mm × 3mm) Plastic DFN 0°C to 70°C

LTC6241HVCDD#PBF LTC6241HVCDD#TRPBF LBRR 8-Lead (3mm × 3mm) Plastic DFN 0°C to 70°C

LTC6241IDD#PBF LTC6241IDD#TRPBF LBPD 8-Lead (3mm × 3mm) Plastic DFN –40°C to 85°C

LTC6241HVIDD#PBF LTC6241HVIDD#TRPBF LBRR 8-Lead (3mm × 3mm) Plastic DFN –40°C to 85°C

LTC6241CS8#PBF LTC6241CS8#TRPBF 6241 8-Lead Plastic SO 0°C to 70°C

LTC6241HVCS8#PBF LTC6241HVCS8#TRPBF 6241HV 8-Lead Plastic SO 0°C to 70°C

LTC6241IS8#PBF LTC6241IS8#TRPBF 6241I 8-Lead Plastic SO –40°C to 85°C

LTC6241HVIS8#PBF LTC6241HVIS8#TRPBF 241HVI 8-Lead Plastic SO –40°C to 85°C

LTC6241HS8#PBF LTC6241HS8#TRPBF 6241H 8-Lead Plastic SO –40°C to 125°C

LTC6241HVHS8#PBF LTC6241HVHS8#TRPBF 241HVH 8-Lead Plastic SO –40°C to 125°C

LTC6242CDHC#PBF LTC6242CDHC#TRPBF 6242 16-Lead (5mm × 3mm) Plastic DFN 0°C to 70°C

LTC6242HVCDHC#PBF LTC6242HVCDHC#TRPBF 6242HV 16-Lead (5mm × 3mm) Plastic DFN 0°C to 70°C

LTC6242IDHC#PBF LTC6242IDHC#TRPBF 6242 16-Lead (5mm × 3mm) Plastic DFN –40°C to 85°C

LTC6242HVIDHC#PBF LTC6242HVIDHC#TRPBF 6242HV 16-Lead (5mm × 3mm) Plastic DFN –40°C to 85°C

LTC6242CGN#PBF LTC6242CGN#TRPBF 6242 16-Lead Plastic SSOP 0°C to 70°C

LTC6242HVCGN#PBF LTC6242HVCGN#TRPBF 6242HV 16-Lead Plastic SSOP 0°C to 70°C

LTC6242IGN#PBF LTC6242IGN#TRPBF 6242I 16-Lead Plastic SSOP –40°C to 85°C

LTC6242HVIGN#PBF LTC6242HVIGN#TRPBF 242HVI 16-Lead Plastic SSOP –40°C to 85°C

LTC6242HGN#PBF LTC6242HGN#TRPBF 6242H 16-Lead Plastic SSOP –40°C to 125°C

LTC6242HVHGN#PBF LTC6242HVHGN#TRPBF 242HVH 16-Lead Plastic SSOP –40°C to 125°C

Consult LTC Marketing for parts specifi ed with wider operating temperature ranges. *The temperature grade is identifi ed by a label on the shipping container.

Consult LTC Marketing for information on non-standard lead based fi nish parts.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifi cations, go to: http://www.linear.com/tapeandreel/

ORDER INFORMATION

Page 4: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

4624012fe

AVAILABLE OPTIONSPART NUMBER AMPS/PACKAGE SPECIFIED TEMP RANGE SPECIFIED SUPPLY VOLTAGE PACKAGE PART MARKING

LTC6240CS5 1 0°C to 70°C 3V, 5V SOT-23 LTCRR

LTC6240CS8 1 0°C to 70°C 3V, 5V SO-8 6240

LTC6240HVCS5 1 0°C to 70°C 3V, 5V, ±5V SOT-23 LTCRS

LTC6240HVCS8 1 0°C to 70°C 3V, 5V, ±5V SO-8 6240HV

LTC6240IS5 1 –40°C to 85°C 3V, 5V SOT-23 LTCRR

LTC6240IS8 1 –40°C to 85°C 3V, 5V SO-8 6240I

LTC6240HVIS5 1 –40°C to 85°C 3V, 5V, ±5V SOT-23 LTCRS

LTC6240HVIS8 1 –40°C to 85°C 3V, 5V, ±5V SO-8 240HVI

LTC6240HS5 1 –40°C to 125°C 3V, 5V SOT-23 LTCRR

LTC6240HS8 1 –40°C to 125°C 3V, 5V SO-8 6240H

LTC6240HVHS5 1 –40°C to 125°C 3V, 5V, ±5V SOT-23 LTCRS

LTC6240HVHS8 1 –40°C to 125°C 3V, 5V, ±5V SO-8 240HVH

LTC6241CS8 2 0°C to 70°C 3V, 5V SO-8 6241

LTC6241CDD 2 0°C to 70°C 3V, 5V DD LBPD

LTC6241HVCS8 2 0°C to 70°C 3V, 5V, ±5V SO-8 6241HV

LTC6241HVCDD 2 0°C to 70°C 3V, 5V, ±5V DD LBRR

LTC6241IS8 2 –40°C to 85°C 3V, 5V SO-8 6241I

LTC6241IDD 2 –40°C to 85°C 3V, 5V DD LBPD

LTC6241HVIS8 2 –40°C to 85°C 3V, 5V, ±5V SO-8 241HVI

LTC6241HVIDD 2 –40°C to 85°C 3V, 5V, ±5V DD LBRR

LTC6241HS8 2 –40°C to 125°C 3V, 5V SO-8 6241H

LTC6241HVHS8 2 –40°C to 125°C 3V, 5V, ±5V SO-8 241HVH

LTC6242CGN 4 0°C to 70°C 3V, 5V GN 6242

LTC6242CDHC 4 0°C to 70°C 3V, 5V DHC 6242

LTC6242HVCGN 4 0°C to 70°C 3V, 5V, ±5V GN 6242HV

LTC6242HVCDHC 4 0°C to 70°C 3V, 5V, ±5V DHC 6242HV

LTC6242IGN 4 –40°C to 85°C 3V, 5V GN 6242I

LTC6242IDHC 4 –40°C to 85°C 3V, 5V DHC 6242

LTC6242HVIGN 4 –40°C to 85°C 3V, 5V, ±5V GN 242HVI

LTC6242HVIDHC 4 –40°C to 85°C 3V, 5V, ±5V DHC 6242HV

LTC6242HGN 4 –40°C to 125°C 3V, 5V GN 6242H

LTC6242HVHGN 4 –40°C to 125°C 3V, 5V, ±5V GN 242HVH

Page 5: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

5624012fe

ELECTRICAL CHARACTERISTICS (LTC6240C/I, LTC6240HVC/I, LTC6241C/I, LTC6241HVC/I, LTC6242C/I, LTC6242HVC/I) The l denotes the specifi cations which apply over the full operating temperature range, otherwise specifi cations are at TA = 25°C. VS = 5V, 0V, VCM = 2.5V unless otherwise noted.

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

VOS Input Offset Voltage (Note 4) LTC6241 S80°C to 70°C–40°C to 85°C

l

l

40 125250300

μVμVμV

LTC6242 GN0°C to 70°C–40°C to 85°C

l

l

50 150275300

μVμVμV

LTC62400°C to 70°C–40°C to 85°C

l

l

50 175300350

μVμVμV

LTC6241 DD, LTC6242 DHC0°C to 70°C–40°C to 85°C

l

l

100 550650725

μVμVμV

VOS Match Channel-to-Channel (Note 5) LTC6241 S80°C to 70°C–40°C to 85°C

l

l

40 160300375

μVμVμV

LTC6242 GN0°C to 70°C–40°C to 85°C

l

l

50 185325400

μVμVμV

LTC6241 DD, LTC6242 DHC0°C to 70°C–40°C to 85°C

l

l

150 650700750

μVμVμV

TC VOS Input Offset Voltage Drift (Note 6) l 0.7 2.5 μV/°C

IB Input Bias Current (Notes 4, 7) LTC6241, LTC6242l

0.275

pApA

LTC6240l

0.2 175

pApA

IOS Input Offset Current (Notes 4, 7) LTC6241, LTC6242l

0.275

pApA

LTC6240l

0.2 175

pApA

Input Noise Voltage 0.1Hz to 10Hz 550 nVP-P

en Input Noise Voltage Density f = 1kHz 7 10 nV/√Hz

in Input Noise Current Density (Note 8) 0.56 fA/√Hz

RIN Input Resistance Common Mode 1012 Ω

CIN Input Capacitance Differential Mode Common Mode

f = 100kHz3.53

pFpF

VCM Input Voltage Range Guaranteed by CMRR l 0 3.5 V

CMRR Common Mode Rejection 0V ≤ VCM ≤ 3.5V l 80 105 dB

CMRR MatchChannel-to-Channel (Note 5) l 76 95 dB

Page 6: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

6624012fe

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

AVOL Large Signal Voltage Gain VO = 1V to 4VRL = 10k to VS/20°C to 70°C–40°C to 85°C

l

l

425300200

1600 V/mVV/mVV/mV

VO = 1.5V to 3.5VRL = 1k to VS/20°C to 70°C–40°C to 85°C

l

l

906050

215 V/mVV/mVV/mV

VOL Output Voltage Swing Low (Note 9) No LoadISINK = 1mAISINK = 5mA

l

l

l

740190

3075325

mVmVmV

VOH Output Voltage Swing High (Note 9) No LoadISOURCE = 1mAISOURCE = 5mA

l

l

l

1145

190

3075

325

mVmVmV

PSRR Power Supply Rejection VS = 2.8V to 6V, VCM = 0.2V l 80 104 dB

PSRR MatchChannel-to-Channel (Note 5) l 74 100 dB

Minimum Supply Voltage (Note 10) l 2.8 V

ISC Short-Circuit Current l 15 30 mA

IS Supply Current per Amplifi er LTC6241, LTC62420°C to 70°C–40°C to 85°C

l

l

1.8 2.22.32.4

mAmAmA

LTC62400°C to 70°C–40°C to 85°C

l

l

2 2.42.52.6

mAmAmA

GBW Gain Bandwidth Product Frequency = 20kHz, RL = 1kΩ l 13 18 MHz

SR Slew Rate (Note 11) AV = –2, RL = 1kΩ l 5 10 V/μs

FPBW Full Power Bandwidth (Note 12) VOUT = 3VP-P, RL = 1kΩ l 0.53 1.06 MHz

ts Settling Time VSTEP = 2V, AV = –1, RL = 1kΩ, 0.1% 1100 ns

ELECTRICAL CHARACTERISTICS (LTC6240C/I, LTC6240HVC/I, LTC6241C/I, LTC6241HVC/I, LTC6242C/I, LTC6242HVC/I) The l denotes the specifi cations which apply over the full operating temperature range, otherwise specifi cations are at TA = 25°C. VS = 5V, 0V, VCM = 2.5V unless otherwise noted.

Page 7: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

7624012fe

ELECTRICAL CHARACTERISTICS (LTC6240C/I, LTC6240HVC/I, LTC6241C/I, LTC6241HVC/I, LTC6242C/I, LTC6242HVC/I) The l denotes the specifi cations which apply over the full operating temperature range, otherwise specifi cations are at TA = 25°C. VS = 3V, 0V, VCM = 1.5V unless otherwise noted.

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

VOS Input Offset Voltage (Note 4) LTC6241 S80°C to 70°C–40°C to 85°C

l

l

40 175275325

μVμVμV

LTC6242 GN0°C to 70°C–40°C to 85°C

l

l

60 200275325

μVμVμV

LTC62400°C to 70°C–40°C to 85°C

l

l

50 200325375

μVμVμV

LTC6241 DD, LTC6242 DHC0°C to 70°C–40°C to 85°C

l

l

100 550650725

μVμVμV

VOS Match Channel-to-Channel (Note 5) LTC6241 S80°C to 70°C–40°C to 85°C

l

l

40 200325400

μVμVμV

LTC6242 GN0°C to 70°C–40°C to 85°C

l

l

60 225325400

μVμVμV

LTC6241 DD, LTC6242 DHC0°C to 70°C–40°C to 85°C

l

l

150 650700750

μVμVμV

TC VOS Input Offset Voltage Drift (Note 6) l 0.7 2.5 μV/°C

IB Input Bias Current (Notes 4, 7) LTC6241, LTC6242l

0.275

pApA

LTC6240l

0.2 175

pApA

IOS Input Offset Current (Notes 4, 7) LTC6241, LTC6242l

0.275

pApA

LTC6240l

0.2 175

pApA

VCM Input Voltage Range Guaranteed by CMRR l 0 1.5 V

CMRR Common Mode Rejection 0V ≤ VCM ≤ 1.5V l 78 100 dB

CMRR MatchChannel-to-Channel (Note 5) l 76 95 dB

AVOL Large Signal Voltage Gain VO = 1V to 2VRL = 10k to VS/20°C to 70°C–40°C to 85°C

l

l

14010075

600 V/mVV/mVV/mV

VOL Output Voltage Swing Low (Note 9) No LoadISINK = 1mA

l

l

365

30110

mVmV

VOH Output Voltage Swing High (Note 9) No LoadISOURCE = 1mA

l

l

470

30120

mVmV

PSRR Power Supply Rejection VS = 2.8V to 6V, VCM = 0.2V l 80 104 dB

PSRR MatchChannel-to-Channel (Note 5) l 74 100 dB

Minimum Supply Voltage (Note 10) l 2.8 V

ISC Short-Circuit Current l 3 6 mA

Page 8: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

8624012fe

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

VOS Input Offset Voltage (Note 4) LTC6241 S80°C to 70°C–40°C to 85°C

l

l

50 175275325

μVμVμV

LTC6242 GN0°C to 70°C–40°C to 85°C

l

l

60 200275325

μVμVμV

LTC62400°C to 70°C–40°C to 85°C

l

l

60 250350400

μVμVμV

LTC6241 DD, LTC6242 DHC0°C to 70°C–40°C to 85°C

l

l

100 550650725

μVμVμV

VOS Match Channel-to-Channel (Note 5) LTC6241 S80°C to 70°C–40°C to 85°C

l

l

50 200325400

μVμVμV

LTC6242 GN0°C to 70°C–40°C to 85°C

l

l

60 225325400

μVμVμV

LTC6241 DD, LTC6242 DHC0°C to 70°C–40°C to 85°C

l

l

150 650700750

μVμVμV

TC VOS Input Offset Voltage Drift (Note 6) l 0.7 2.5 μV/°C

IB Input Bias Current (Notes 4, 7) LTC6241, LTC6242l

0.575

pApA

LTC6240l

0.5 175

pApA

IOS Input Offset Current (Notes 4, 7) LTC6241, LTC6242l

0.275

pApA

LTC6240l

0.2 175

pApA

Input Noise Voltage 0.1Hz to 10Hz 550 nVP-P

(LTC6240HVC/I, LTC6241HVC/I, LTC6242HVC/I) The l denotes the specifi cations which apply over the full operating temperature range, otherwise specifi cations are at TA = 25°C. VS = ±5V, 0V, VCM = 0V unless otherwise noted.

ELECTRICAL CHARACTERISTICS (LTC6240C/I, LTC6240HVC/I, LTC6241C/I, LTC6241HVC/I, LTC6242C/I, LTC6242HVC/I) The l denotes the specifi cations which apply over the full operating temperature range, otherwise specifi cations are at TA = 25°C. VS = 3V, 0V, VCM = 1.5V unless otherwise noted.

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

IS Supply Current per Amplifi er LTC6241, LTC62420°C to 70°C–40°C to 85°C

l

l

1.4 1.71.81.9

mAmAmA

LTC62400°C to 70°C–40°C to 85°C

l

l

1.5 1.92

2.1

mAmAmA

GBW Gain Bandwidth Product Frequency = 20kHz, RL = 1kΩ l 12 17 MHz

Page 9: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

9624012fe

ELECTRICAL CHARACTERISTICS (LTC6240HVC/I, LTC6241HVC/I, LTC6242HVC/I) The l denotes the specifi cations which apply over the full operating temperature range, otherwise specifi cations are at TA = 25°C. VS = ±5V, 0V, VCM = 0V unless otherwise noted.

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

en Input Noise Voltage Density f = 1kHz 7 10 nV/√Hz

in Input Noise Current Density (Note 8) 0.56 fA/√Hz

RIN Input Resistance Common Mode 1012 Ω

CIN Input Capacitance Differential Mode Common Mode

f = 100kHz3.53

pFpF

VCM Input Voltage Range Guaranteed by CMRR l –5 3.5 V

CMRR Common Mode Rejection –5V ≤ VCM ≤ 3.5V l 83 105 dB

CMRR MatchChannel-to-Channel (Note 5) l 76 95 dB

AVOL Large Signal Voltage Gain VO = –3.5V to 3.5VRL = 10k0°C to 70°C–40°C to 85°C

l

l

775600500

2700 V/mVV/mVV/mV

RL = 1k0°C to 70°C–40°C to 85°C

l

l

1509075

360 V/mVV/mVV/mV

VOL Output Voltage Swing Low (Note 9) No LoadISINK = 1mAISINK = 10mA

l

l

l

1545360

3075550

mVmVmV

VOH Output Voltage Swing High (Note 9) No LoadISOURCE = 1mAISOURCE = 10mA

l

l

l

1545360

3075550

mVmVmV

PSRR Power Supply Rejection VS = 2.8V to 11V, VCM = 0.2V l 85 110 dB

PSRR MatchChannel-to-Channel (Note 5) l 82 106 dB

Minimum Supply Voltage (Note 10) l 2.8 V

ISC Short-Circuit Current l 15 35 mA

IS Supply Current per Amplifi er LTC6241, LTC62420°C to 70°C–40°C to 85°C

l

l

2.5 3.23.33.7

mAmAmA

LTC62400°C to 70°C–40°C to 85°C

l

l

2.7 3.33.43.8

mAmAmA

GBW Gain Bandwidth Product Frequency = 20kHz, RL = 1kΩ l 13 18 MHz

SR Slew Rate (Note 11) AV = –2, RL = 1kΩ l 5.5 10 V/μs

FPBW Full Power Bandwidth (Note 12) VOUT = 3VP-P, RL = 1kΩ l 0.58 1.06 MHz

ts Settling Time VSTEP = 2V, AV = –1, RL = 1kΩ, 0.1% 900 ns

Page 10: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

10624012fe

(LTC6240H/LTC6240HVH, LTC6241H/LTC6241HVH, LTC6242H/LTC6242HVH) The l denotes the specifi cations which apply from –40°C to 125°C, otherwise specifi cations are at TA = 25°C. VS = 5V, 0V, VCM = 2.5V unless otherwise noted.

ELECTRICAL CHARACTERISTICS

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

VOS Input Offset Voltage (Note 4) LTC6241 S8l

40 125400

μVμV

LTC6242 GNl

50 150400

μVμV

LTC6240l

50 175450

μVμV

VOS Match Channel-to-Channel (Note 5) LTC6241 S8l

40 160400

μVμV

LTC6242 GNl

50 185400

μVμV

TC VOS Input Offset Voltage Drift (Note 6) l 0.7 2.5 μV/°C

IB Input Bias Current (Notes 4, 7) LTC6241, LTC6242l

0.21.5

pAnA

LTC6240l

0.2 12.5

pAnA

IOS Input Offset Current (Notes 4, 7) LTC6241, LTC6242l

0.2150

pApA

LTC6240l

0.2 1750

pApA

VCM Input Voltage Range Guaranteed by CMRR l 0 3.5 V

CMRR Common Mode Rejection 0V ≤ VCM ≤ 3.5V l 78 dB

CMRR Match Channel-to-Channel (Note 5) l 74 dB

AVOL Large Signal Voltage Gain VO = 1V to 4VRL = 10k to VS/2

l

425200

1600 V/mVV/mV

VO = 1.5V to 3.5VRL = 1k to VS/2

l

9040

215 V/mVV/mV

VOL Output Voltage Swing Low (Note 9) No LoadISINK = 1mAISINK = 5mA

l

l

l

3085325

mVmVmV

VOH Output Voltage Swing High (Note 9) No LoadISOURCE = 1mAISOURCE = 5mA

l

l

l

3085

325

mVmVmV

PSRR Power Supply Rejection VS = 2.8V to 6V, VCM = 0.2V l 78 dB

PSRR Match Channel-to-Channel (Note 5) l 74 dB

Minimum Supply Voltage (Note 10) l 2.8 V

ISC Short-Circuit Current l 15 mA

IS Supply Current per Amplifi er LTC6241, LTC6242l

1.8 2.22.4

mAmA

LTC6240l

2 2.42.8

mAmA

GBW Gain Bandwidth Product Frequency = 20kHz, RL = 1kΩ l 12 MHz

SR Slew Rate (Note 11) AV = –2, RL = 1kΩ l 4.5 V/μs

FPBW Full Power Bandwidth (Note 12) VOUT = 3VP-P, RL = 1kΩ l 0.48 MHz

Page 11: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

11624012fe

ELECTRICAL CHARACTERISTICS (LTC6240H/LTC6240HVH, LTC6241H/LTC6241HVH, LTC6242H/LTC6242HVH) The l denotes the specifi cations which apply from –40°C to 125°C, otherwise specifi cations are at TA = 25°C. VS = 3V, 0V, VCM = 1.5V unless otherwise noted.

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

VOS Input Offset Voltage (Note 4) LTC6241 S8l

40 175400

μVμV

LTC6242 GNl

60 200400

μVμV

LTC6240l

50 200450

μVμV

VOS Match Channel-to-Channel (Note 5) LTC6241 S8l

40 200400

μVμV

LTC6242 GNl

60 225400

μVμV

TC VOS Input Offset Voltage Drift (Note 6) l 0.7 2.5 μV/°C

IB Input Bias Current (Notes 4, 7) LTC6241, LTC6242l

0.21.5

pAnA

LTC6240l

0.2 12.5

pAnA

IOS Input Offset Current (Notes 4, 7) LTC6241, LTC6242l

0.2150

pApA

LTC6240l

0.2 1750

pApA

VCM Input Voltage Range Guaranteed by CMRR l 0 1.5 V

CMRR Common Mode Rejection 0V ≤ VCM ≤ 1.5V l 75 dB

CMRR Match Channel-to-Channel (Note 5) l 74 dB

AVOL Large Signal Voltage Gain VO = 1V to 2VRL = 10k to VS/2

l

14065

600 V/mVV/mV

VOL Output Voltage Swing Low (Note 9) No LoadISINK = 1mA

l

l

30130

mVmV

VOH Output Voltage Swing High (Note 9) No LoadISOURCE = 1mA

l

l

30130

mVmV

PSRR Power Supply Rejection VS = 2.8V to 6V, VCM = 0.2V l 78 dB

PSRR Match Channel-to-Channel (Note 5) l 74 dB

Minimum Supply Voltage (Note 10) l 2.8 V

ISC Short-Circuit Current l 2.5 mA

IS Supply Current per Amplifi er LTC6241, LTC6242l

1.4 1.71.9

mAmA

LTC6240l

1.5 1.92.1

mAmA

GBW Gain Bandwidth Product Frequency = 20kHz, RL = 1kΩ l 10 MHz

Page 12: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

12624012fe

(LTC6240HVH/LTC6241HVH/LTC6242HVH) The l denotes the specifi cations which apply from –40°C to 125°C, otherwise specifi cations are at TA = 25°C. VS = ±5V, VCM = 0V unless otherwise noted. ELECTRICAL CHARACTERISTICS

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

VOS Input Offset Voltage (Note 4) LTC6241 S8l

50 175400

μVμV

LTC6242 GNl

60 200400

μVμV

LTC6240l

60 250450

μVμV

VOS Match Channel-to-Channel (Note 5) LTC6241 S8l

50 200400

μVμV

LTC6242 GNl

60 225400

μVμV

TC VOS Input Offset Voltage Drift (Note 6) l 0.7 2.5 μV/°C

IB Input Bias Current (Notes 4, 7) LTC6241, LTC6242l

0.51.5

pAnA

LTC6240l

0.5 12.5

pAnA

IOS Input Offset Current (Notes 4, 7) LTC6241, LTC6242l

0.2150

pApA

LTC6240l

0.2 1750

pApA

VCM Input Voltage Range Guaranteed by CMRR l –5 3.5 V

CMRR Common Mode Rejection –5V ≤ VCM ≤ 3.5V l 80 dB

CMRR Match Channel-to-Channel (Note 5) l 76 dB

AVOL Large Signal Voltage Gain VO = –3.5V to 3.5VRL = 10k

l

775350

2700 V/mVV/mV

RL = 1kl

15060

360 V/mVV/mV

VOL Output Voltage Swing Low (Note 9) No LoadISINK = 1mAISINK = 10mA

l

l

l

3085

600

mVmVmV

VOH Output Voltage Swing High (Note 9) No LoadISOURCE = 1mAISOURCE = 10mA

l

l

l

3085600

mVmVmV

PSRR Power Supply Rejection VS = 2.8V to 11V, VCM = 0.2V l 83 dB

PSRR Match Channel-to-Channel (Note 5) l 82 dB

Minimum Supply Voltage (Note 10) l 2.8 V

ISC Short-Circuit Current l 15 mA

IS Supply Current per Amplifi er LTC6241, LTC6242l

2.5 3.23.7

mAmA

LTC6240l

2.7 3.33.8

mAmA

GBW Gain Bandwidth Product Frequency = 20kHz, RL = 1kΩ l 12 MHz

SR Slew Rate (Note 11) AV = –2, RL = 1kΩ l 5 V/μs

FPBW Full Power Bandwidth (Note 12) VOUT = 3VP-P, RL = 1kΩ l 0.53 MHz

Page 13: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

13624012fe

Note 1: Stresses beyond those listed under Absolute Maximum Ratings

may cause permanent damage to the device. Exposure to any Absolute

Maximum Rating condition for extended periods may affect device

reliability and lifetime.

Note 2: A heat sink may be required to keep the junction temperature

below the absolute maximum rating when the output is shorted

indefi nitely.

Note 3: The LTC6240C/LTC6240HVC/LTC6241C/LTC6241HVC, LTC6242C/

LTC6242HVC are guaranteed to meet specifi ed performance from 0°C to

70°C. They are designed, characterized and expected to meet specifi ed

performance from –40°C to 85°C, but are not tested or QA sampled at

these temperatures. The LTC6240I/LTC6240HVI, LTC6241I/LTC6241HVI,

LTC6242I/LTC6242HVI are guaranteed to meet specifi ed performance

from –40°C to 85°C. All versions of the LTC6240H/LTC6241H/LTC6242H

are guaranteed to meet specifi ed performance from –40°C to 125°C.

Note 4: ESD (Electrostatic Discharge) sensitive device. ESD protection

devices are used extensively internal to the LTC6240/LTC6241/LTC6242;

however, high electrostatic discharge can damage or degrade the device.

Use proper ESD handling precautions.

Note 5: Matching parameters are the difference between the two amplifi ers

A and D and between B and C of the LTC6242; between the two amplifi ers

of the LTC6241. CMRR and PSRR match are defi ned as follows: CMRR

and PSRR are measured in μV/V on the matched amplifi ers. The difference

is calculated between the matching sides in μV/V. The result is converted

to dB.

Note 6: This parameter is not 100% tested.

Note 7: Bias current at TA = 25°C is 100% tested and guaranteed for the

LTC6240 in the S8 package. The LTC6240S5, LTC6241 and LTC6242 are

expected to achieve the same performance as the LTC6240S8. All parts are

guaranteed to meet specifi cations over temperature.

Note 8: Current noise is calculated from the formula: in = (2qIB)1/2 where

q = 1.6 × 10–19 coulomb. The noise of source resistors up to 50GΩ

dominates the contribution of current noise. See also Typical Performance

Characteristics curve Noise Current vs Frequency.

Note 9: Output voltage swings are measured between the output and

power supply rails.

Note 10: Minimum supply voltage is guaranteed by the power supply

rejection ratio test.

Note 11: Slew rate is measured in a gain of –2 with RF = 1k and RG =

500Ω. On the LTC6240/LTC6241/LTC6242, VS = ±2.5V, VIN is ±1V and

VOUT slew rate is measured between –1V and +1V. On the LTC6240HV/

LTC6241HV/LTC6242HV, VIN is ±2V and VOUT slew rate is measured

between –2V and +2V.

Note 12: Full-power bandwidth is calculated from the slew rate:

FPBW = SR/πVP-P.

ELECTRICAL CHARACTERISTICS

Page 14: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

14624012fe

Input Bias Current vs Common Mode Voltage

VOS Distribution LTC6241 VOS Distribution LTC6241VOS Temperature Coeffi cient Distribution LTC6241

Supply Current vs Supply Voltage

Offset Voltage vs Input Common Mode Voltage

Input Bias Current vs Common Mode Voltage

VOS Temperature Coeffi cient Distribution LTC6240VOS Distribution LTC6240

TYPICAL PERFORMANCE CHARACTERISTICS

INPUT OFFSET VOLTAGE (μV)

0

NU

MB

ER

OF

UN

ITS

10

30

40

50

90

6241 G01

20

60

70

80

–70 –50 –30 –10 7030 5010

VS = ±2.5VSO-8 PACKAGE

INPUT OFFSET VOLTAGE (μV)

0

NU

MB

ER

OF

UN

ITS

40

120

6241 G02

20

60

100

80

–350 –250 –150 –50 350150 25050

VS = ±2.5VDD PACKAGE

DISTRIBUTION (μV/°C)

0

NU

MB

ER

OF

UN

ITS

4

16

14

12

6241 G03

2

6

10

8

–1.0 –0.6 –0.2 0.2 1.81.0 1.40.6

VS = ±2.5V2 LOTS–55°C TO 125°C

INPUT OFFSET VOLTAGE (μV)

0

PER

CEN

T O

F U

NIT

S

5

10

15

35

6241 G04

20

25

30

–70–90–110 –50 –30 –10 7030 5010

VS = ±2.5V

DISTRIBUTION (μV/°C)

0

NU

MB

ER

OF

UN

ITS

2

6

8

10

18

6241 G05

4

12

14

16

–0.6 –0.2 1.81.41.00.60.2

VS = 5V, 0VCM = 2.5V2 LOTS–40°C TO 125°CSO-8 AND SOT23PACKAGES

TOTAL SUPPLY VOLTAGE (V)

0

2.0

2.5

3.0

6 10

6241 G06

1.5

1.0

2 4 8 12

0.5

0

SU

PP

LY

CU

RR

EN

T P

ER

AM

P (

mA

)

3.5

TA = –55°C

TA = 125°C

TA = 25°C

INPUT COMMON MODE VOLTAGE (V)

–0.5

OFF

SET V

OLTA

GE (

μV

)

300

200

250

150

100

0

50

–50

–100

–150

–200

–250

–3003.0

6241 G07

0 0.5 1.5 2.5 3.51.0 2.0 4.54.0

VS = 5V, 0V

TA = –55°C

TA = 125°C

TA = 25°C

COMMON MODE VOLTAGE (V)

0 1.0 2.0 3.0 4.00.5 1.5 2.5 3.5 4.5 5.0

INP

UT B

IAS

CU

RR

EN

T (

pA

)

1000

100

10

0.1

1

6241 G08

VS = 5V, 0V

TA = 85°C

TA = 125°C

TA = 25°C

COMMON MODE VOLTAGE (V)

–0.8 –0.6 –0.2 0.2 0.6–0.4 0 0.4 0.8 1.0

INP

UT B

IAS

CU

RR

EN

T (

pA

)

700

100

200

300

400

500

600

–400

–300

–200

–100

0

6241 G09

VS = 5V, 0V

TA = 85°C

TA = 125°CTA = 25°C

Page 15: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

15624012fe

Output Saturation Voltage vs Load Current (Output High)

Gain Bandwidth and Phase Margin vs Temperature Open Loop Gain vs Frequency

Input Bias Current vs TemperatureOutput Saturation Voltage vs Load Current (Output Low)

Gain Bandwidth and Phase Margin vs Supply Voltage

Slew Rate vs TemperatureCommon Mode Rejection Ratio vs FrequencyOutput Impedance vs Frequency

TYPICAL PERFORMANCE CHARACTERISTICS

TEMPERATURE (°C)

25 45 65 85 10535 55 75 95 115 125

INP

UT B

IAS

CU

RR

EN

T (

pA

)

6241 G10

VCM = VS/2

VS = 5V

VS = 10V

1000

100

10

0.1

1

LOAD CURRENT (mA)

0.01

OU

TP

UT L

OW

SA

TU

RA

TIO

N V

OLTA

GE (

V)

0.1

0.1 10 100

6241 G11

0.0011

10

1

VS = 5V, 0V

TA = 125°C

TA = –55°C

TA = 25°C

LOAD CURRENT (mA)

OU

TP

UT H

IGH

SA

TU

RA

TIO

N V

OLTA

GE (

V)

0.1

0.1 10 100

6241 G12

0.011

10

1

VS = 5V, 0V

TA = 125°C

TA = –55°C

TA = 25°C

TEMPERATURE (°C)

–55 –35 5 45 85–15 25 65 105 125

GA

IN B

AN

DW

IDTH

(M

Hz) P

HA

SE M

AR

GIN

(DEG

)

70

30

40

50

60

0

10

20

30

40

6241 G13

CL = 5pFRL = 1k

PHASE MARGIN

GAIN BANDWIDTH

VS = ±1.5V

VS = ±5V

VS = ±1.5V

VS = ±5V

FREQUENCY (Hz)

10k 100k 10M1M 100M

GA

IN (

dB

)P

HA

SE (D

EG

)

–20

0

–10

10

20

30

40

50

60

70

80

–80

–40

–60

–20

0

20

40

60

80

100

120

6241 G14

CL = 5pFRL = 1kVCM = VS/2

PHASE

GAIN

VS = ±1.5V

VS = ±5V

VS = ±1.5V

VS = ±5V

TOTAL SUPPLY VOLTAGE (V)

0 4 82 6 10 12

GA

IN B

AN

DW

IDTH

(M

Hz) P

HA

SE M

AR

GIN

(DEG

)

70

60

40

50

0

10

20

30

6241 G15

TA = 25°CCL = 5pFRL = 1k

PHASE MARGIN

GAIN BANDWIDTH

TEMPERATURE (°C)

–55 –35 5 45 85–15 25 65 105 125

SLEW

RA

TE (

V/μ

s)

4

6

8

10

12

14

16

18

20

6241 G16

AV = –2RF = 1k, RG = 500ΩCONDITIONS: SEE NOTE 12

VS = ±5V RISING

VS = ±5V FALLING

VS = ±2.5V FALLING

VS = ±2.5V RISING

FREQUENCY (Hz)

OU

TP

UT I

MP

ED

AN

CE (

Ω)

10k 1M 10M

6241 G17

100k

TA = 25°CVS = ±2.5V

AV = 10

AV = 1

0.01

10

10k

1

0.10

100

1k

AV = 2

FREQUENCY (Hz)

10k 100k 10M1M 100M

CO

MM

ON

MO

DE R

EJE

CTIO

N (

dB

)

–10

0

10

20

30

40

50

60

70

100

90

80

6241 G18

TA = 25°CVS = ±2.5V

Page 16: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

16624012fe

Input Capacitance vs Frequency

Minimum Supply VoltageOutput Short-Circuit Current vs Power Supply Voltage Open Loop Gain

Open Loop Gain Open Loop Gain

Channel Separation vs FrequencyPower Supply Rejection Ratio vs Frequency

Offset Voltage vs Output Current

TYPICAL PERFORMANCE CHARACTERISTICS

PO

WER

SU

PP

LY

REJE

CTIO

N R

ATIO

(dB

)

90

80

70

60

50

40

30

20

10

01k 100k 1M 100M10k 10M

FREQUENCY (Hz)

6241 G20

TA = 25°CVS = ±2.5V

POSITIVE SUPPLY

NEGATIVE SUPPLY

FREQUENCY (Hz)

10k 100k 10M1M 100M

VO

LTA

GE G

AIN

(dB

)

–120

0

–10

–20

–30

–40

–50

–60

–70

–110

–100

–90

–80

6241 G19

TA = 25°CVS = ±2.5VAV = 1

INP

UT C

AP

AC

ITA

NC

E (

pF)

16

14

12

10

8

6

4

2

01k 100k 1M 100M10k 10M

FREQUENCY (Hz)

6241 G21

VS = ±1.5V

CCM

TOTAL SUPPLY VOLTAGE (V)

0 2 61 4 83 75 9 10

CH

AN

GE I

N O

FFS

ET V

OLTA

GE (

μV

)

100

20

40

60

80

–100

–80

–40

–60

–20

0

6241 G22

VCM = VS/2

TA = 125°C

TA = –55°C

TA = 25°C

POWER SUPPLY VOLTAGE (±V)

1.5 2.5 4.52.0 3.53.0 4.0 5.0

OU

TP

UT S

HO

RT-C

IRC

UIT

CU

RR

EN

T (

mA

)

50

10

20

30

40

–50

–40

–20

–30

–10

0

6241 G23

SOURCING

SINKING

TA = 125°C

TA = 125°C

TA = –55°C

TA = –55°C

TA = 25°C

OUTPUT VOLTAGE (V)

0 0.5 2.51.51.0 2.0 3.0

INP

UT V

OLTA

GE (

μV

)

120

100

20

40

60

80

0

6241 G24

TA = 25°CVS = 3V, 0V

RL = 100k

RL = 10k

OUTPUT VOLTAGE (V)

0 1 2 53 4

INP

UT V

OLTA

GE (

μV

)

120

100

20

40

60

80

–20

0

6241 G25

TA = 25°CVS = 5V, 0V

RL = 1k

RL = 10k

OUTPUT VOLTAGE (V)

–5 –4 0–2–3 –1 51 2 3 4

INP

UT V

OLTA

GE (

μV

)

100

20

40

60

80

–60

–40

–20

0

6241 G26

TA = 25°CVS = ±5V

RL = 1k

RL = 10k

OUTPUT CURRENT (mA)

–50 –40 –30 –20 –10 10 30200 40 50

OFF

SET V

OLTA

GE (

μV

)

500

400

100

200

300

–500

–400

–300

–100

–200

0

6241 G27

TA = 125°C

TA = –55°C

TA = 25°C

VS = ±5V

Page 17: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

17624012fe

Warm-Up Drift vs Time Noise Voltage vs Frequency

Series Output Resistance and Overshoot vs Capacitive Load

Series Output Resistance and Overshoot vs Capacitive Load

0.1Hz to 10Hz Voltage Noise

Noise Current vs FrequencyMinimum Output Series Resistance vs Capacitive Load

Settling Time vs Output Step (Inverting)

Settling Time vs Output Step (Non-Inverting)

TYPICAL PERFORMANCE CHARACTERISTICS

TIME AFTER POWER UP (s)

0 10 30205 40 605015 3525 45 55

CH

AN

GE I

N O

FFS

ET V

OLTA

GE (

μV

)

25

15

20

–5

0

10

5

6241 G28

TA = 25°C

VS = ±1.5V

VS = ±2.5V

VS = ±5V

FREQUENCY (Hz)

20

10

NO

ISE V

OLTA

GE (

nV

/√H

z)

30

40

50

60

1 100 1k 100k

6241 G29

010 10k

TA = 25°CVS = ±2.5VVCM = 0V

TIME (1s/DIV)

VO

LTA

GE N

OIS

E (

200nV

/DIV

)

6241 G30

VS = 5V, 0V

FREQUENCY (Hz)

1NO

ISE C

UR

REN

T (

fA/√

Hz)

10

100 10k 100k

6241 G31

0.11k

1000

100

TA = 25°CVS = ±2.5VVCM = 0V

CAPACITIVE LOAD (pF)

10

OV

ER

SH

OO

T (

%)

60

50

40

30

20

10

0100 1000

6241 G32

RS = 50Ω

RS = 10Ω

VS = ±2.5VAV = –1

RS

1k 1k

CL

75pF

+

0.01μF 1μF0.1μF1000pF100pF

CAPACITIVE LOAD

1

OU

TP

UT S

ER

IES

RES

ISTA

NC

E (

Ω)

10

10pF 10μF

6241 G33

0.1

1000

100

VS = ±2.5V<30% OVERSHOOT

CAPACITIVE LOAD (pF)

10

OV

ER

SH

OO

T (

%)

60

50

40

30

20

10

0100 1000

6241 G34

RS = 50Ω

RS = 10Ω

VS = ±2.5VAV = –2

RS

500Ω 1k

CL

75pF

+

OUTPUT STEP (V)

–4 –2 3–3 10–1 2 4

SETTLIN

G T

IME (

μs)

3.5

1.5

2.0

2.5

3.0

0

0.5

1.0

6241 G35

10mV

1mV

10mV

1mV

TA = 25°CVS = ±5VAV = 1

VOUT

VIN 1k+

3.0

1.5

2.0

2.5

0

0.5

1.0

OUTPUT STEP (V)

–4 –2 3–3 10–1 2 4

SETTLIN

G T

IME (

μs)

6241 G36

10mV

1mV

10mV

1mV

TA = 25°CVS = ±5VAV = –1

VOUT

VIN

1k+

–1k 1k

Page 18: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

18624012fe

Distortion vs Frequency Distortion vs Frequency

Maximum Undistorted Output Signal vs Frequency

Distortion vs Frequency

Large Signal Response Large Signal Response Output Overdrive Recovery

Small Signal ResponseDistortion vs Frequency

TYPICAL PERFORMANCE CHARACTERISTICS

FREQUENCY (Hz)

10k 100k 1M 10M

OU

TP

UT V

OLTA

GE S

WIN

GIN

G (

VP

-P)

10

7

4

1

8

5

2

9

6

3

6241 G37

TA = 25°CVS = ±5VHD2, HD3 < –40dBc

AV = +2

AV = –1

FREQUENCY (Hz)

10k 100k 1M 10M

DIS

TO

RTIO

N (

dB

c)

–30

–60

–90

–100

–50

–80

–40

–70

6241 G38

VS = ±2.5VAV = 1VOUT = 2VP-P

RL = 1k, 2ND

RL = 1k, 3RD

FREQUENCY (Hz)

10k 100k 1M 10M

DIS

TO

RTIO

N (

dB

c)

–30

–60

–90

–100

–50

–80

–40

–70

6241 G39

VS = ±5VAV = 1VOUT = 2VP-P

RL = 1k, 2ND

RL = 1k, 3RD

FREQUENCY (Hz)

10k 100k 1M 10M

DIS

TO

RTIO

N (

dB

c)

–30

–60

–90

–100

–50

–80

–40

–70

6241 G40

VS = ±2.5VAV = 2VOUT = 2VP-P

RL = 1k, 2ND

RL = 1k, 3RD

FREQUENCY (Hz)

10k 100k 1M 10M

DIS

TO

RTIO

N (

dB

c)

–30

–60

–90

–100

–50

–80

–40

–70

6241 G41

VS = ±5VAV = 2VOUT = 2VP-P

RL = 1k, 2ND

RL = 1k, 3RD

VS = ±2.5VAV = 1RL = ∞

6241 G42

0V

VS = ±5VAV = 1RL = ∞

6241 G43

0V

VS = ±2.5VAV = –1RL = 1k

6241 G44

0V

VS = ±2.5VAV = 3RL = ∞

500ns/DIV 6241 G45

0V

0V

VIN(1V/DIV)

VOUT(2V/DIV)

Page 19: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

19624012fe

Amplifi er Characteristics

Figure 1 is a simplifi ed schematic of the amplifi er, which has a pair of low noise input transistors M1 and M2. A simple folded cascode Q1, Q2 and R1, R2 allow the input stage to swing to the negative rail, while performing level shift to the differential drive generator. Low offset voltage is accomplished by laser trimming the input stage.

Capacitor C1 reduces the unity cross frequency and im-proves the frequency stability without degrading the gain bandwidth of the amplifi er. Capacitor CM sets the overall amplifi er gain bandwidth. The differential drive generator supplies signals to transistors M3 and M4 that swing the output from rail-to-rail.

The photo of Figure 2 shows the output response to an input overdrive with the amplifi er connected as a voltage follower. If the negative going input signal is less than a diode drop below V–, no phase inversion occurs. For input signals greater than a diode drop below V–, limit the current to 3mA with a series resistor RS to avoid phase inversion.

ESD

The LTC6240/LTC6241/LTC6242 have reverse-biased ESD protection diodes on all input and outputs as shown in Figure 1. If these pins are forced beyond either supply, unlimited current will fl ow through these diodes. If the current is transient and limited to one hundred milliamps or less, no damage to the device will occur.

The amplifi er input bias current is the leakage current of these ESD diodes. This leakage is a function of the tempera-ture and common mode voltage of the amplifi er, as shown in the Typical Performance Characteristics curves.

Noise

The LTC6240/LTC6241/LTC6242 exhibit exceptionally low 1/f noise in the 0.1Hz to 10Hz region. This 550nVP-P noise allows these op amps to be used in a wide variety of high impedance low frequency applications, where zero-drift amplifi ers might be inappropriate due to their charge injection.

In the frequency region above 1kHz the LTC6240/LTC6241/LTC6242 also show good noise voltage performance. In this frequency region, noise can easily be dominated by the total source resistance of the particular application. Specifi cally, these amplifi ers exhibit the noise of a 3.1kΩ resistor, meaning it is desirable to keep the source and feedback resistance at or below this value, i.e. RS + RG||RFB ≤ 3.1kΩ. Above this total source impedance, the noise voltage is not dominated by the amplifi er.

Noise current can be estimated from the expression in = √2qIB, where q = 1.6 • 10–19 coulombs. Equating √4kTRΔf and R√2qIBΔf shows that for source resistors below 50GΩ the amplifi er noise is dominated by the source resistance. See the Typical Performance Characteristics curve Noise Current vs Frequency.

Figure 1. Simplifi ed Schematic Figure 2. Unity Gain Follower Test Circuit

APPLICATIONS INFORMATION

R2

Q2

6241 F01

VIN+

ITAIL

VIN–

VO

V+

V+

V–V–

V–

CM

DESD5

DIFFERENTIALDRIVE

GENERATOR

BIAS

DESD6

V+

DESD2

V+

DESD4

V–

DESD1

V–

DESD3

R1

Q1

M2M1

M3

M4

C1CLAMP

+2.5V

–2.5V

6241 F02

+

LTC6240

RS

VIN VOUT

VOUT AND VIN OF FOLLOWER WITH LARGE INPUT OVERDRIVE

VDD =+2.5V

VSS =–2.5V

Page 20: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

20624012fe

Proprietary design techniques are used to obtain simulta-neous low 1/f noise and low input capacitance. Low input capacitance is important when the amplifi er is used with high value source and feedback resistors. High frequency noise from the amplifi er tail current source, ITAIL in Fig-ure 1, couples through the input capacitance and appears across these large source and feedback resistors. As an example, the photodiode amplifi er of Figure 15 on the last page of this data sheet shows the noise results from the LTC6241 and the results of a competitive CMOS amplifi er. The LTC6241 output is the ideal noise of a 1MΩ resistor at room temperature, 130nV√Hz.

Half the Noise

The circuit shown in Figure 3 can be used to achieve even lower noise voltage. By paralleling 4 amplifi ers the noise voltage can be lowered by √4, or half as much noise. The √

– comes about from an RMS summing of uncorrelated

noise sources. This circuit maintains extremely high input resistance, and has a 250Ω output resistance. For lower output resistance, a buffer amplifi er can be added without infl uencing the noise.

Stability

The good noise performance of these op amps can be at-tributed to large input devices in the differential pair. Above several hundred kilohertz, the input capacitance rises and can cause amplifi er stability problems if left unchecked. When the feedback around the op amp is resistive (RF), a pole will be created with RF, the source resistance, source capacitance (RS, CS), and the amplifi er input capacitance. In low gain confi gurations and with RF and RS in even the kilohm range (Figure 4), this pole can create excess phase shift and possibly oscillation. A small capacitor CF in parallel with RF eliminates this problem.

Low Noise Single-Ended Input to Differential Output Amplifi er

The circuit on the fi rst page of the data sheet is a low noise single-ended input to differential output amplifi er, with a 200k input impedance. The very low input bias current of the LTC6241 allows for these large input and feedback resistors. The 200k resistors, R1 and R2, along with C1 and C2 set the –3dB bandwidth to 80kHz. Capacitor C3 is used to cancel effects of input capacitance, while C4 adds phase lead to compensate the phase lag of the second amplifi er.

Figure 3. Parallel Amplifi er Lowers Noise by 2x Figure 4. Compensating Input Capacitance

APPLICATIONS INFORMATION

10Ω

6241 F03

+1/4

LTC6242

1k

1k

10Ω

+1/4

LTC6242

1k

1k

10Ω

+1/4

LTC6242

1k

1k

10Ω

+1/4

LTC6242

1k

1k

+2.5

–2.5

VIN VO

+

CINCS

6241 F04

RF

RS

OUTPUT

CF

Page 21: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

21624012fe

The op amp’s good input offset voltage match and low input bias current means that the typical differential output offset voltage is less than 40μV. A noise spectrum plot of the differential output is shown in Figure 5.

The guard ring should extend as far as necessary to shield the high impedance signal from any and all leakage paths. Figure 6 shows the use of a guard ring on the LTC6241 in a unity gain confi guration. In this case the guard ring is connected to the output and is shielding the high impedance noninverting input from V–. Figure 7 shows the inverting gain confi guration.

A Digitally Programmable AC Difference Amplifi er

The LTC6241 confi gured as a difference amplifi er, can be combined with a programmable gain amplifi er (PGA) to obtain a low noise high speed programmable difference amplifi er. Figure 8 shows the LTC6241 based as a single-supply AC amplifi er. One LTC6241 op amp is used at the circuit’s input as a standard four resistor difference amplifi er.

Figure 5. Differential Output Noise

Achieving Low Input Bias Current

The DD package is leadless and makes contact to the PCB beneath the package. Solder fl ux used during the attach-ment of the part to the PCB can create leakage current paths and can degrade the input bias current performance of the part. All inputs are susceptible because the backside paddle is connected to V– internally. As the input voltage changes or if V– changes, a leakage path can be formed and alter the observed input bias current. For lowest bias current, use the LTC6240/LTC6241 in the SO-8 and provide a guard ring around the inputs that are tied to a potential near the input voltage.

Layout Considerations and a PCB Guard Ring

In high source impedance applications such as pH probes, photodiodes, strain gauges, et cetera, the low input bias current of these parts requires a clean board layout to minimize additional leakage current into a high impedance signal node. A mere 100GΩ of PC board resistance between a 5V supply trace and an input trace adds 50pA of leakage current, far greater then the input bias current of the operational amplifi er. A guard ring around the high impedance input traces driven by a low impedance source equal to the input voltage prevents such leakage problems.

Figure 6. Sample Layout. Unity Gain Confi guration, Using Guard Ring to Shield High Impedance Input from Board Leakage

Figure 7. Sample Layout. Inverting Gain Confi guration, Using Guard Ring to Shield High Impedance Input from Board Leakage

APPLICATIONS INFORMATION

FREQUENCY (kHz)

0 20 6010 40 8030 7050 90 100DIF

FER

EN

TIA

L O

UTP

UT V

OLTA

GE D

EN

SIT

Y (

nV

/√H

z)

140

60

80

100

120

0

20

40

6241 F05

VS = ±2.5VTA = 25°C–3dB BW = 80kHz

LTC6241 S8

R

OUT+

IN–

IN+

V–

LEAKAGECURRENT

NO LEAKAGECURRENT

GUARDRING

NO SOLDER MASKOVER THE GUARD RING

LTC6241 F06

LTC6241 S8

LTC6241 F07

R

R

OUT+

IN–

IN+

V–

VIN

GND

Page 22: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

22624012fe

Figure 8. Wideband Difference Amplifi er with High Input Impedance and Digitally Programmable Gain

The low bias current and current noise of the LTC6241 allow the use of high valued input resistors, 100k or greater. Resistors R1, R2, R3 and R4 are equal and the gain of the difference amplifi er is one. An LTC6910-2 PGA amplifi es the difference amplifi er output with inverting gains of –1, –2, –4, –8, –16, –32 and –64. The second LTC6241 op amp is used as an integrator to set the DC output voltage equal to the LT6650 reference voltage VREF. The integrator drives the PGA analog ground to provide a feedback loop, in addition to blocking any DC voltage through the PGA. The reference voltage of the LT6650 can be set to a voltage from 400mV to V+ – 350mV with resistors R5 and R6. If R6 is 20k or less, the error due to the LT6650 op amp bias current is negligible. The low voltage offset and drift of the LTC6241 integrator will not

contribute any signifi cant error to the LT6650 reference voltage. The LT6650 VREF voltage has a maximum error of ±2% with 1% resistors. The upper –3dB frequency of the amplifi er is set by resistor R3 and capacitor C1 and is limited by the bandwidth of the PGA when operated at a gain of 64. Capacitor C2 is equal to C1 and is added to maintain good common mode rejection at high frequency. The lower –3dB frequency is set by the integrator resistor R7, capacitor C3, and the gain setting of the LTC6910-2 PGA. This lower –3dB zero frequency is multiplied by the PGA gain. The rail-to-rail output of the LTC6910-2 PGA allows for a maximum output peak-to-peak voltage equal to twice the VREF voltage. At the maximum gain setting of 64, the maximum peak-to-peak difference between inputs V1 and V2 is equal to twice VREF divided by 64.

Example Design: Design a programmable gain AC differ-ence amplifi er, with a bandwidth of at least 10Hz to 100kHz, an input impedance equal to or greater than 100kΩ, and an output DC reference equal to 1V.

a. Select input resistors R1, R2, R3 and R4 equal to 100k.

b. If the upper –3dB frequency is 100kHz then C1 = 1/(2π • R2 • f3dB) = 1/(6.28 • 100kΩ • 100kHz) = 15pF (to the nearest 5% value) and C2 = C1 = 15pF.

c. Select R7 equal to one 1M and set the lower –3dB frequency to 10Hz at the highest PGA gain of 64, then C3 = Gain/(2π • R7 • f3dB) = 64/(6.28 • 100kΩ • 10Hz) = 1μF. Lower gains settings will give a lower f3dB.

d. Calculate the value of R5 to set the LT6650 reference equal to 1V;

VREF = 0.4(R5/R6 + 1), so R5 = R6(2.5VREF – 1). For R6 = 20kΩ, R5 = 30kΩ

With VREF = 1V the maximum input difference voltage is equal to 2V/64 = 31.2mV.

40nVpp Noise, 0.05μV/°C Drift, Chopped FET Amplifi er

Figure 9’s circuit combines the ±5V rail-to-rail performance of the LTC6241HV with a pair of extremely low noise JFETs confi gured in a chopper based carrier modulation scheme

APPLICATIONS INFORMATION

6241 F08

R4

R3

R2

+1/2

LTC6241

C1

C2

1μF

0.1μF8 7 6 5

G2 G1 G0

1

1

2

2 3 4

AGNDOUT IN V–

V+

0.1μF

V+

V+

R1

R1 = R2 = R3 = R4

V2

V1

R5

1k

1000pF

3 4

5

R620k

LTC6910-2

LT6650

VOUT

VREF

+

1/2LTC6241

C3 R7100Ω

1μF

DIGITAL INPUTSG1G2 GO

GAIN

00110011

00001111

01010101

0–1–2–4–8

–16–32–64

VOUT = (V1 – V2) GAIN + VREF

VR

R

R k V

REF

REF

= +

= =

0 45

61

5 10 5 2 R6 20

. •

• • – k

d BANDWIDTH f f

fR C

HIGH LOW

HIGH

– –

• • •

3

1

2 3

=

=1 2 7 3

fGAIN

R CLOW =

• • •

Page 23: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

23624012fe

Figure 9. Ultralow Noise Chopper Amplifi er

to achieve an extraordinarily low noise and low DC drift. The performance of this circuit is suited for the demand-ing transducer signal conditioning situations such as high resolution scales and magnetic search coils.

The LTC1799’s output is divided down to form a 2-phase 925Hz square wave clock. This frequency, harmonically unrelated to 60Hz, provides excellent immunity to harmonic beating or mixing effects which could cause instabilities. S1 and S2 receive complementary drive, causing A1 to see a chopped version of the input voltage. A1’s square wave output is synchronously demodulated by S3 and S4. Because these switches are synchronously driven

with the input chopper, proper amplitude and polarity information is presented to A2, the DC output amplifi er. This stage integrates the square wave into a DC voltage, providing the output. The output is divided down (R2 and R1) and fed back to the input chopper where it serves as a zero signal reference. Gain, in this case 1000, is set by the R1-R2 ratio. Because A1 is AC coupled, its DC offset and drift do not affect the overall circuit offset, resulting in the extremely low offset and drift noted. The JFETs have an input RC damper that minimizes offset voltage contribution due to parasitic switch behavior, resulting in the 1μV offset specifi cation.

APPLICATIONS INFORMATION

+

+

BIAS

10M

1μF

1415

16

32

1

S4

S3 240k

1μF

OUTPUTA2

LTC6241HV

A1LTC6241HV

1μF

INPUT

10k

8

7

11

S1

S2

9

6

10

R210k

R110Ω

NOISEOFFSET

DRIFT

OPEN-LOOP GAINI

= 40nVP-P 0.1Hz TO 10Hz= 1μV= 0.05μV/°C R2 10= 10= 500pA

+1GAIN =

9

0.01μF

Ø1

Ø1

Ø2

Ø2

6241 F09

= 0.1% METAL FILM RESISTOR= 1% METAL FILM RESISTOR

***

= LTC201 QUAD

= LSK389= LINEAR INTEGRATED SYSTEMS FREMONT, CA

1μF

DIV

RSET

LTC1799

V+

74C90 ÷ 10

18.5kHz

OUT 74C74 ÷ 2

TOØ1

POINTS

TOØ2

POINTS

Q Q

54.2k*

TO LTC201 V+ PIN

5V

5V –5V

5V 5V

925Hz

TO LTC201 V– PIN

1μF

898Ω**

5V

–5V

898Ω**

LSK389

30.1Ω

499Ω**

+

+

Page 24: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

24624012fe

by the sensor is forced across the feedback capacitor by the op amp action. Because the feedback capacitor is 100 times smaller than the sensor, it will be forced to 100 times what would have been the sensor’s open circuit voltage. So the circuit gain is 100. The benefi t of this ap-proach is that the signal gain of the circuit is independent of any cable capacitance introduced between the sensor and the amplifi er. Hence this circuit is favored for remote accelerometers where the cable length may vary. Diffi culties with the circuit are inaccuracy of the gain setting with the small capacitor, and low frequency cutoff due to the bias resistor working into the small feedback capacitor.

Figure 12 shows a noninverting amplifi er approach. This approach has many advantages. First of all, the gain is set accurately with resistors rather than with a small capaci-tor. Second, the low frequency cutoff is dictated by the bias resistor working into the large 770pF sensor, rather than into a small feedback capacitor, for lower frequency response. Third, the noninverting topology can be paral-leled and summed (as shown) for scalable reductions in voltage noise. The only drawback to this circuit is that the parasitic capacitance at the input reduces the gain slightly. This circuit is favored in cases where parasitic input capacitances such as traces and cables will be relatively small and invariant.

The noise measured over a 50 second interval, in Figure 10, is 40nV in a 0.1Hz to 10Hz bandwidth.This low noise is at-tributed to the input JFET’s die size and current density.

Figure 11. Classical Inverting Charge Amplifi er Figure 12. Low Noise Noninverting Shock Sensor Amplifi er

Figure 10. Noise in a 0.1Hz to 10Hz Bandwidth

Low Noise Shock Sensor Amplifi ers

Figures 11 and 12 show the amplifi ers realizing two dif-ferent approaches to amplifying signals from a capacitive sensor. The sensor in both cases is a 770pF piezoelectric shock sensor accelerometer, which generates charge under physical acceleration.

Figure 11 shows the classical “charge amplifi er” approach. The LTC6240 is in the inverting confi guration so the sensor looks into a virtual ground. All of the charge generated

APPLICATIONS INFORMATION

5s/DIV 6241 F10

20nV/DIV

BIAS RESISTORVISHAY-TECHNO

CRHV2512AF1007G(OR EQUIVALENT)

MAINGAIN-SETTINGELEMENT IS ACAPACITOR

SHOCK SENSORMURATA-ERIE

PKGS-00LD770pF

CABLE HASUNKNOWN C

Rf1G

6241 F11

VOUT = 110mV/g–

+

LTC6240

Cf7.7pF

BIAS RESISTORVISHAY-TECHNO

CRHV2512AF1007G(OR EQUIVALENT)

1G

VS+

6241 F12

10k

1k

1k

100Ω

VOUT = 110mV/gVS = ±1.4V to ±5.5VBW = 0.2Hz to 10kHz

VOUT

+1/2

LTC6241HV

VS–

10k100Ω

+1/2

LTC6241HV

SHOCK SENSORMURATA-ERIE

PKGS-00LD770pF

Page 25: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

25624012fe

1M Transimpedance Amplifi er with 43nV/√Hz Output Noise

In a normal 1M transimpedance amplifi er, like that shown on the back page of this data sheet, the output noise density must be at least 130nV/√Hz at room temperature. This is true even should the op amp be perfectly noiseless, because the 1M resistor provides 130nV/√Hz of voltage noise at room temperature independently of the op amp.

The circuit of Figure 13 provides an overall transimpedance gain of 1MΩ, but it has an output noise density of only 43nV/√Hz, about 1/3 of the normal transimpedance ampli-fi er. It does this by taking a higher initial transimpedance gain of 10M and then attenuating by a factor of 10. The transistor section provides voltage gain and works on a 54V supply voltage to guarantee adequate output swing.

By achieving an output swing of 50V before attenuation, the circuit provides an output swing to 5V after attenu-ation. The 10M resistor sets the gain of the TIA stage and has a noise density of 400nV/√Hz. After attenuation, the effective TIA gain drops to 1M while the noise fl oor drops to 40nV/√Hz, which clearly dominates the observed 43nV/√Hz. Note the additional benefi t that the offset voltage of the op amp is divided by 10. Worst-case output offset for this circuit is 150μV over temperature.

Reference Buffer

Figure 14 shows the LTC6240 being utilized as a buffer in conjunction with the LT1019 reference. The passive R-C fi lter attenuates the reference noise and the LTC6240 provides a low noise buffer, resulting in an output noise of 8nV/√Hz.

Figure 13. 1M Transimpedance Amplifi er with 43nV/√Hz Output Noise

Figure 14. Low Noise Reference Buffer

APPLICATIONS INFORMATION

5V

54V

–5V

–1.5V

3pFPHOTODIODE

6241 F13–5V

10k

+

LTC6240HV

100pF

10M1%

0.3pF

1k

10k 2.4k

33k

MPSA06

43k

9.09k1%1/4W

1k1%

VOUT1M GAIN(1V/μA)

10M GAIN(10V/μA)

MPSA06

5V

–5V

6241 F14

0.2Ω

+

LTC6240HV

1M

10μFCERAMICOR FILM

8nV/√HzVOUT1μF

LT1019-2.5180nV/√Hz

Page 26: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

26624012fe

DD Package8-Lead Plastic DFN (3mm × 3mm)

(Reference LTC DWG # 05-08-1698)

PACKAGE DESCRIPTION

3.00 0.10(4 SIDES)

NOTE:1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)2. DRAWING NOT TO SCALE3. ALL DIMENSIONS ARE IN MILLIMETERS4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE5. EXPOSED PAD SHALL BE SOLDER PLATED6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON TOP AND BOTTOM OF PACKAGE

0.40 0.10

BOTTOM VIEW—EXPOSED PAD

1.65 0.10(2 SIDES)

0.75 0.05

R = 0.125TYP

2.38 0.10

14

85

PIN 1TOP MARK

(NOTE 6)

0.200 REF

0.00 – 0.05

(DD8) DFN 0509 REV C

0.25 0.05

2.38 0.05

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONSAPPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

1.65 0.05(2 SIDES)2.10 0.05

0.50BSC

0.70 0.05

3.5 0.05

PACKAGEOUTLINE

0.25 0.050.50 BSC

Page 27: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

27624012fe

DHC Package16-Lead Plastic DFN (5mm × 3mm)

(Reference LTC DWG # 05-08-1706)

PACKAGE DESCRIPTION

3.00 ±0.10(2 SIDES)

5.00 ±0.10(2 SIDES)

NOTE:1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WJED-1) IN JEDEC

PACKAGE OUTLINE MO-2292. DRAWING NOT TO SCALE 3. ALL DIMENSIONS ARE IN MILLIMETERS4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE5. EXPOSED PAD SHALL BE SOLDER PLATED6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE

TOP AND BOTTOM OF PACKAGE

0.40 ± 0.10

BOTTOM VIEW—EXPOSED PAD

1.65 ± 0.10(2 SIDES)

0.75 ±0.05

R = 0.115TYP

R = 0.20TYP

4.40 ±0.10(2 SIDES)

18

169

PIN 1TOP MARK

(SEE NOTE 6)

0.200 REF

0.00 – 0.05

(DHC16) DFN 1103

0.25 ± 0.05

PIN 1NOTCH

0.50 BSC

4.40 ±0.05(2 SIDES)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

1.65 ±0.05(2 SIDES)2.20 ±0.05

0.50 BSC

0.65 ±0.05

3.50 ±0.05

PACKAGEOUTLINE

0.25 ± 0.05

Page 28: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

28624012fe

PACKAGE DESCRIPTIONGN Package

16-Lead Plastic SSOP (Narrow .150 Inch)(Reference LTC DWG # 05-08-1641)

GN16 (SSOP) 0204

1 2 3 4 5 6 7 8

.229 – .244(5.817 – 6.198)

.150 – .157**(3.810 – 3.988)

16 15 14 13

.189 – .196*(4.801 – 4.978)

12 11 10 9

.016 – .050(0.406 – 1.270)

.015 ± .004(0.38 ± 0.10)

× 45°

0° – 8° TYP.007 – .0098(0.178 – 0.249)

.0532 – .0688(1.35 – 1.75)

.008 – .012(0.203 – 0.305)

TYP

.004 – .0098(0.102 – 0.249)

.0250(0.635)

BSC

.009(0.229)

REF

.254 MIN

RECOMMENDED SOLDER PAD LAYOUT

.150 – .165

.0250 BSC.0165 ± .0015

.045 ±.005

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

INCHES(MILLIMETERS)

NOTE:1. CONTROLLING DIMENSION: INCHES

2. DIMENSIONS ARE IN

3. DRAWING NOT TO SCALE

Page 29: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

29624012fe

S5 Package5-Lead Plastic TSOT-23

(Reference LTC DWG # 05-08-1635 Rev B)

1.50 – 1.75(NOTE 4)2.80 BSC

0.30 – 0.45 TYP 5 PLCS (NOTE 3)

DATUM ‘A’

0.09 – 0.20(NOTE 3) S5 TSOT-23 0302 REV B

PIN ONE

2.90 BSC(NOTE 4)

0.95 BSC

1.90 BSC

0.80 – 0.90

1.00 MAX0.01 – 0.100.20 BSC

0.30 – 0.50 REF

NOTE:1. DIMENSIONS ARE IN MILLIMETERS2. DRAWING NOT TO SCALE3. DIMENSIONS ARE INCLUSIVE OF PLATING4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR5. MOLD FLASH SHALL NOT EXCEED 0.254mm6. JEDEC PACKAGE REFERENCE IS MO-193

3.85 MAX

0.62MAX

0.95REF

RECOMMENDED SOLDER PAD LAYOUTPER IPC CALCULATOR

1.4 MIN2.62 REF

1.22 REF

PACKAGE DESCRIPTION

Page 30: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

30624012fe

S8 Package8-Lead Plastic Small Outline (Narrow .150 Inch)

(Reference LTC DWG # 05-08-1610)

PACKAGE DESCRIPTION

.016 – .050(0.406 – 1.270)

.010 – .020(0.254 – 0.508)

× 45°

0°– 8° TYP.008 – .010

(0.203 – 0.254)

SO8 0303

.053 – .069(1.346 – 1.752)

.014 – .019(0.355 – 0.483)

TYP

.004 – .010(0.101 – 0.254)

.050(1.270)

BSC

1 2 3 4

.150 – .157(3.810 – 3.988)

NOTE 3

8 7 6 5

.189 – .197(4.801 – 5.004)

NOTE 3

.228 – .244(5.791 – 6.197)

.245MIN .160 ±.005

RECOMMENDED SOLDER PAD LAYOUT

.045 ±.005 .050 BSC

.030 ±.005 TYP

INCHES(MILLIMETERS)

NOTE:1. DIMENSIONS IN

2. DRAWING NOT TO SCALE3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

Page 31: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

31624012fe

Information furnished by Linear Technology Corporation is believed to be accurate and reliable.However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

REVISION HISTORYREV DATE DESCRIPTION PAGE NUMBER

E 07/10 Update to Simplifi ed Schematic (Figure 1) 19

(Revision history begins at Rev E)

Page 32: LTC6240/LTC6241/LTC6242 - Single/Dual/Quad 18MHz, Low ...LTC6240/LTC6241/LTC6242 1 624012fe Single/Dual/Quad 18MHz, Low Noise, Rail-to-Rail Output, CMOS Op Amps The LTC®6240/6241/LTC6242

LTC6240/LTC6241/LTC6242

32624012fe

Linear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com © LINEAR TECHNOLOGY CORPORATION 2005

LT 0710 REV E • PRINTED IN USA

PART NUMBER DESCRIPTION COMMENTS

LTC1151 ±15V Zero-Drift Op Amp Dual High Voltage Operation ±18V

LT1792 Low Noise Precision JFET Op Amp 6nV/√Hz Noise, ±15V Operation

LTC2050 Zero-Drift Op Amp 2.7 Volt Operation, SOT-23

LTC2051/LTC2052 Dual/Quad Zero-Drift Op Amp Dual/Quad Version of LTC2050 in MS8/GN16 Packages

LTC2054/LTC2055 Single/Dual Zero-Drift Op Amp Micropower Version of the LTC2050/LTC2051 in SOT-23 and DD Packages

LTC6244 Dual 50MHz Rail-to-Rail Op Amp 100μV VOS(MAX), 1pA IBIAS, 40V/μV, Slew Rate

Figure 15. Ultralow Noise 1MΩ 150kHz Photodiode Amplifi er

LTC6241 Output Noise Spectrum. 1MΩ Resistor Noise Dominates; Ideal Performance

Competition Output Noise Spectrum. Op Amp Noise Dominates; Performance Compromised

RELATED PARTS

TYPICAL APPLICATION

R21.69k

C3180pF

C11500pF

+1.5V

–1.5V

–1.5V

SFH213FAOR EQUIVALENT

(≤4pF) 6241 TA02a

RF1M

R1866Ω

+1/2

LTC6241

+1/2

LTC6241

C21500pF

CF1pF

1MΩ TIA 150kHz 3RD ORDER BUTTERWORTH FILTER

R32k

1kHz 101kHz10kHz/DIV

6241 TA02b

0V

30nV

/√H

z P

ER

DIV

1kHz 101kHz

6241 TA02c

10kHz/DIV

0V

30nV

/√H

z P

ER

DIV