logbook constructing environments

53
WEEK 3 Elearning Structure elements : The design of a structural element is based on the leads to be carried, the material used and the form and shape chosen for the element. –”Tony Hunt’s structure notebook” page 40 (2003) Strut: A slender element design to carry load parallel to its long axis. The load produces compression. Tie: A slender element design to carry load parallel to its long axis. The load produces tension. Beam: Generally a horizontal element designed to carry verOcal load using its bending resistance. (Material chosen to be able to ford both compression and tension such as Omber, steel reinforced concrete) Slab/Plate: Wide horizontal element designed to carry verOcal load in bending usually supported by beams. Panel (wall): A deep verOcal element designed to carry verOcal or horizontal load. FooOng & FoundaOon: FoundaOons are the SUBSTRUCTURE of the building and their funcOon is to safely transfer all loads(Dead and live) acOng on the building structure to the ground. (to the fooOng system) Dead loads: weight of structure, fixtures, equipment everything a\ached to the building Live loads: wind, earthquake, people, moveable furniture Se\lement : over Ome buildings compress the earth beneath them and the buildings tend to sink a li\le into the earth. (FoundaOon and fooOng should be designed to ensure that this se\lement occurs evenly and that the bearing capacity of the soil is not exceeded. )

Upload: wendy-hou

Post on 28-Mar-2016

235 views

Category:

Documents


4 download

DESCRIPTION

student name Wen Hou 581826 university of melbourne

TRANSCRIPT

Page 1: Logbook constructing environments

WEEK  3  E-­‐learning    

Structure  elements:  The  design  of  a  structural  element  is  based  on  the  leads  to  be  carried,  the  material  used  and  the  form  and  shape  chosen  for  the  element.  –”Tony  Hunt’s  structure  notebook”  page  40  (2003)    •  Strut:  A  slender  element  design  to  carry  load  parallel  to  its  long  axis.  The  load  produces  compression.  •  Tie:  A  slender  element  design  to  carry  load  parallel  to  its  long  axis.  The  load  produces  tension.  •  Beam:  Generally  a  horizontal  element  designed  to  carry  verOcal  load  using  its  bending  resistance.    (Material  chosen  to  be  able  to  

ford  both  compression  and  tension  such  as  Omber,  steel  reinforced  concrete)  •  Slab/Plate:  Wide  horizontal  element  designed  to  carry  verOcal  load  in  bending  usually  supported  by  beams.  •  Panel  (wall):  A  deep  verOcal  element  designed  to  carry  verOcal  or  horizontal  load.  

FooOng  &  FoundaOon:    FoundaOons  are  the  SUBSTRUCTURE  of  the  building  and  their  funcOon  is  to  safely  transfer  all  loads(Dead  and  live)  acOng  on  the  building  structure  to  the  ground.  (to  the  fooOng  system)    -­‐Dead  loads:  weight  of  structure,  fixtures,  equipment    everything  a\ached  to  the  building  -­‐Live  loads:  wind,  earthquake,  people,  moveable  furniture    Se\lement:  over  Ome  buildings  compress  the  earth  beneath  them  and  the  buildings  tend  to  sink  a  li\le  into  the  earth.  (FoundaOon  and  fooOng  should  be  designed  to  ensure  that  this  se\lement  occurs  evenly  and  that  the  bearing  capacity  of  the  soil  is  not  exceeded.  )          

Page 2: Logbook constructing environments

Deep  foundaOon:  All  the  way  to  the  rock  base  under  the  soil  because  the  soil  would  not  carry  the  heavy  building.    Most  of  the  building  using  shallow  foundaOon.    

 We  can  classify  foundaOon  systems  into  two  broad  categories–  Shallow  foundaOons  and  deep  foundaOons.  

WEEK  3  E-­‐learning    

Page 3: Logbook constructing environments

Retaining  walls  and  foundaOon  walls:      sites  are  excavated  to  create  basements  or  where  changes  in  site  levels  need  to  be  stabilized.  The    pressure  load  of  the  earth  behind  the  wall  needs  to  be  considered  to  prevent  the  wall  from  overturning.  

WEEK  3  E-­‐learning    

Page 4: Logbook constructing environments

WEEK  3  E-­‐learning     MASS

Mass  materials:  Stone/  earth/  clay/  concrete  (all  strong  in  compression  and  weak  in  tension)  can  be:                    -­‐Modular:  clay  brick/  Mud  brick/  concrete  block/  ashlar  stone                    -­‐Non-­‐  modular:  concrete/  Rammed  earth/  monolithic  stone    CENTRE  OF  MASS:  The  centre  of  mass  is  the  point  about  which  an  object  is  balanced.   It  can  also  be  thought  of  as  the  point  where  the  enOre  weight  of  the  object  is  concentrated. The  locaOon  of  the  centre  of  mass  depends  on  the  object’s  geometry.  This  concept  is  also  someOmes  referred  to  as  Centre  of  Gravity.    EQUILIBRIUM:  a  state  of  balance  or  rest  resulOng  from  the  equal  acOon  of  opposing  forces.  In  other  words,  as  each  structural  element  is  loaded,  its  supporOng  elements  must  react  with  equal  but  opposite  forces.   For  an  object  to  be  in  equilibrium,  any  applied  forces  must  be  resisted  by  equal  and  opposite  forces.  These  forces  are  called  reacOon  forces.  In  a  building  structure,  the  reacOon  forces  are  developed  in  the  supporOng  elements.      Moments  also  have  magnitude  and  sense.  Since  moments  are  the  product  of  force  and  distance,  the  units  are  expressed  in  Newton-­‐meter  (Nm)  or  Kilo  newton-­‐meter  (kNm).   Mo  =  F  x  d  (i.e.  moment  =  force  x  distance)    Masonry  materials:  -­‐stone:  slab/  ashlar  block/  rubble  stone                                                                          -­‐earth:  mud  brick                                                                          -­‐clay:  bricks/  honeycomb  blocks                                                                          -­‐concrete:  block/commons  Masonry:  Building  with  units  of  various  natural  or  manufactured  products  usually  with  the  use  of  mortar  s  a  bonding  agent.                                        Bond:  the  pa\ern  or  arrangement  of  the  units                                        Course:  a  horizontal  row  of  masonry  units                                        Joint:  the  way  units  are  connected  to  each  other                                        Mortar:  Mixture  of  cement  or  lime  sand  and  water  used  as  bonding  agent  ProperOes:  the  unit  are  to  the  degree  applicable  to  the  unit  element  in  other  words  the  units  together  act  as  a  monolithic  whole    VerOcal  elements:  walls/  column/Piers    Horizontal  and  curved  spanning  elements:  Beam/  lintel/  arches  Spanning  and  enclosing  elements:  vaults/domes          

Page 5: Logbook constructing environments

WEEK  3  E-­‐learning     MASS  Materials:  Bricks    

3  main  types:  extruded  and  wire-­‐cut/machine  moulded/handmade  Main  use:  wall,  arches,  paving    Mortar  joint:  usually  10  mm

ProperOes:    •  hardness:  medium  to  high.  •  Fragility:  medium  •  DucOlity:  very  low  •  Flexibility/plasOcity:  very  low  •  Porosity/permeability:  medium  to  low  •  Density:  medium  •  ConducOvity:  poor  conductors  to  heat  and  electricity  •  Durability:  typically  very  durable  •  Reusability/recyclability:  high  •  Sustainability:  be  locally  produced  •  Cost:  generally  cost  effecOve    

Bricks  are  not  water  proof  Advantage:  -­‐  joint  with  water  based  mortar                                            -­‐  If  adequately  venOlated  so  that  any    wetness  can  escape.    Disadvantage:  -­‐  absorb  moisture  and  expand  overOme                                                      -­‐  salts  and  lime  from  the  soil  can  be  drawn  up  through  the  bricks  when  in  contact  with  the  ground

Page 6: Logbook constructing environments

WEEK  3  E-­‐learning     MASS  Materials:  Concrete  blocks    

Face  shell

web

width

Hollow  cell

Can  be  hollowed  and  solid  styles,  can  be  classified  as  load  bearing  and  non  load  bearing.    Load  bearing  blocks  are  known  as  a  concrete  masonry  unit  (CMU)    Uses:  Mainly  used  in  the  construcOon  of  walls  both  load  bearing  (structural)  and  non  load  bearing  (dividing  and  decoraOve  walls)    To  provide  greater  structural  resistance  to  lateral  loads,  concrete  masonry  units  are  ohen  strengthened  with  steel  reinforcing  bars  and  then  filled  with  grout  

ProperOes:    •  hardness:  medium  to  high.  •  Fragility:  medium  •  DucOlity:  very  low  •  Flexibility/plasOcity:  very  low  •  Porosity/permeability:  medium  to  low  •  Density:  medium  •  ConducOvity:  poor  conductors  to  heat  and  electricity  •  Durability:  typically  very  durable  •  Reusability/recyclability:  high  •  Sustainability:  inclusion  of  recycled  and  waste  

product  from  other  processes  is  allowing  a  posiOve  reducOon  in  carbon  footprint  and  increase  sustainability  

•  Cost:  generally  cost  effecOve    

Concrete  block  VS  brick    Concrete  shrinks  over  Ome  while  clay  brick  will  expand  Concrete  blocks  shrink:  because  of  the  cement  paste  reduces  in  volume  as  it  hydrates  and  drying  shrinkage  occurs  as  water  is  lost  to  the  atmosphere  Brick:  absorb  moisture  from  the  atmosphere  and  gradually  expand    Movement  joints  are  required  for  each  material  

Page 7: Logbook constructing environments

WEEK  3  E-­‐learning     MASS  Materials:  Stone  

Types  of  stone:  1.  igneous:  formed  when  molten  rock  (lava/  magma)  cools.  Eg.  Granite/basalt/bluestone                                                                    2.  sedimentary:  formed  when  accumulated  parOcles  are  subjected  to  moderate  pressure.                                                                      Eg.  Limestone/sandstone                                                                    3.  metamorphic:  formed  when  structure  of  igneous  or  sedimentary  stone  changes  when  subjected                                                                      to  pressure.  Eg.  Marble/slate    Uses:  walls,  paving,  claddings,  aggregates,  feature  design  elements.  Elements:  Monolithic/  Ashlar/  Rubble/  

ProperOes:    •  hardness:  large  range  (igneous  is  hardest,  then  metamorphic  then  sedimentary)  •  Fragility:  largely  geometry  dependant  •  DucOlity:  mostly  low  •  Flexibility/plasOcity:  mostly  rigid(very  low)  •  Porosity/permeability:  large  range  •  Density:  depends  on  stone  type  •  ConducOvity:  generally  poor  conductors  to  heat  and  electricity  •  Durability:  typically  extremely  durable  •  Reusability/recyclability:  very  high  •  Sustainability:  transport  energy  is  the  main  factor  •  Cost:  depends  on  labour  and  type  of  the  stone    

Page 8: Logbook constructing environments

WEEK  3  Studio  

Site  1  Lot  6  Café  •  Strut  and  slab  and  Panel  •  expressed  Reinforcing  concrete  base,  column  and  wall.  Glazing  entries  

Site  2  Underground  car  park  •  Strut  and  panel  •  concealed  Hollowed  concrete  column  arrange  in  grid.  Drain  system  for  trees  on  south  lawn.      

Site  2  south  lawn  •  Panel  •  Expressed  Material:  Sandstone    

Site  3  Arts  west  student  centre  •  Beam  and  strut  and  panel  •  Timber  beam  steel  frame  steel  joints  •  expressed

Site  4  west  end  of  union  house  •  Membran

e  system  •  Tension  •  Strut  and  

Oe  Hole  as  drain  system

Site  5  Beaurepaire  centre  pool  •  Steel  frame  

large  glazing  •  Beam  and  

strut  

Site  6  oval  pavilion    •  Aluminium  

roof  •  Steel  frame  •  Panel  and  slab  

and  strut  

Page 9: Logbook constructing environments

WEEK  4  E-­‐learning  :  SPACING  of  the  supporOng  elements  depends  on  the  SPANNING  capabiliOes  of  the  supported  elements        

SPAN  is  the  distance  measured  between  two  structural  supports.  SPAN  can  be  measured  between  verOcal  supports  (for  a  horizontal  member)  or  between  horizontal  supports  (for  a  verOcal  member).    SPAN  is  not  necessarily  the  same  as  the  length  of  a  member.    

SPACING  is  the  repeaOng  distance  between  a  series  of  like  or  similar  elements.    SPACING  is  ohen  associated  with  supporOng  elements  (such  as  beams,  columns  etc.)  and  can  be  measured  horizontally  or  verOcally.  SPACING  is  is  generally  measured  center-­‐line  to  center-­‐line.    

Page 10: Logbook constructing environments

WEEK  4  E-­‐learning    

Floor  system  -­‐Concrete  systems:  Slabs  of  various  types  are  used  to  span  between  structural  supports  these  can  be  one-­‐way  or  two-­‐  way  spans.  -­‐Steel  systems:    •  Steel  framing  system  take  various  forms,  with  some  uOlising  heavy  gauge  STRUCTURAL  STEEL  members  and  others  using  light  gauge  steel  framing.  In  many  instances  a  combinaOon  of  member  types  and  materials  are  combined  depending  on  their  structural  funcOon.  

•  Steel  framing  system  someOmes  combined  with  concrete  slabs.  The  spanning  capabiliOes  of  the  parOcular  materials  help  to  determine  the  spacing  requirements  of  the  system  

-­‐Timber  System:  use  a  combinaOon  of  bearers  and  joists.  The  span  of  the  bearers  determines  the  spacing  of  the  piers  or  stumps  and  the  spacing  of  the  bearers  equals  the  span  of  the  joists.                                                              

steel Dmber

Page 11: Logbook constructing environments

WEEK  4  E-­‐learning     Material:  Concrete

A  common  concrete  mix  is    1  part  cement(Portland/lime):  2  parts  fine  aggregates(sand):  4  parts  coarse  aggregates(  crushed  rock):  0.4-­‐0.5  part  water    Concrete-­‐  process:  advantage  of  concrete  is  that  it  is  fluid  and  shapeless  before  it  hardens.  It  can  be  formed  into  any  shape.  Formwork:  the  term  used  for  the  temporary  support  or  moulds  used  to  hold  the  liquid  concrete  in  place  unOl  it  becomes  hard.  Formwork  can  be  built  at  the  building  site  or  in  a  factory  out  of  a  range  of  different  materials-­‐  Omber,  metal  plasOc,  form  ply  etc.  

Reinforcing  concrete  Concrete  is    strong  in  compression  but  weak  in  tension,  steel  reinforcement  in  the  form  of  MESH  or  BARS  is  added ProperOes:    

•  Hardness:  high.  •  Fragility:  low  •  DucOlity:  very  low  •  Flexibility/plasOcity:  low  •  Porosity/permeability:  medium  to  low  •  Density:  medium  to  high    •  ConducOvity:  poor  conductors  to  heat  and  electricity  •  Durability:  typically  very  durable  •  Reusability/recyclability:  medium  to  low  •  Sustainability:  non  renewable  but  long  lasOng  •  Cost:  generally  cost  effecOve    

Concrete  is  permeable  (not  completely  waterproof).  This  is  one  of  the  main  sources  of  problems  in  concrete.  If  the  steel  bars  are  too  close  to  the  surface  they  will  not  be  protected  from  moisture  and  oxidaOon.  This  will  cause  both  aestheOc  and  structural  degradaOon  of  the  concrete.  Another  common  cause  of  problems  is  poor  vibraOon  of  the  concrete  during  the  pouring  process.  Concrete  is  vibrated  to  get  rid  of  the  air  bubbles  that  get  caught  during  the  pouring  process.  These  bubbles  can  compromise  the  structural  performance  of  the  element  and  in  a  worst  case  scenario,  result  in  the  element  failing.

Page 12: Logbook constructing environments

WEEK  4  E-­‐learning    Concrete-­‐  In  Situ  &  Pre-­‐cast  

In  situ  concrete  is  any  concrete  element  that  has  been  poured  into  formwork  and  cured  on  the  building  site.  This  process  includes  the  fabricaOon  and  assemble  of  the  Formwork  placing  any  required  reinforcement.  The  pouring,  vibraDon  and  the  curing  of  the  concrete.  (limited  Ome)    Uses:  In  situ  concrete  in  a  great  many  applicaOons.  It  is  generally  used  for  structural  purposes.  Widely  used  in  fooOngs,  retaining  walls,  and  all  bespoke  structural  elements.  (someOmes  can  be  sprayed  on  using  a  pressure  hose-­‐shotcrete)    Joints:  1.  ConstrucOon  joints-­‐Used  to  divide  the  construcOon  into  smaller  and  more  manageable  secOons  of  work.  2.  Control  joins-­‐  required  to  absorb  the  expansions  and  contracOons  that  thermal  variaOons  cause  and  the  long  term  tendency  of  

concrete  to  shrink  over  Ome.  The  elongaOon/shrinkage  is  proporOonal  to  the  temperature  differenOal  the  material  coefficient  and  the  dimensions  of  the  piece.  

Both  construcOon  and  control  joints  are  potenOal  weak  points  and  must  ensure  that  be  detailed  appropriately,  especially  in  terms  of  water  and  moisture  control.    Pre-­‐cast  concrete  is  any  concrete  element  that  has  been  fabricated  in  a  controlled  environment  and  then  transported  to  site  for  installaOon.  This  is  much  more  standardised  that  avoids  many  of  the  quality  control  issues  associated  with  in  situ  concrete.  Pre-­‐cast  concrete  elements  also  allow  work  on  site  to  progress  at  a  much  faster  rate.  Uses:  retaining  walls,  walls  and  columns  Joints:  1.construcOon  joints-­‐  the  panel/  elemental  nature  of  pre-­‐cast  concrete  mean  that  joints  naturally  occur  when  one  precast  element  meets  another  2.  Structural  joints-­‐  the  type  and  performance  of  the  structural  connecOons  joining  the  precast  elements  to  each  other  and  to  other  parts  of  the  structure  are  criOcal  for  the  overall  performance  of  the  building.    CONSIDERATION:  limited  size  because  of  the  transportaOon  Hardly  to  change  on  site.  

Page 13: Logbook constructing environments

WEEK  4  E-­‐learning    

Page 14: Logbook constructing environments

Week  4  studio

•  List  the  types  of  informaOon  found  in  the  Otle  block  on  the  floor  plan  page:  scale/  consultants/  dates/descripOon/  document  control  status  

•  Why  might  these  informaOon  important:  scale  gave  us  the  idea  the  real  size  through  the  plan,  other  things  are  keep  the  informaOon  structured  and  easy  to  follow,  keep  every  documents  organized.  

•  What  type  of  informaOon  is  shown  in  this  floor  plan?:  scale,  dimensions,  consultants,  legend  •  Provide  an  example  of  the  dimensions  as  hey  appear  on  this  floor  plan?  What  units  are  used  for  the  dimensions?              Block  3  to  4  is  5235mm  •  What  is  the  purpose  of  the  legend?:  give  the  detail  informaOon  of  the  label  on  the  plan  •  Why  are  some  parts  of  the  drawing  annotated?  :  annotated  parts  are  referred  to  other  pages  for  details  •  How  are  windows  and  doors  idenOfied?  •  Floor  levels  are  noted  on  the  Otle  •  The  clouded  areas  are  showing  the    Different  materials  using  on  the  site  •  ElevaOons  showing  the  external  secOon  Of  the  building.  It  is  different  dimensions  view  Two  levels  shown  on  the  elevaOons,    •  New  informaOon  are  label  on  the  elevaOons.    •  SecOons  are  the  internal  look  of  the  building,  more  detailed  than  elevaOon,  more  realized  than  plan  •  Joints,  connecOons  are  most  detailed  

   

soil

Omber  

Page 15: Logbook constructing environments

WEEK  5  E-­‐learning    

COLUMNS  are  verOcal  structural  members  designed  to  transfer  axial  compressive  loads.  ALL  columns  are  considered  SLENDER  MEMBERS  and  for  axial  loads,  they  can  be  classified  as  either  the  SHORT  or  LONG.    SHORT  COLUMNS  are  shorter  (length)  and  thicker  (cross-­‐secOon).    LONG  COLUMNS  are  taller  (length)  and  slimmer  (cross-­‐secOon).    

 SHORT  COLUMNS  the  raOo  of  effecOve  column  length  to  the  smallest  cross  secOon  dimension  is  less  than  12:1.    SHORT  COLUMNS  will  be  structurally  adequate  if  the  load  applied  to  the  column  cross  secOon  does  not  exceed  the  compressive    strength  of  the  material.  Compressive  Strength  (Pa)  =  Load  (N)  /  area  (mm2)    SHORT  COLUMNS  become  shorter  when  a  compressive  load  is  applied  and  then  fail  by  CRUSHING  (shear)when  the  compressive  strength  is  exceeded  (either  by  applying  too  great  a  load  or  if  the  cross-­‐secOon  is  too  small).    

   LONG  COLUMNS  the  raOo  of  effecOve  column  length  to  the  smallest  cross  secOon  dimension  is  greater  than  12:1.    LONG  COLUMNS  become  unstable  and  fail  by  BUCKLING.  The  shape  of  the  column  cross-­‐secOon  determines  the  direcOon  of  the  buckling.    The  actual  length  of  LONG  COLUMNS  and  how  they  are  fixed  at  the  top  and  bo\om  of  the  columns  determines  how  they  will  buckle  and  how  much  load  the  column  can  carry.    The  EFFECTIVE  length  of  the  column  is  changed  because  of  the  different  fixing  methods.  The  effecOve  length  is  measured  between  the  points  of  CONTRAFLEXURE.              

             

Page 16: Logbook constructing environments

WEEK  5  E-­‐learning    Frame  system

Fixed  frame  is  a  rigid  frame  connected  to  its  supports  with  fixed  joints.  A  fixed  frame  is  more  resistant  to  deflecOon  than  a  hinged  frame  but  also  more  sensiOve  to  support  se\lements  and  thermal  expansion  and  contracOon    Hinged  frame  is  a  rigid  frame  connected  to  its  supports  with  pin  joins.  The  pin  joints  prevent  high  bending  stresses  from  developing  by  allowing  the  frame  to  rotate  as  a  unit  when  strained  by  support  se\lements,  and  to  flex  slightly  when  stressed  by  changes  in  temperature    Three  hinged  frame  is  a  structural  assembly  of  two  rigid  secOons  connected  to  each  other  and  to  its  supports  with  pin  joints.  While  more  sensiOve  to  deflecOon  than  either  the  fixed  or  hinged  frame,  the  three-­‐  hinged  frame  is  least  affected  by  support  se\lements  and  thermal  stresses.  The  three  pin  joints  also  permit  the  frame  to  be  analysed  as  a  staOcally  determinate  structure.

Page 17: Logbook constructing environments

WEEK  5  E-­‐learning    Material  Timber    

Grain  direcOon:  Strong  parallel  to  grain  and  sOff  parallel  to  grain.  Weak  perpendicular  to  grain.  How  to  remove  moisture  in  wood.  1.  Air  seasoning-­‐  cheap  but  slow-­‐  6  months  to  2  years  per  50  mm  thickness  2.  Kiln  seasoning-­‐  typically  20-­‐40  hours  to  dry  to  12%  3.  Solar  kiln  seasoning-­‐  less  expensive  to  run   Types  of  Dmber  SoP  wood:  In  Australia  common  sohwoods  include  all  conifer  species:  Radiata    pine/  cypress  pine/  hoop  pine/  Douglas  fir  Hard  wood:    naOve  Australian  hardwoods  include  all  eucalyptus  species:  Victorian  ash/  brown  box/  spo\ed  gum/  jarrah/  Tasmanian  oak  /balsa  wood

Green  sawing:    quarter  sawn-­‐  Growth  rings  parallel  to  short  edge  Advantages:  best  grain  shows  on  face  Good  wearing  surface  for  floors,  furniture  Radial  face  preferred  for  coaOngs  Lower  width  shrinkage  on  drying  Less  cupping  and  warp  than  other  cuts  Can  be  successfully  recondiOoned  Disadvantage:  slower  seasoning  Nailing  on  face  more  prone  to  splirng

Back  sawn-­‐  Rings  parallel  to  long  edge  of  piece  Advantages:  season  more  rapidly  Less  prone  to  splirng  when  nailing  Wide  secOons  possible  Few  knots  on  edge  Disadvantage:  shrink  more  across  width  when  drying  More  likely  to  warp  and  cup    collapsed  Omber  more  difficult  to  recondiOon  

Page 18: Logbook constructing environments

WEEK  5  E-­‐learning    Material  Timber    

Radial  sawn-­‐face  is  always  a  radial  cut  Advantages:  dimensional  stability  Less  prone  to  warping,  cupping  Less  wastage  in  milling  Disadvantages:  wedge  shaped  cross  secOon  More  difficult  to  detail  More  difficult  to  stack  

Timber  properOes  Hardness-­‐  medium  to  low  Fragility-­‐  medium  to  low  DucOlity-­‐  low  Flexibility/plasOcity-­‐  high  flexibility  and  medium  plasOcity  Porosity/permeability-­‐high  Density-­‐  extremely  varied  depending  on  Omber  type  ConducOvity-­‐  poor  conductor  of  heat  and  electricity  Durability/life  span-­‐  can  very  durable  varies  depending  on  type,  seasoning  and  finishing  and  fixing  Reusability/recyclability-­‐  very  high  Sustainability  and  carbon  footprint-­‐  very  low  embodied  energy  Cost-­‐  generally  cost  effecOve  

ConsideraOon:  knots-­‐  weak  points  and  cause  slope  of  grain

Durability-­‐water  related  damage  and  could  avoid  exposure  and  seal  against  moisture  movement  to  against  water.  Isolate  Dmber  from  insect  aQack  chemical  barriers/  physical  barriers  between  ground  and  Omber  Protect  Dmber  from  sunlight  and  heat  direct  sunlight  can  cause  excessive  drying.  Shrinkage  direct  sunlight  breaks  down  wood/  cellulose  light  colour  paints  are  best  

Page 19: Logbook constructing environments

WEEK  5  E-­‐learning    Material  Timber    

Engineered  Omber:  -­‐  LVL-­‐  laminated  veneer  lumber:  use  for  structural  (beams,  posts,  portal  frames)  -­‐  Glulam-­‐  glue  laminated  Omber:  use  for  structural  (beams,  posts,  portal  frames)  -­‐  CLT-­‐  cross  laminated  Omber:  use  for  structural  panels  (horizontal  and  verOcal)  -­‐  Plywood-­‐  made  by  gluing  and  pressing  thin  laminated  together  to  form  a  sheet:  use  for  structural  bracing/  structural  flooring/  

formworks/  joinery/  marine/  applicaOons  -­‐  MDF-­‐  Medium  density  fibreboard:    use  for  non  structural  applicaOons  -­‐  Chipboard&  strandboard  uses  as  part  of  structural  systems/  cladding  finish    

-­‐  Formed  into  I  beams,  box  beams,  Dmber  flanged  steel  web  joists  

Page 20: Logbook constructing environments

WEEK  5  E-­‐learning    

Wall  system  3  basic  form:    Structural  frames:    •  concrete  frames:  typically  use  a  grid  of  columns  with  concrete  beams  connecOng  the  columns  together  •  steel  frames:  typically  use  a  grid  of  steel  columns  connected  to  steel  girders  and  beams  •  Omber  frame:  typically  use  a  grid  of  Omber  posts  or  poles  connected  to  Omber  beams    Load  bearing  walls:  concrete:  can  be  in  situ  or  precast  /  reinforced  masonry:  core  filled  hollow  or  grout  filled  cavity  masonry  Solid  masonry:  single  or  mulOple  skins  joined  together  using  a  brick  or  with  metal  wall  Oles  Cavity  masonry:  double  skins,  be\er  thermal  performance,  be\er  water  proofing.  A  DAMP  PROOF  COURSE  AND  WEEP  HOLE  in  the  wall  are  indicators  that  the  wall  is  a  cavity  wall.    Stud  wall:    METAL  AND  TIMBER  STUD  FRAME  wall  use  smaller  secOon  of  framing  Omber  or  light  gauge  framing  steel  to  meet  the  structural  demands  of  the  construcOon.  The  smaller  secOons  mean  that  the  structural  members  are  repeated  at  smaller  intervals  and  require  restraining  along  their  lengths  with  rows  of  NOGGINGS  to  prevent  the  long  thin  member  from  BUCKLING.  BRICK  VENEER  CONSTRUCTION:  CombinaOons  of  1  skin  of  non-­‐structural  masonry  and  1  skin  of  structural  frame  wall  are  widely  used  in  the  construcOon  industry  

Page 21: Logbook constructing environments

Week  5  studio Using  a  variety  of  materials  (cardboard,  foam  blocks,  foam  core,  balsa,  corrugated  card,  glue  etc.  which  your  group  has  sourced  and  brought  to  the  studio  session)  construct  a  1:20  scale  model  of  the  STRUCTURAL  SYSTEM  of  your  assigned  part  of  the  Oval  Pavilion.  The  model  should  show  only  detail  about  the  structural  systems  and  should  be  built  on  a  rigid  base  (foam  core  or  similar).  The  detail  we  were  making  is  the  roof  truss  system.

base

Cover  of  the  roof

Model  truss  1

Joins  with  sOck  tapes  Three  idenOcal  truss  and  connected  by  a  Omber  frame.  The  thin  column  at  the  bo\om  provides  more  people  to  go,  and  be\er  sight  view  from  inside  and  outside.  

Page 22: Logbook constructing environments

Materials:  paper  box,  box  board,  balsa  wood,  Omber  sOpe,  knife,  stapes.

A  steel  framing  system  located  above  the  entry,  to  avoid  sunlight.  

Path  load

secOon

Page 23: Logbook constructing environments

WEEK  6  E-­‐learning    

Plate  structures  are  rigid,  planar,  usually  monolithic  structures that  disperse  applied  lads  in  a  mulOdirecOonal  pa\ern,  with  the  loads  generally  following  the  shortest  and  sOffest  routes  to  the  supports.  A  common  example  of  a  plate  structure  is  a  reinforced  concrete  slab.          A  plate  can  be  envisioned  as  a  series  of  adjacent  beam  strips  interconnected  conOnuously  along  their  lengths.  As  an  applied  load  is  transmi\ed  to  the  supports  through  bending  of  one  beam  strip,  the  load  is  distributed  over  the  enOre  plate  by  verOcal  shear  transmi\ed  from  the  deflected  strip  to  adjacent  strips.  The  bending  of  one  beam  strip  also  causes  twisOng  of  transverse  strips,  whose  torsional  resistance  increases  the  overall  sOffness  of  the  plate.  Therefore  while  bending  and  shear  transfer  an  applied  load  in  the  direcOon  of  the  loaded  beam  strip,  shear  and  twisOng  transfer  the  load  at  right  angles  to  the  loaded  strip.              Folded  plate  structures  are  composed  of  thin,  deep  elements  jointed  rigidly  along  their  boundaries  and  foming  sharp  angles  to  brace  each  other  against  lateral  buckling

Page 24: Logbook constructing environments

WEEK  6  E-­‐learning    

Roof  system:    flat  roof:  1  degree  to  3  degree  Pitched  and  sloping  roofs:>3  degree    Concrete  roof:  generally  flat  plates  of  reinforced  concrete.  The  top  surface  is  sloped  towards  points  and  the  enOre  roof  surface  finished  with  applied  waterproof  membrane.    Structural  steel  framed  roofs:  Flat  structural  steel  roofs  consist  of  a  combinaOon  of  primary  and  secondary  ROOF  BEAMS  for  heavier  roof  finishes  such  as  metal  deck/  concrete,  or  roof  beams  and  purlins  for  lighter  sheet  metal  roofing.  Sloping  structural  steel  roofs  consist  of  roof  beams  and  purlins  and  lighter  sheet  metal  roofing.  Portal  frames  consist  of  a  series  of  braced  rigid  frames  with  purlins  for  the  roof  and  girts  for  the  walls.  The  walls  and  roof  are  usually  finished  with  sheet  metal.    Trussed  roofs  Truss  roofs  are  framed  roofs  constructed  from  a  series  of  open  web  type  steel  or  Omber  elements.    Trusses  are  manufactured  from  steel  or  Omber  components,  fixed  together  to  form  efficient  elements  able  to  span  long  distances.  The  shape  and  material  of  the  structural  elements  is  ohen  determined  by  the  roofing  material  selected  and  the  funcOonal  requirements  of  the  roof.    

   

Page 25: Logbook constructing environments

WEEK  6  E-­‐learning    

Light  formed  roof:  Gable  roof  are  characterised  by  a  verOcal,  triangular  secOon  of  wall  at  one  or  both  ends  of  the  roof  The  roof  consists  of  common  rahers,  ridge  beams  and  ceiling  joists.  Where  the  roof  overhangs  the  gable  end  wall  outriggers  are  used.  Materials:  Omber,  cold  formed  steel  secOons

Hip  roof  are  characterised  by  a  verOcal,  trangular  secOon  of  wall  at  one  or  both  ends  of  the  roof.  The  roof  consists  of  common  rahers,  hip  rahers,  valley  rahers,  jack  rahers,  ridge  beams  and  ceiling  joists.  Materials:  Omber,  cold  formed  steel  secOons

Page 26: Logbook constructing environments

WEEK  6  E-­‐learning    Material  Metal    

Types    •  Ferrous:  iron  •  Non  ferrous:  all  other  metals,  generally  more  expensive  and  less  likely  to  react  with  air  •  Alloy:  CombinaOon  of  two  or  metals      

ProperOes:  •  Hardness:    varied.  •  Fragility:  low  •  DucOlity:  high  •  Flexibility/plasOcity:  medium  to  high  •  Porosity/permeability:  generally  impermeable  •  Density:  high  •  ConducOvity:  very  good  conductor  of  heat  and  electricity  •  Durability/life  span:  can  very  durable  •  Reusability/recyclability:  high  •  Sustainability  and  carbon  footprint:  very  high  embodied  energy  •  Cost:  generally  cost  effecOve  

Metal  will  react  with  other  metals  by  giving  up  or  taking  on  another  metal’s  ions.  

Page 27: Logbook constructing environments

WEEK  6  E-­‐learning    Material  Metal-­‐Iron    

Iron-­‐  disOncOve  properOes  Significant  and  important  magneOc  properOes/  very  reacOve  chemically/  good  compressive  strength    TYPES  &  USES    Wrought  iron:  used  from  circa  1000bc.  Wrought  iron  is  formed  when  iron  is  heated  and  hammered  into  the  desired  shape                                                        In  construcOon  it  was  widely  used  in  bars  for  windows  and  doors  and  for  decoraOve  elements.  SOll  used  tody  Cast  iron:    Cast  iron  is  formed  when  iron  is  melted  and  the  molten  metal  is  poured  into  moulds  to  cool.  As  part  of  this  process,  cast  iron  acquires  a  very  high  compressive  strength.                                          very  rarely  used  in  contemporary  construcOon  due  to  its  weight  and  bri\leness.    Iron  alloy-­‐  steel:  alloy  of  iron  and  carbon  being  the  primary    addiDonal  alloy  element.  ProperDes:  very  strong  and  resistant  to  fracture.  Transfers  heat  and  electricity.  Can  be  formed  into  many  different  shapes,  and  long  lasOng  and  resistant  to  wear.    Structural  steel  Framing-­‐  columns,  beams,  purlins,  stud  frames.  We  will  refer  to  different  steel  secOon  or  profiles  depending  on  the  shape  of  the  structural  element.  There  are  two  main  types.  Hot  rolled  steel-­‐  generally  used  as  primary  structural  elements-­‐  ohen  protected  from  rusOng  and  corroding  by  coaOngs  Cold  formed  steel-­‐  used  as  secondary  structure-­‐  protected  by  hot  dip  processes  Reinforcing  bars-­‐  used  in  conjuncOon  with  concrete  to  produce  reinforce  concrete.    Steel  sheeDng  Cladding  and  roofing-­‐  must  be  protected  from  weather  exposure  (paint,  enamelled  finishes,  galvanisaOon)    Stainless  steel  alloys  -­‐chromium  is  the  main  alloying  element,  milled  into  different  shapes,  used  harsh  environments  or  where  specific  inert  finishes  are  required  -­‐stainless  steel  is  very  rarely  used  as  primary  structure  due  to  cost        

Page 28: Logbook constructing environments

WEEK  6  E-­‐learning    Material  Metal-­‐others    

Aluminium-­‐  very  light  compared  to  other  metals,  non-­‐magneOc  and  non  sparking,  easily  formed,  machined  and  cast.  Uses:  extruded  secOons  are  common  for  window  frames  and  other  glazed  structures  such  as  balustrades/  handrails  Cast  door  handles  and  catches  for  window,  rolled  aluminium-­‐  cladding  panels,  heaOng  and  air  condiOoning  systems.    Copper-­‐  very  malleable  and  ducOle.  Good  conductor  of  heat  and  electricity.  Uses:  tradiOonally  used  as  roofing  material,  natural  weathering  causes  copper  to  develops  a  green  coloured  paOna  over  Ome.  It  is  also  widely  used  for  hot  and  cold  domesOc  water  and  heaOng  pipework  and  electrical  cabling.    Zinc-­‐  uses  in  construcOon:  plaOng  thin  layer  of  zinc  on  to  iron  or  steel  is  known  as  galvanising  and  helps  to  protect  the  iron  from  corrosion.  (roofing)  Zinc  is  also  used  on  its  own  as  a  cladding  material  for  both  roofs  and  walls      Lead-­‐  use  in  construcOon:  roofs,  cornices,  tank  linings  and  flashing  strips  for  waterproofing.  Soh  and  highly  malleable,  ducOle,  and  a  relaOvely  poor  conductor  of  electricity.    Tin-­‐  use  in  construcOon:  very  rare,  for  lining  lead  pipes  and  occasionally  as  a  protecOve  covering  for  iron  plates  and  for  small  gas  pipes/  tubing.  Tin  resists  disOlled,  sea,  and  soh  tap  water,  but  is  a\acked  by  strong  acids,  alkalis,  and  acid  salts.    Titanium-­‐  use  in  construcOon:  Used  in  strong  light  weight  alloys,  making  an  a\racOve  and  durable  cladding  material  though  it  is  ohen  prohibiOvely  expensive  High  strength  to  weight  raOo,  light  strong  easily  fabricated  metal  with  low  density.    Bronze  (copper  and  On)-­‐  use  in  construcOon:  bearings,  clips,  electrical  connector  and  springs.    Brass(copper  and  zinc)-­‐  use  in  construcOon:  in  elements  where  fricOon  is  required  such  locks,  gears,  screws,  valves.    Malleable  and  has  a  relaOvely  low  melOng  point  and  is  easy  to  cast  

Page 29: Logbook constructing environments

WEEK  6  STUDIO  

Present  and  learning  different  system  from  each  site.

Footscray  site:  current  finished  the  Omber  frame  wall,  and  almost  finished  the  roof  trusses.  Finished  the  ceilings.  Plywood  and  Omber  are  well  used  in  Kingston  and  Footscray  sites  which  are  residenOal  buildings.  The  Camberwell  site  was  a  3  floors  apartment  which  using  the  concrete  as  the  building  frame.  

Page 30: Logbook constructing environments

WEEK  7  E-­‐learning    

Arches  and  vaults    Arches  are  curved  structures  for  spanning  an  opening,  designed  to  support  a  verOcal  load  primarily  by  axial  compression.  They  transform  the  verOcal  forces  of  a  supported  load  into  inclined  components  and  transmit  them  to  abutments  on  either  side  of  the  archway.    Vaults  are  arched  structures  of  stone,  brick,  or  reinforced  concrete,  forming  a  ceiling  or  roof  over  a  hall,  room,  or  other  wholly  or  parOally  enclosed  space.  Because  a  vault  behaves  as  an  arch  extended  in  a  third  dimension,  the  longitudinal  supporOng  walls  must  be  bu\ressed  to  counteract  the  out  ward  thrusts  of  the  arching  acOon.  

Page 31: Logbook constructing environments

WEEK  7  E-­‐learning  Heat  and  moisture    

For  water  to  penetrate  into  a  building:  1.  An  opening  2.  Water  present  at  the  opening  3.  A  force  to  move  water  through  

the  opening  

For  prevent  water  penetraOng  into  a  building:  1.  Remove  openings  or  2.  Keep  water  away  from  the  

opening  3.  Neutralise  the  forces  that  move  

water  through  openings.

Page 32: Logbook constructing environments

WEEK  7  E-­‐learning  Heat  and  moisture    Openings  can  be:    

Planned  elements  such  as  windows,  doors,  skylights  etc.  Or  Unplanned  openings  in  the  building  fabric  created  by  -­‐poor  construcOon  workmanship  -­‐deterioraOon  of  materials  (over  a  period  of  Ome  or  through  incorrect  applicaOon  of  material)    Common  techniques  used  to  remove  openings  to  prevent  water  penetraOon  include  seal  the  opening  with  sealants  or  gaskets  Keep  water  from  openings  is  a  commonly  used  strategy  construcOon  detailing.  This  means  that  water  is  directed  away  from  any  potenOal  openings  in  the  building  by:  -­‐  Grading  roofs:  the  water  is  collected  in  gu\ers  which  then  discharge  the  water  to  downpipes  and  

stormwater  systems  -­‐  Overlapping  cladding  and  roofing  elements  (weatherboard  and  roof  Oles)  -­‐  Sloping  window  and  door  sills  and  roof/wall  flashings  -­‐  Sloping  the  ground  surface  away  from  the  walls  at  the  base  of  buildings  to  allow  any  water  to  

run  away  from  the  building  Neutralise  the  forces  (gravity,  surface  tension  and  capillary  acOon,  momentum,  and  air  pressure)  Gravity:  

 

Page 33: Logbook constructing environments

Neutralise  the  forces  (gravity,  surface  tension  and  capillary  acOon,  momentum,  and  air  pressure)  •  Gravity:  typically  use  slopes  and  overlaps  to  carry  water  away    •  Surface  tension:  use  a  drip  or  a  break  between  surface  to  prevent  water  clinging  to  the  underside  of  the  surface.(window  sill  

or  parapet  capping)  These  gaps  and  breaks  prevent  water  reaching  and  entering  openings  because  the  surface  tension  of  the  water  is  broken  at  the  drip/  gap  locaOon.  Instead,  the  capillary  acOon  movement  of  the  water  stops  and  the  water  is  released  in  drop  form  

WEEK  7  E-­‐learning  Heat  and  moisture    

Page 34: Logbook constructing environments

WEEK  7  E-­‐learning  Heat  and  moisture    

Neutralising  the  forces-­‐  momentum:  windblown  rain,  moisture  and  snow  can  move  through  simple  gaps,  the  complex  shape  slows  the  momentum  of  the  moisture  and  helps  to  deflect  the  water  away  from  the  gap  entry.

Neutralising  the  forces-­‐  air  pressure  Water  can  moved  through  a  complex  labyrinth  if  there  is  a  difference  in  aire  pressure  Water  pumped  from  the  HIGH  pressure  to  the  LOW  pressure.  Rain  screen  assemblies:  if  an  air  barrier  is  introduced  on  the  internal  side  of  the  labyrinth,  a  venOlated  and  drained  pressure  equalisaOon  chamber  is  created  and  the  water  is  no  longer  pumped  to  the  inside  

Page 35: Logbook constructing environments

WEEK  7  E-­‐learning  Heat  and  moisture    

Controlling  heat-­‐  conducOon:    Thermal  insulaDon  to  reduce  heat  conducOon  Thermal  breaks  made  from  low  conducOve  materials  like  rubbers  and  plasOcs  to  reduce  the  heat  transfer  from  outside  to  inside  when  using  highly  conducOve  materials  like  metals  Double  glazing  or  triple  glazing  so  that  the  air  spaces  between  glass  panes  reduces  the  flow  of  heat  through  the  glazed  elements.    Controlling  heat-­‐  radiaOon:  ReflecDve  surface:  such  as  low-­‐e  glass,  reflecOve  materials  to  reduce  building  elements  from  becoming  warm  Shading  system:  verandas,  eaves,  solar  shelves,  blinds,  screens  and  vegetaOon  to  prevent  radiaOon  striking  the  building  envelope.        Thermal  mass  materials:  masonry,  concrete,  water  bodies.

Page 36: Logbook constructing environments

WEEK  7  E-­‐learning  Materials  rubber  

ProperOes:  •  Hardness-­‐  harder  rubbers  resist  abrasion,  soh  rubbers  provide  be\er  seals  •  Fragility-­‐  low  •  DucOlity-­‐high.  Varied  in  cold  state  •  Flexibility/plasOcity-­‐high  flexibility,  plasOcity  and  elasOcity  •  Porosity/permeability-­‐  all  rubbers  are  considered  waterproof  •  Density-­‐  approx.  1.5  x  density  of  water  •  ConducOvity-­‐very  poor  conductors  of  heat  and  electricity  •  Durability/life  span-­‐  can  very  durable  •  Reusability/recyclability-­‐  high  •  Sustainability  and  carbon  footprint-­‐  embodied  energy  varies  greatly  between  natural  rubber  and  

syntheOc  rubbers  •  Cost  generally  cost  effecOve  

TYPES  AND  USES    Natural:    seals/  gaskets  and  control  joints/  flooring/  insulaOon/  hosing  and  piping    SyntheOc:  epdm/neoprene/  silicone

ConsideraOon:  weather  related  damage:  rubber  can  lose  their  properOes  when  exposed  to  wather  ProtecOon:  avoid  or  minimise  sun  exposure

Page 37: Logbook constructing environments

WEEK  7  E-­‐learning  Materials  plasOcs    

Type  and  uses  1.ThermoplasOc:  polyethelyne/  polymethyl  metharcylate/  polyvinyl  chloride/  polycarbonate  2.  Thermoserng  plasOcs:  only  shaped  once.  Melamine  formaldehyde  widely  used  for  finishing  surface/  polystyrene  mostly  used  in  insulaOon  panels  3.  elastomers-­‐  refer  to  separate  e  module:  epdm/neoprene/silicone      ProperOes  •  Hardness-­‐  medium  to  low  •  Fragility-­‐  low  to  medium  •  DucOlity  –high    •  Flexibility/  plasOcity-­‐  high  flexibility  and  plasOcity  •  Porosity/permeability-­‐  many  plasOcs  are  waterproof  •  Density-­‐  low    •  ConducOvity-­‐  very  poor  conductors  of  heat  and  electricity  •  Durability/life  span-­‐  can  very  durable  •  Reusability/recyclability-­‐  high  for  thermoplasOc  and  elastomers  •  Sustainability-­‐  embodied  energy  varies  greatly  between.  PlasOcs  are  petrochemical  derives  so  not  a  renewable  

resource    •  Cost-­‐  generally  cost  effecOve  

•  ConsideraOon:  weather  related  damage:  plasOcs  properOs  degrade  when  exposed  to  weather  and  ned  to  be  checked  and  maintained  

•  ProtecOon  and  management  Avoid  or  minimise  sun  exposure  some  plasOcs  have  very  high  expanision/contracOon  coefficient.  

   

Page 38: Logbook constructing environments

WEEK  7  E-­‐learning  Materials  paints    

Paints-­‐  main  purpose  is  to  protect  a  parOcular  element,  clear  paints  are  called  lacquers  or  varnishes  Components:  Binder-­‐  the  film-­‐forming  component  of  the  paint  (polyurethanes,  polyesters,  resins,  epoxy,  oils)  Diluent-­‐  dissolves  the  paint  and  adjusts  its  viscosity(alcohol,  ketones,  petroleum  disOllate,  esters)  Pigment-­‐  gives  the  paint  its  colour  and  opacity.  Can  be  natural  (clay,  talcs,  calcium  carbonate,  silicas)  or  syntheOc    Types:    1.oil  based    -­‐  used  prior  to  plasOc  paints(water  based)  -­‐  Very  good  high  gloss  finishes  can  be  achieved  -­‐  Not  water  soluble  2.  Water  based  -­‐  Most  common  today  -­‐  Durable  and  flexible  -­‐  Tools  and  brushes  can  be  cleaned  with  water.      ProperOes  Colour  consistency-­‐  the  colour  of  the  paint  should  resist  fading,  especially  when  ouside  in  ultra  violet  light  red  dyes  tend  to  be  less  stable  in  sunlight  Durability-­‐  paints  need  to  resist  chipping,  cracking  and  peeling.  Exterior  painted  surfaces  have  to  resist  the  effect  of  rain,  air  polluOon  and  the  ultra-­‐violet  light  in  sunlight.  Newer  paint  technologies  such  as  powder  coaOng  and  PVF2are  harder  and  more  durable.  Gloss-­‐surface  finishes  can  range  from  ma\  through  to  gloss  Flexibility/  plasOcity-­‐  water  based  latex  paint  is  more  flexible  than  oil  based  paint.

Page 39: Logbook constructing environments

WEEK  8  E-­‐learning  

Timber/aluminium/  steel  frames  

Page 40: Logbook constructing environments

WEEK  8  E-­‐learning  

Window  system

Page 41: Logbook constructing environments

WEEK  8  E-­‐learning  material  glass  

Formers  are  the  basic  ingredient  used  to  produce  glass.  Any  chemical  compound  that  can  be  melted  and  cooled  into  a  glass  is  a  former  Fluxes  help  formers  to  melt  at  lower  and  more  pracOcal  temperatures  Stabilizers  combine  with  formers  and  fluxes  to  keep  the  finished  glass  from  dissolving  or  crumbling  Former:  silica    fluxes:  soda  ash/potash/lithium/carbonate    stabilizers:  limestone/alumina/magnesia      ProperOes:  Porosity/permeability-­‐non-­‐porous/waterproof  Density-­‐medium  to  high  ConducOvity-­‐  transmits  heat  and  light  but  not  electricity  Hardness-­‐high  Fragility-­‐high  DucOlity-­‐  very  low  Flexibility/plasOcity-­‐very  high  flexibility  and  plasOcity  when  molten/low  to  very  low  when  cooled  Durability/life  span-­‐  typically  very  durable  Reusability/recyclability-­‐very  high  Sustainability  and  carbon  footprint-­‐  typically  high  embodied  energy  and  carbon  footprint  but  ease  of  recycling  Cost-­‐  generally  expensive  to  produce  and  transport    Types  and  manufacture  Flat  glass:  typically  sheets  of  clear  or  Onted,  float,  laminated,  tempered,  wired  etc.  Shaped  glass:  curved,  blocks,  channels,  tubes,  fibres  Clear  float  glass:  simplest  and  cheapest  glass  product  low  risk  low  cost  small  size  glazing  scenarios  Laminated  glass:  A  tough  plasOc  interlayer  improves  the  security  and  safety  of  the  glass  Tempered  glass:  produced  by  heaOng  annealed  glass  to  approximately  650  degree,  at  which  point  it  begins  to  sofen.  Using  in  highly  exposed  situaOons  (balustrades,  parOOons,  facades)  or  when  sizes  required  are  parOcularly  large    

Page 42: Logbook constructing environments

WEEK  8  studio  

Roofing  and  ceiling  and  insulaOon  detail  on  the  funcOon  room  south Detail  includes  roof  and  water  flushing  system  on  top.  Different  insulaOons  in  wall  and  ceilings  Glazing  Shadow  line  bead  and  joint  sealant  

Page 43: Logbook constructing environments

WEEK  9  E-­‐learning  

ConstrucOon  detailing:  movement  joints  Types:    expansion  joints:  conOnuous,  unobstructed  slots  constructed  between  two  parts  of  a  building  or  structure  permirng  thermal  or  moisture  expansion  to  occur  without  damage    to  either  part.  Control  joints  are  conOnuous  grooves  or  separaOons  formed  in  concrete  ground  slabs  and  concrete  masonry  walls  to  form  a  plane  of  weakness  and  thus  regulate  the  locaOon  and  amount  of  cracking  resulOng  from  drying  shrinkage,  thermal  stresses  or  structural  movement  IsolaDon  joints  divide  a  large  or  geometrically  complex  structure  into  secOons  so  that  differenOal  movement  or  se\lement  can  occur  between  the  parts.    

Page 44: Logbook constructing environments

WEEK  9  E-­‐learning  

Composite  materials  Monolithic  materials  are  a  single  material  or  materials  combined  so  that  components  are  indisOnguishable  Composite  materials  are  combined  in  such  a  way  that  the  individual  materials  remain  easily  disOnguishable    A  composite  is  formed  from  a    1.  CombinaOon  of  materials  which  differ  in  composiOon  or  form  2.  Remain  bonded  together  3.  Retain  their  idenOOes  and  properOes  4.  Act  together  to  provide  improved  specific  or  synergisOc  characterisOcs  not  obtainable  by  any  of  the  original  components  acOng  

alone  

Types:  fibrous:  products  contain  disconOnuous  or  conOnuous  fibres                            laminar:  sandwich  panels                            parOculate:  gravel  and  resins                            hybrid:  combinaOons  of  two  or  more  composite  types      

Page 45: Logbook constructing environments

FIBRE  REINFORCED  CEMENT  (FRC)    Made  from  cellulose  fibers,  portland  cement  sand  and  water  Common  forms-­‐  sheet  and  board  products  and  shaped  products  such  as  pipes,  roof  Oles  Common  use:  cladding  for  exterior  or  interior  walls  floor  panels  Benefits:  fiber  cement  building  materials  will  not  burn  are  resistant  to  permanent  water  and  termite  damage,  and  resistant  to  rorng  and  warping.  It  is  a  reasonably  inexpensive  material    FIBREGLASS  Made  from-­‐  flat  and  profiled  sheet  products  and  formed  products  Common  forms-­‐  flat  and  profiled  sheet  products  and  formed  products  Common  uses-­‐  transparent  or  translucent  roof/wall  cladding  and  for  preformed  shaped  products  such  as  water  thank,  baths,  swimming  pools  Benefits-­‐  fiberglass  materials  are  fire  resistant,  weatherproof,  relaOvely  light  weight  and  strong    Aluminum  sheet  composites  Made  from  aluminum  and  plasOc  Common  forms-­‐plasOc  core  of  phenolic  resin  lined  with  two  external  skins  of  thin  aluminum  sheet  Common  uses-­‐  as  a  feature  cladding  materials  Benefits-­‐  reduced  amounts  of  aluminum  are  required  and  lighter  weight  less  expensive      Timber  composites  

 

Page 46: Logbook constructing environments

Week  9  studio  site  visit  Probuild  construcOons-­‐  Swanstons  project  

This  is  a  large  mulO-­‐storey  apartment  complex  which  has  different  phase  of  the  work  taking  place  at  the  same  Ome.    Ssquare  po  you  will  see  structural  framing  (reinforced  concrete),  subsequent  work  on  walls,  services  and  so  on,  and  finishing  trades.    locaOon:    551  Swanstons  street  Carlton.  High  rise  building  with  31  floors,  20  apartments  per  floor  current  29  levels.  Colourful  façade  with  William  Barak’s  face  on  façade.    On  the  site:  pre-­‐  cast  columns,  pour  reinforced  concrete  for  each  level.    Steel  grid  for  pouring.  Structural  elements:  concrete  beams,  concrete  columns,  concrete  slabs.  Steel  frame    Materials:  concrete,  Omber,  steel,        

Page 47: Logbook constructing environments

Interior:  central  control  air  condiOoning  system,  grey  water  system  InsulaOon  for  sound  proof.  

Week  9  studio  site  visit  Probuild  construcOons-­‐  Swanstons  project  

bathroom VenOlaOon  above  the  bathroom  

Laundry  room  in  apartment,  giant  transparent  glazing  room  for  natural  light

Page 48: Logbook constructing environments

WEEK  10  E  LEARNING  

SelecOng  materials:    Health(IEQ)  chose  to  reduce  VOCs  (paints/sealers/adhesives/parOcleboard/carpets/  reduce  parOcles/dust)  Horizontal  shelves/floor  coverings/  loose  fiber  products  Green  cleaning  pracOces  vacuuming/chemicals    Source  &  waste  chose  renewable/  abundant  resources  agricultural  products/earth/Omber  Timber:  recycled/plantaOon/RFA  Waste:  reduce/reuse/recycle  and  minimize  use  of  composites  Eg.  Bamboo,  recycled  Omber..    Energy  chose  minimize  embodied  energy:  extracOon/manufacture/transport  opOmise  lighOng  General/task/switching  opOmize  appliances  Fridges/dishwashers/office  equipment      PolluOon  chose  minimized  waste,  choose  materials  that  don’t  contain  toxins  Choose  natural  materials  choose  organic  products    

Page 49: Logbook constructing environments

WEEK  10  E  LEARNING   Dynamic  loads:  applied  suddenly  to  a  structure,  ohen  with  rapid  changes  in  magnitude  and  point  of  applicaOon.  

Under  a  dynamic  load,  a  structure  develops  inerOal  forces  in  relaOon  to  its  mass  and  its  maximum  deformaOon  does  not  necessarily  correspond  to  the  maximum  magnitude  of  the  applied  force.  The  two  major  types  of  dynamic  loads  are  wind  loads  and  earthquake  loads.  Wind  loads  are  the  forces  exerted  by  the  kineOc  energy  of  a  moving  mass  of  air,  assumed  to  come  from  any  horizontal  direcOon.  The  structure,  components,  and  cladding  of  a  building  must  be  designed  to  resist  wind  induced  sliding,  uplih,  or  overturning.

Base  shear  is  distributed  to  each  horizontal  diaphragm  above  the  base  of  regular  structure  in  proporOon  to  the  floor  weight  at  each  level  and  its  distance  from  the  base    Any  lateral  load  applied  at  a  distance  above  grade  generates  an  overturning  moment  at  the  base  of  a  structure,  for  equilibrium    A  restoring  moment  is  provided  by  the  dead  load  of  a  structures  acOng  about  the  same  point  of  rotaOon  as  the  overturning  movement.

Page 50: Logbook constructing environments

WEEK  10  STUDIO  

IdenOfied  the  flushing  system  Some  of  the  details  are  not  well  performed  by  us.  

Page 51: Logbook constructing environments

WORKSHOP  05/05/2014  14:45-­‐16:15  

TWO  TIMBER  BEAMS  TWO  SHEETS  PLYWOOD  SAW  ,  HAMMER,  NAILS,  DRILL,  PENCIL    We  cut  two  small  block  out  of  one  beam,  and  place  them  between  two  beams,  and  nailed  two  square  plywood  on  each  side.  

Page 52: Logbook constructing environments

WORKSHOP  05/05/2014  14:45-­‐16:15  

tesOng

Group1  154  to  195  weight  370  kg  Plywood  branching  at  first,  finally    Timber  crack  at  the  nailed  point.  Placed  plywood  verOcally  make  it  stronger  

Group2  120  to  153  weight  180kg  Bo\om  beam  start  to  branching  all  the  loads  run  to  two  ends  of  the  beam,  finally  the  bo\om  one  could  not  force  the  tension  and  break  at  nailed  point  Same  plywood  trick  as  first  one,  however  the  to  blocks  could  place  further  apart  

Page 53: Logbook constructing environments

WORKSHOP  05/05/2014  14:45-­‐16:15  

Group3  have  six  blocks  in  between,  finally  crack  along    nailed  and  block  placed  places.  Using  blocks  doing  load  pathing  128  to  196  weight  340  kg

Group4  two  beams  are  bonded  and  plywood  doing  tension  at  the  bo\om  196  to  266  weight  480  kg

In  limited  Ome  could  not  nailed  too  much  nail  on  the  beam.  So  that  before  doing  any  acOon,  need  to  plan  how  to  set  the  advantage  feature  of  both  elements  could  work  together.    Timber  are  strong  but  almost  all  of  them  are  have  joints  which  is  a  weak  point  on.  And  plywood  is  only  very  strong  in  one  direcOon.