low cost process monitoring for polymer extrusion

34
energy, pow er & intelligentcontrol low cost process monitoring for polymer extrusion 1 Dr Jing Deng Energy, Power and Intelligent Control School of Electronics, Electrical Engineering and Computer Science Queen's University Belfast 13/08/2013 [email protected]

Upload: ronald

Post on 23-Feb-2016

30 views

Category:

Documents


0 download

DESCRIPTION

low cost process monitoring for polymer extrusion. Dr Jing Deng Energy, Power and Intelligent Control School of Electronics, Electrical Engineering and Computer Science Queen's University Belfast 13/08/2013 j.deng @qub.ac.uk. Content. Background . Thermal energy consumption monitoring. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: low cost process monitoring for polymer extrusion

energy, power & intelligent control

low cost process monitoring for polymer extrusion

1

Dr Jing DengEnergy, Power and Intelligent Control

School of Electronics, Electrical Engineering and Computer ScienceQueen's University Belfast

13/08/[email protected]

Page 2: low cost process monitoring for polymer extrusion

energy, power & intelligent control

Content2

1. Background .

2. Thermal energy consumption monitoring.

3. Motor power consumption monitoring.

4. Viscosity monitoring through ‘soft-sensoring’.

5. Summary and future work.

Page 3: low cost process monitoring for polymer extrusion

energy, power & intelligent control

1. Background

Melt pressure

Melt temperature

Feed rate

Barrel temperature

Screw speed

Viscosity

3

Page 4: low cost process monitoring for polymer extrusion

energy, power & intelligent control4

Killion KTS-100 laboratory single-screw extruder

Geometrical screw parameters

DC motor power (kW) 2.24Screw diameter (mm) 25No. of barrel temperature zones 3Additional temperature zones connected

3

Operating speed range (rpm) 0-115

Extruder Specifications

2. Thermal energy monitoring - the extruder1. Background

Page 5: low cost process monitoring for polymer extrusion

energy, power & intelligent control

2. Thermal energy monitoring - the heating and cooling

Zone 1, Heating band1.296kw

Zone 2, Heating band1.267kw

Zone 3, Heating band1.238kw

Clamp ring heating band0.4964kw

Adapter heating band0.106kw

Controller circuit0.0016kw

Other circuits0.06kw

Cooling fan0.04637kw

Heating and cooling elements of the single screw extruder

5

2. Thermo energy monitoring

Page 6: low cost process monitoring for polymer extrusion

energy, power & intelligent control

6

L1 L2 NL3

L1:• Controller circuits• Zone 3 heating and cooling• Motor drive power supply

L2:• Zone 1 heating and cooling• Zone 4 heating

L3: • Zone 2 heating and cooling• Zone 5 heating

2. Thermal energy monitoring - power supply

2. Thermo energy monitoring

Page 7: low cost process monitoring for polymer extrusion

energy, power & intelligent control

2. Thermal energy monitoring - the controller

7

2. Thermo energy monitoring

Page 8: low cost process monitoring for polymer extrusion

energy, power & intelligent control

8

PIDController

Heating band

Cooling Fan ExtruderBarrel Zone

Temperature

SetTemperature

AFM215-303DURAKOOL Mercury displacement contactor

Time-proportional control

2. Thermal energy monitoring - the controller

2. Thermo energy monitoring

Page 9: low cost process monitoring for polymer extrusion

energy, power & intelligent control

9

More close to the actual

power consumption

2. Thermo energy monitoring

Page 10: low cost process monitoring for polymer extrusion

energy, power & intelligent control

10

Advantage: • Additional power consumption measurement• More accurate thermal energy monitoring• Expensive power meter is not required

Separate power supply

2. Thermal energy monitoring - the advantages

2. Thermo energy monitoring

Page 11: low cost process monitoring for polymer extrusion

energy, power & intelligent control

11

Plot of energy consumption by different zones, screw speed at 10, cooling temperature at 25 degree Temperature settings 170-180-190, material: LDPE 2102TN32W, MFR:2.5g/10min at 190 °C and 2.16 kg

2. Thermal energy monitoring - monitor separate heating zones

2. Thermo energy monitoring

Page 12: low cost process monitoring for polymer extrusion

energy, power & intelligent control

12

Extruder Killion KTS-100Material SABIC LDPE 2100TN00WCooling temperature setting: 25Temperature setting: 170-180-190Screw speed: 40 rpmData file: 20120720C

2. Thermal energy monitoring - monitor separate heating zones

2. Thermo energy monitoring

Page 13: low cost process monitoring for polymer extrusion

energy, power & intelligent control

3. Motor power consumption monitoring - the controller

13

L1 N

Page 14: low cost process monitoring for polymer extrusion

energy, power & intelligent control

14

3. Motor power consumption monitoring - the controller

Power in

Power out

Page 15: low cost process monitoring for polymer extrusion

energy, power & intelligent control

15

Those rising edges contain high-frequency energy from harmonics of the PWM signal's frequency. Because a motor presents an inductive load to the inverter circuits, its inductance filters much of the high-frequency energy. The high frequencies do little to rotate the motor, but the energy in those frequencies must go somewhere, and the high-frequency energy dissipates as heat.

Measure PWM motor efficiency

3. Motor power consumption monitoring - the controller

Page 16: low cost process monitoring for polymer extrusion

energy, power & intelligent control

16

Motor Apparent power consumption

Power factor

Active power

Screw speed

Voltage

current

current

Screw speed

3. Motor power consumption monitoring - Apparent power consumption

Page 17: low cost process monitoring for polymer extrusion

energy, power & intelligent control

17

V_a = R_a * I + K_v * w

R_a = 12.4222;K_v = 0.0038

V_a = 12.4222 * I + 0.0038 * N

3. Motor power consumption monitoring - the controller

Page 18: low cost process monitoring for polymer extrusion

energy, power & intelligent control

18

4. Viscosity monitoring

Viscosity measurement

On-line rheometer In-line rheometer Off-line rheometer

Page 19: low cost process monitoring for polymer extrusion

energy, power & intelligent control

2. Viscosity monitoring

3/09/2012 Queen's University Belfast

19

Viscosity calculation

𝜏=𝐻2 (∆ 𝑃𝐿 ) �̇�=

2𝑛+13𝑛 ( 6𝑄

𝑊 𝐻 2 )

4. Viscosity monitoring

Page 20: low cost process monitoring for polymer extrusion

energy, power & intelligent control

2. Viscosity monitoring

3/09/2012 Queen's University Belfast

20

Viscosity calculation

By substituting typical values

4. Viscosity monitoring

Page 21: low cost process monitoring for polymer extrusion

energy, power & intelligent control

21

4. Viscosity monitoring

Page 22: low cost process monitoring for polymer extrusion

energy, power & intelligent control

Table 1: The comparison of forward and backward selection

Advantage Disadvantage

Forward Fast/less computing Constrained minimization

Backward Slow/much computing Unconstrained minimization

• Forward selection method (constrained minimisation)y

X1X1 θ1

e = y – X1 θ1

y

X1X1

= y – X1 θ1-X2 θ2

X2

X2 θ2

e

θ 1

4. Viscosity monitoring

Page 23: low cost process monitoring for polymer extrusion

energy, power & intelligent control

1 2 k n

j

Selected termsStage 1: Forward model selection

Stage 2: Backward model refinement - Loop 1 …….. - Loop 2 …….. - Loop 3 …….. ……… Candidate terms

pool

Two-stage selection

• Remains efficient and effective from FRA• Eliminates optimization constraint in FRA• Reduces the training error without increasing model size

4. Viscosity monitoring

Page 24: low cost process monitoring for polymer extrusion

energy, power & intelligent control

24

4. Viscosity monitoring

Consider a general nonlinear model

Write in a matrix form

Page 25: low cost process monitoring for polymer extrusion

energy, power & intelligent control

25

4. Viscosity monitoring

A optimal design criterion

where is known as the design matrix

The new cost function becomes

Page 26: low cost process monitoring for polymer extrusion

energy, power & intelligent control

26

4. Viscosity monitoring

define

Some properties of R

Page 27: low cost process monitoring for polymer extrusion

energy, power & intelligent control

27

4. Viscosity monitoring

Also define some auxiliary matrices

Page 28: low cost process monitoring for polymer extrusion

energy, power & intelligent control

28

4. Viscosity monitoring

Page 29: low cost process monitoring for polymer extrusion

energy, power & intelligent control

29

4. Viscosity monitoring

Recursive updating

Net contribution of a new term to the cost function

Page 30: low cost process monitoring for polymer extrusion

energy, power & intelligent control

30

4. Viscosity monitoring

Employing Branch and Bound

Page 31: low cost process monitoring for polymer extrusion

energy, power & intelligent control

31

4. Viscosity monitoring

The net contribution of a new term to the cost function

where

Page 32: low cost process monitoring for polymer extrusion

energy, power & intelligent control

32

4. Viscosity monitoring

Page 33: low cost process monitoring for polymer extrusion

energy, power & intelligent control

33

5. Summary and future work

• Low cost process monitoring techniques have been developed for polymer extrusion, including thermo energy monitoring, motor power consumption monitoring, and viscosity monitoring.

• A-optimal design criterion and branch and bound can be employed into subset selection algorithm to further improve model compactness and computational effort.

• Current and future work mainly focus on commercialisation of research outputs through an PoC project.

Page 34: low cost process monitoring for polymer extrusion

energy, power & intelligent control

Questions ?

34

Jing DENGEPIC Research Cluster

[email protected]