literature - fau

14
I E F C O D R I L A I N R D N X A E A E S I I C M L M V A A I A D R E L G E Erlangen-Nürnberg Friedrich-Alexander-Universität I E F C O D R I L A I N R D N X A E A E S I I C M L M V A A I A D R E L G E Astrophysical Radiation Processes Jörn Wilms http://pulsar.sternwarte.uni-erlangen.de/wilms/teach/radproc/ Sommersemester 2008 Büro: Dr. Karl Remeis-Sternwarte, Bamberg Tel.: (0951) 95222-13 Email: [email protected] I E F C O D R I L A I N R D N X A E A E S I I C M L M V A A I A D R E L G E 1–1 Introduction I E F C O D R I L A I N R D N X A E A E S I I C M L M V A A I A D R E L G E 1–2 Introduction 1 Schedule Introduction 14.04. Introduction, Multiwavelength Astrophysics 21.04. Radiation and Radiative Transfer 28.04. Black Body Radiation Classical Radiation Theory 05.05. Radiation from Moving Charges 12.05. No lecture – Pentacost 19.05. Bremsstrahlung 26.05. Synchrotron Radiation 02.06. Comptonization 09.06. Pair Production 16.06. Radiation from Nuclei Atomic (Quantum-Mechanical) Processes 23.06. Atomic Structure 30.06. Line Diagnostics 07.07. Molecular Radiation 14.07. No lecture (conference) I E F C O D R I L A I N R D N X A E A E S I I C M L M V A A I A D R E L G E 1–3 Introduction 2 Literature RYBICKI , G.B. & LIGHTMAN, A.P., 1979, Radiative Processes in Astrophysics, New York: Wiley, $116 A “must buy”, although now very expensive (I got it for $50). Standard text of the field, in some areas getting outdated, though – get it from amazon.com, not amazon.de PADMANABHAN, T., 2000, Theoretical Astrophysics: Volume 1: Astrophysical Processes, Cambridge: Cambridge Univ. Press, 65.00 C Introduction to the physics of astrophysics. Short, concise, great. PADMANABHAN, T., 2006, An Invitation to Astrophysics, New Jersey: World Scientific, $36.00 A beautifully written overview of the major physical processes relevant for astrophysics (not only graviation).

Upload: others

Post on 04-Oct-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Literature - FAU

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

Erlangen−Nürnberg

Friedrich−Alexander−Universität

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

Ast

roph

ysic

alR

adia

tion

Pro

cess

es

Jörn

Wilm

shttp://pulsar.sternwarte.uni-erlangen.de/wilms/teach/radproc/

Som

mer

sem

este

r20

08

Bür

o:D

r.K

arlR

emei

s-S

tern

war

te,B

ambe

rg

Tel.:

(095

1)95

222-

13

Em

ail:[email protected]

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

1–1

Intr

oduc

tion

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

1–2

Intr

oduc

tion

1

Sch

edul

e

Intr

oduc

tion

14.0

4.In

trod

uctio

n,M

ultiw

avel

engt

hA

stro

phys

ics

21.0

4.R

adia

tion

and

Rad

iativ

eTr

ansf

er

28.0

4.B

lack

Bod

yR

adia

tion

Cla

ssic

alR

adia

tion

The

ory

05.0

5.R

adia

tion

from

Mov

ing

Cha

rges

12.0

5.N

ole

ctur

e–

Pen

taco

st

19.0

5.B

rem

sstr

ahlu

ng

26.0

5.S

ynch

rotr

onR

adia

tion

02.0

6.C

ompt

oniz

atio

n

09.0

6.P

air

Pro

duct

ion

16.0

6.R

adia

tion

from

Nuc

lei

Ato

mic

(Qua

ntum

-Mec

hani

cal)

Pro

cess

es

23.0

6.A

tom

icS

truc

ture

30.0

6.Li

neD

iagn

ostic

s

07.0

7.M

olec

ular

Rad

iatio

n

14.0

7.N

ole

ctur

e(c

onfe

renc

e)

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

1–3

Intr

oduc

tion

2

Lite

ratu

re

RY

BIC

KI,

G.B

.&

LIG

HT

MA

N,

A.P

.,19

79,R

adia

tive

Pro

cess

esin

Ast

roph

ysic

s,

New

York

:W

iley,

$116

A“m

ustb

uy”,

alth

ough

now

very

expe

nsiv

e(I

goti

tfor

$50)

.S

tand

ard

text

ofth

efie

ld,i

nso

me

area

sge

tting

outd

ated

,tho

ugh

–ge

titf

rom

amaz

on.c

om,n

otam

azon

.de

PA

DM

AN

AB

HA

N,

T.,2

000,

The

oret

ical

Ast

roph

ysic

s:V

olum

e1:

Ast

roph

ysic

al

Pro

cess

es,C

ambr

idge

:C

ambr

idge

Uni

v.P

ress

,65.

00C

Intr

oduc

tion

toth

eph

ysic

sof

astr

ophy

sics

.S

hort

,con

cise

,gre

at.

PA

DM

AN

AB

HA

N,

T.,2

006,

An

Invi

tatio

nto

Ast

roph

ysic

s,N

ewJe

rsey

:W

orld

Sci

entifi

c,$3

6.00

Abe

autif

ully

writ

ten

over

view

ofth

em

ajor

phys

ical

proc

esse

sre

leva

ntfo

ras

trop

hysi

cs(n

ot

only

grav

iatio

n).

Page 2: Literature - FAU

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

1–4

Intr

oduc

tion

3

Lite

ratu

re

LO

NG

AIR

,M

.S.,

1992

,Hig

hE

nerg

yA

stro

phys

ics,

Vol

.1:

Par

ticle

s,P

hoto

ns,

and

thei

rD

etec

tion,

Cam

brid

ge:

Cam

brid

geU

niv.

Pre

ss,∼

50C

Goo

din

trod

uctio

nto

high

ener

gyas

trop

hysi

cs,t

he1st

volu

me

deal

sex

tens

ivel

yw

ithhi

gh

ener

gypr

ocss

es.

Rec

omm

ende

d.U

nfor

tuna

tely

,eve

ryth

ing

isin

SIu

nits

.

SH

U,

F.H

.,19

91,T

heP

hysi

csof

Ast

roph

ysic

s,I.

Rad

iatio

n,M

illV

alle

y:

Uni

vers

ityS

cien

ceB

ooks

,70.

00C

Goo

din

trod

uctio

nto

radi

atio

npr

oces

ses,

som

eim

port

anta

reas

are

mis

sing

,tho

ugh.

Not

as

unde

rsta

ndab

leas

Ryb

icki

&Li

ghtm

an.

LA

NG

,K

.R.,

1999

,Ast

roph

ysic

alF

orm

ulae

,3rd

editi

on,2

Vol

s,H

eide

lber

g:

Spr

inge

r,2×

107

CC

olle

ctio

nof

1000

sof

form

ulae

nece

ssar

yfo

ras

trop

hysi

calr

esea

rch,

with

exha

ustiv

e

refe

renc

esto

the

orig

inal

liter

atur

e.

CO

WL

EY,

C.R

.,19

95,A

nIn

trod

uctio

nto

Cos

moc

hem

istr

y,C

ambr

idge

:

Cam

brid

geU

niv.

Pre

ss,$

37P

ract

ical

sum

mar

yof

atom

ican

dm

olec

ular

proc

esse

s.

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

1–5

Intr

oduc

tion

4

Lite

ratu

re

Goo

dre

fere

nces

onth

eW

WW

onra

diat

ion

proc

esse

sin

clud

e

Ern

ieS

eaqu

ist,

Uni

vers

ityof

Toro

nto,

AS

T14

40F

:Rad

iatio

nP

roce

sses

Lect

ure

note

son

anad

vanc

edle

ctur

eon

astr

ophy

sica

lrad

iatio

npr

oces

ses,

appr

oxim

atel

yat

the

leve

loft

his

lect

ure,

avai

labl

eat

http://www.astro.utoronto.ca/~seaquist/radiation/notes.html.

Juri

Pou

tane

n,U

nive

rsity

ofO

ulu,

Rad

iativ

eP

roce

sses

inA

stro

phys

ics

2006

Mor

efo

rmal

than

this

cour

se,g

ood

intr

oduc

tion

onre

lativ

istic

mec

hani

sms,

whi

chw

ew

ill

igno

refo

rtim

ere

ason

s,av

aila

ble

athttp://cc.oulu.fi/~jpoutane/teaching/rad06.html.

Jelle

Kaa

stra

etal

.,T

herm

alR

adia

tion

Pro

cess

es,S

pace

Sci

.Rev

.,su

bmitt

edW

ellw

ritte

nov

ervi

ewof

the

atom

icpr

oces

ses

whi

char

ere

leva

ntfo

rth

eco

mpu

tatio

nof

phot

oion

ized

plas

mas

(an

area

whi

chw

ew

illno

tbe

able

todi

scus

sin

deta

ildu

eto

time

reas

ons)

;ava

ilabl

eat

http://arxiv.org/abs/0801.1011.

shor

ter

high

erlo

wer

Wav

elen

gth

in m

eter

s

Typ

ical

siz

eof

a w

ave

Nam

e of

wav

eban

d

Ter

rest

rial

Sou

rces

long

er

Fie

ldB

aseb

all

Soc

cer

Hou

se

Pho

ton

ener

gy[e

V]

[Hz]

Fre

quen

cy

cell

bact

eria

viru

spr

otei

nw

ater

mol

ecul

e

AM

radi

o

hfca

vity

FM

radi

o

Mic

row

ave

Ove

nR

adar

Peo

ple

Ligh

tB

ulb

The

ALS

X−

Ray

Mac

hine

sRad

ioac

tive

Ele

men

ts

Rad

io W

aves

Mic

row

aves

Infr

ared

Ultr

avio

let

Gam

ma−

Ray

s

Har

d X

−R

ays

Sof

t X−

Ray

s

1010

510

−9

1010

−7

10−

610

−5

10−

410

−3

10−

210

−1

100

101

102

103

104

6−

8

106

107

108

109

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

10−

910

310

210

110

010

−1

10−

210

−3

10−

410

−5

10−

610

−7

10−

810

10−

1110

−12

−10

Visual

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

1–7

Mul

tiwav

elen

gth

Ast

roph

ysic

s2

Ele

ctro

mag

netic

Spe

ctru

m,I

I

As

we

allk

now

,lig

htca

nbe

char

acte

rized

by

Wav

elen

gth

:λ,m

easu

red

inm

,mm

,cm

,nm

,Å.

Fre

qu

ency

:ν,m

easu

red

inH

z,M

Hz.

En

erg

y:E

,mea

sure

din

J,er

g,R

ydbe

rgs,

eV,k

eV,M

eV,G

eV.

Tem

per

atu

re:T

,mea

sure

din

K.

The

sequ

antit

ies

are

rela

ted:

λν

=c

E=

T=

E/k

(1.1

)

whe

rec

=29

9792

458

ms−

1∼

2.99

1010

cms−

1(1

.2)

h=

6.62

6069

3(11

10−

34J

s∼

6.62

10−

27er

gs

(1.3

)

k=

1.38

0650

5(24

10−

23J

K−

1∼

1.38

×10

−16

erg

K−

1(1

.4)

Con

stan

tsar

e20

02C

OD

ATA

valu

es,http://physics.nist.gov/cuu/Constants/index.html

unce

rtai

nty

is1σ

inun

itsof

last

digi

tsho

wn.

Page 3: Literature - FAU

1–7

Con

vers

ion

tabl

e(c

ourt

esy

Eur

eka

Sci

entifi

c,www.eurekasci.com

):

From

⇓To

=⇒

λ[Å

]λ[µ

m]

λ[c

m]

ν[H

z]E

[keV

]E

[erg

]

λ[Å

]1

10−

10−

1018

/λ12

.4/λ

10−

8/λ

λ[µ

m]

104λ

110

−4λ

1014

/λ1.

24×

10−

3/λ

10−

12/λ

λ[c

m]

108λ

104λ

13×

1010

/λ1.

24×

10−

7/λ

10−

16/λ

ν[H

z]3×

1018

/ν3×

1014

/ν3×

1010

/ν1

4.14

×10

−18

ν6.

63×

10−

27ν

E[k

eV]

12.4

/E1.

24×

10−

3/E

1.24

×10

−7/E

2.42

×10

17E

11.

60×

10−

9E

E[e

rg]

10−

8/E

10−

12/E

10−

16/E

1.51

×10

26E

6.24

×10

8E

1

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

1–8

Mul

tiwav

elen

gth

Ast

roph

ysic

s3

Why

Mul

tiwav

elen

gth

Ast

rono

my?

,I

Str

uctu

reof

Act

ive

Gal

actic

Nuc

lei(

AG

N):

•su

perm

assi

vebl

ack

hole

(107

M⊙

)

•ac

cret

ion

disk

(M∼

1..

.2M

⊙yr

−1)

•la

rge

lum

inos

ity(L

∼10

10L⊙

)

•S

chw

arzs

child

radi

us2G

M/c

2∼

1A

U

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

1–8

Mul

tiwav

elen

gth

Ast

roph

ysic

s4

Why

Mul

tiwav

elen

gth

Ast

rono

my?

,II

Str

uctu

reof

Act

ive

Gal

actic

Nuc

lei(

AG

N):

•su

perm

assi

vebl

ack

hole

(107

M⊙

)

•ac

cret

ion

disk

(M∼

1..

.2M

⊙yr

−1)

•la

rge

lum

inos

ity(L

∼10

10L⊙

)

•S

chw

arzs

child

radi

us2G

M/c

2∼

1A

U

•of

ten

rela

tivis

ticje

ts,w

here

mat

eria

lis

acce

lera

ted

toth

esp

eed

oflig

ht

AG

Nw

ithje

ts:

quas

ars,

blaz

ars.

..

AG

Nw

ithou

tje

ts:

Sey

fert

gala

xies

Inth

efo

llow

ing

asan

exam

ple:

Cen

taur

usA

(NG

C51

28)

•on

eof

the

brig

htes

trad

io

sour

ces

inth

esk

y

•di

stan

ce:

11m

illio

nlig

htye

ars

•gi

ante

llipt

ical

gala

xy(m

ore

prop

erly

:S

0),m

erge

dw

ith

spira

lgal

axy

abou

t100

mill

ion

year

sag

o,re

mna

ntof

the

spira

lsee

nas

dust

lane

.

AG

Nar

eex

cept

iona

llygo

odex

ampl

esfo

rth

eim

port

ance

ofm

ulti-

wav

elen

gth

astr

onom

y.

Page 4: Literature - FAU

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

1–10

Mul

tiwav

elen

gth

Ast

roph

ysic

s6

Cen

taur

usA

Cen

A:V

LTK

ueye

n+F

OR

S2,

cour

tesy

ES

O

Opt

ical

:

The

rmal

emis

sion

from

star

s

and

gas,

i.e.,

brem

sstr

ahlu

ng

(fre

e-fr

eera

diat

ion)

,lin

e

emis

sion

,dus

tsca

tterin

g,..

.)

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

1–11

Mul

tiwav

elen

gth

Ast

roph

ysic

s7

Cen

taur

usA

2MA

SS

,cou

rtes

yIP

AC

,Uni

v.M

assa

chus

etts

Nea

rIn

frar

ed:

The

rmal

emis

sion

,mai

nly

from

star

s,si

mila

rto

optic

al,b

utdu

stle

ss

appa

rent

=⇒

Opa

city

ofdu

stin

IRis

smal

ler.

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

1–12

Mul

tiwav

elen

gth

Ast

roph

ysic

s8

Cen

taur

usA

Spi

tzer

Spa

ceTe

lesc

ope,

cour

tesy

Cal

tech

/NA

SA

Mid

Infr

ared

(3.6

–8µ

m):

The

rmal

emis

sion

from

dust

star

tsto

dom

inat

e,

cont

ribut

ion

of

ther

mal

emis

sion

from

star

sst

ill

sign

ifica

nt.

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

1–13

Mul

tiwav

elen

gth

Ast

roph

ysic

s9

Cen

taur

usA

ISO

,cou

rtes

yE

SA

-ES

TE

C

Far

Infr

ared

(7µ

m):

The

rmal

emis

sion

from

dust

Res

olut

ion

ofth

isim

age

isw

orse

than

the

prev

ious

Spi

tzer

tele

scop

eim

age.

Page 5: Literature - FAU

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

1–14

Mul

tiwav

elen

gth

Ast

roph

ysic

s10

Cen

taur

usA

VLA

,cou

rtes

yN

RA

O

Rad

io(6

cm):

Syn

chro

tron

radi

atio

nfr

omje

ts

and

blac

kho

le.

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

1–14

Mul

tiwav

elen

gth

Ast

roph

ysic

s11

Cen

taur

usA

VLA

/opt

ical

,cou

rtes

yS

TS

cI

Rad

io(6

cm):

Syn

chro

tron

radi

atio

nfr

omje

ts

and

blac

kho

le.

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

1–15

Mul

tiwav

elen

gth

Ast

roph

ysic

s12

Cen

taur

usA

GA

LEX

,cou

rtes

yN

AS

A/C

alte

ch

UV

(30–

300

nm):

The

rmal

UV

emis

sion

from

youn

g

star

s(in

NE

corn

er)

Pho

toab

sorp

tion

and

abso

rptio

n

bydu

stby

dust

lane

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

1–16

Mul

tiwav

elen

gth

Ast

roph

ysic

s13

Cen

taur

usA

Cha

ndra

,cou

rtes

yC

XC

X-r

ays

(2–1

0ke

V):

•S

ynch

rotr

onra

diat

ion

from

jet,

•C

ompt

oniz

edph

oton

sfr

om

blac

kho

le,

•ot

her

emis

sion

from

X-r

ay

bina

ries

and

back

grou

ndA

GN

Page 6: Literature - FAU

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

1–16

Mul

tiwav

elen

gth

Ast

roph

ysic

s14

Cen

taur

usA

Cha

ndra

,cou

rtes

yC

XC

X-r

ays

(2–1

0ke

V):

•S

ynch

rotr

onra

diat

ion

from

jet,

•C

ompt

oniz

edph

oton

sfr

om

blac

kho

le,

•ot

her

emis

sion

from

X-r

ay

bina

ries

and

back

grou

ndA

GN

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

1–17

Mul

tiwav

elen

gth

Ast

roph

ysic

s15

Cen

taur

usA

CG

RO

-CO

MP

TE

L,co

urte

syM

PE

/H.S

tein

le

γ-r

ays

(1–3

0M

eV):

Com

pton

ized

sync

hrot

ron

radi

atio

n

from

jeta

nd/o

rbl

ack

hole

.

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

1–18

Mul

tiwav

elen

gth

Ast

roph

ysic

s16

Cen

taur

usA

Ste

inle

(200

6,C

hin.

J.A

stro

n.A

stro

phys

.6(S

uppl

.1),

106)

Bro

ad-b

and

spec

trum

ofC

enA

:Spe

ctra

l

Ene

rgy

Dis

trib

utio

n

(SE

D)νf ν

isfla

t

=⇒

sim

ilar

ener

gy

outp

utat

all

wav

eban

ds!

Sho

wn

isa

νf ν

-plo

t,w

here

ν:

freq

uenc

y,f ν

:flu

xde

nsity

atfr

eque

ncy

ν(u

nits

off ν

are

erg

s−1

cm−

2H

z−1).

Sin

ce∫

ν 2 ν 1νf ν

=∫

lnν 2

lnν 1

f νd

lnν

plot

ting

νf ν

ina

log-

log-

plot

give

sa

mea

sure

ofth

een

ergy

emitt

edpe

rfr

eque

ncy

deca

de.

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–1

Rad

iatio

nan

dR

adia

tive

Tran

sfer

Page 7: Literature - FAU

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–2

Ele

ctro

mag

netic

Wav

es1

Max

wel

l’sE

quat

ions

Incl

assi

cale

lect

rody

nam

ics,

elec

trom

agne

tism

isde

scrib

edby

Max

wel

l’seq

uatio

ns:

Cou

lom

b’s

law

:

∇·E

=

[

1

4πǫ 0

]

4πρ

(2.1

)

Law

ofIn

duct

ion

(Far

aday

):

∇×

E=−

[c]1 c

∂B ∂t

(2.2

)

Non

exis

tenc

eof

Mag

netic

Mon

opol

es(G

ilber

t):

∇·B

=0

(2.3

)

Am

père

’sla

w:

∇×

B=

[

cµ0

]

4π cj

+

[

1 c

]

1 c

∂E ∂t

(2.4

)

Whe

recu

rren

t,j

,and

char

gede

nsity

,ρ,a

reco

uple

dby

the

equa

tion

ofco

ntin

uity

,

∂ρ

∂t

+∇

·j

=0

(2.5

)

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–3

Ele

ctro

mag

netic

Wav

es2

EM

Wav

es,I

One

ofth

em

osti

mpo

rtan

tsol

utio

nsto

Max

wel

l’seq

uatio

nsis

the

elec

trom

agne

ticw

ave

in

vacu

um.

Vac

uum

mea

ns:

ρ=

0an

dj

=0

(2.6

)

Incg

s(“

Gau

ssia

n”)

units

,Max

wel

l’seq

uatio

nsth

enbe

com

e

∇·E

=0

∇×

E=−

1 c

∂B ∂t

∇·B

=0

∇×

B=

1 c

∂E ∂t

(2.7

)

As

show

non

the

hand

out,

thes

ear

eeq

uiva

lent

toth

eva

cuum

wav

eeq

uatio

ns:

∂2E

∂t2

−c2∇

2E

=0

and

∂2B

∂t2

−c2∇

2B

=0

(2.8

)

The

equa

tions

are

hom

ogen

eous

wav

eeq

uatio

ns.

1.N

ote

that

Max

wel

lfor

∂E

/∂t

and

∂B

/∂t

impl

yE

⊥B

.

2.G

ener

also

lutio

nsus

ually

obta

ined

usin

gF

ourie

rtr

ansf

orm

s.

2–3

Tode

rive

the

wav

eeq

uatio

ns,

look

atth

eM

axw

elle

quat

ions

inva

cuum

:

∇·E

=0

∇×

E=

−1 c

∂B ∂t

∇·B

=0

∇×

B=

1 c

∂E ∂t

(2.7

)

The

refo

re

∇×

(∇×

E)=

−1 c

∂ ∂t(∇

×B

)=

−1 c2

∂2E

∂t2

(2.9

)

But

∇×

(∇×

E)

=∇

(∇·E

)−

∇2E

(2.1

0)

and

furt

herm

ore∇

·E

=0

inva

cuum

.T

here

fore

∂2E

∂t2

−c2∇

2E

=0

(2.8

)

The

wav

eeq

uatio

nfo

rB

isob

tain

edin

asi

mila

rm

anne

r(s

ince

Max

wel

l’seq

uatio

nsar

ein

varia

ntw

ithre

spec

tto

the

chan

geE

→B

and

B→

−E

).

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–4

Ele

ctro

mag

netic

Wav

es3

EM

Wav

es,I

I

One

poss

ible

solu

tion

toth

ew

ave

equa

tions

∇2E

=1 c2

∂2E

∂t2

and

∇2B

=1 c2

∂2B

∂t2

(2.8

)

isgi

ven

by E(r

,t)

=a

1E

0ei(

ωt−

k·r

)an

dB

(r,t

)=

a2B

0ei(

ωt−

k·r

)(2

.11)

whe

rea

1,2

are

unit

vect

ors

spec

ifyin

gth

edi

rect

ions

ofE

and

B,a

ndth

ew

ave

vect

or,k

isre

late

dto

the

freq

uenc

y,ν

,and

wav

elen

gth,

λ,v

ia

|k|=

2π λ=

2πν c

=ω c

(2.1

2)

The

solu

tions

toE

q.2.

8ar

epl

ane

wav

estr

avel

ing

inth

edi

rect

ion

ofk

.

See

hand

outf

orpr

oof.

Page 8: Literature - FAU

2–4

Plu

ggin

gth

ew

ave

equa

tions

into

Max

wel

l’seq

uatio

nsal

low

sus

toun

ders

tand

afe

wfu

rthe

rpr

oper

ties

ofel

ectr

omag

netic

radi

atio

n,w

hich

will

beof

grea

tus

ela

ter

on.

Inor

der

tom

ake

prog

ress

,w

ene

edth

efo

llow

ing

vect

orid

entit

ies:

∇·(

fa)=

f(∇

·a)+

(∇f)·a

=(∇

f)·a

(2.1

3)

∇×

(fa)=

f(∇

×a)+

(∇f)×

a=

(∇f)×

a(2

.14)

whe

reth

e2nd

equa

tion

hold

sfo

ra

=co

nst..

For

apl

ane

wav

e,th

eab

ove

equa

tions

give

(not

eth

at∇

wor

kson

ron

ly!)

∇·E

=∇

(

E0ei(

ωt−

k·r))

·a1

=−

iE0ei(

ωt−

k·r) (

k·a

1)

(2.1

5)

But

inva

cuum

,ρ=

0an

dth

eref

ore

Cou

lom

b’s

law

(Eq.

(2.1

))gi

ves

∇·E

=0

(2.1

6)

and

ther

efor

e

k·a

1=

0(2

.17)

Asi

mila

rca

lcul

atio

nfo

rB

show

sth

at

k·a

2=

0(2

.18)

Fur

ther

mor

e,

∇×

E=

∇(

E0ei(

ωt−

k·r))

×a

1=

−iE

0ei(

ωt−

r)(k

×a

1)

(2.1

9)

But

beca

use

ofFa

rada

y’s

law

ofin

duct

ion

(Eq.

2.2)

,

∇×

E=

−1 c

∂B ∂t

=−

1 c

∂ ∂t

(

a2B

0ei(

ωt−

k·r))

=−

iω cB

0ei(

ωt−

k·r) a

2(2

.20)

and

ther

efor

e

E0(k

×a

1)

=ω c

B0a

2(2

.21)

and

anal

oguo

usly

B0(k

×a

2)

=−

ω cB

0a

1(2

.22)

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–5

Ele

ctro

mag

netic

Wav

es4

EM

Wav

es,I

II

As

show

non

the

hand

out:

•a

1,a

2,a

ndk

are

orth

ogon

alto

each

othe

r

B

k

E

•E

0=

ωB

0/k

can

d

B0

=ωE

0/k

c,su

chth

at

E0

=(

ω kc)

2

E0

(2.2

3)

or

ω2

=c2

k2

(2.2

4)

But

sinc

ek

=2π

/λ=

2πν/c

λν

=c

(2.2

5)

•B

ecau

seof

the

abov

e,in

Gau

ssia

nun

its E0

=B

0(2

.26)

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–6

Ele

ctro

mag

netic

Wav

es5

Con

tinui

tyan

dLo

rent

zF

orce

Ass

ume

allc

harg

esar

epo

intc

harg

es,t

hen

ρ(x

,t)

=∑

i

q iδ(

x−

xi(t)

)(2

.27)

j(x

,t)

=∑

i

q iv

iδ(x

−x

i(t)

)(2

.28)

Pos

ition

sx

i(t)

are

com

pute

dfr

om

dx

i

dt

=v

ian

ddp

i

dt

=F

i(2

.29)

whe

re

pi=

γim

ivi

and

γi=

1√

1−

(vi/

c)2

(2.3

0)

and

the

forc

eF

isty

pica

llydo

min

ated

byth

eLo

rent

zfo

rce:

F=

q

(

E+

v c×

B

)

(2.3

1)

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–7

Ele

ctro

mag

netic

Wav

es6

Poy

ntin

g’s

theo

rem

The

EM

field

and

part

icle

sca

ndo

wor

kon

each

othe

r.

The

flow

ofen

ergy

due

toth

isw

ork

isgi

ven

byP

oynt

ing’

sth

eore

m,

∂ ∂t

(

E2

8π+

B2

)

=∇

·S−

j·E

(2.3

2)

orin

wor

ds:

The

chan

geof

the

ener

gyde

nsity

(E2+

B2)/

8πat

ace

rtai

npo

sitio

n

equa

lsth

ew

ork

dW

=j·E

dt

done

onm

atte

rby

the

EM

field

atth

at

posi

tion

plus

the

dive

rgen

ceof

the

Poy

ntin

gve

ctor

.

whe

reth

eP

oynt

ing

vect

or,S

,is

defin

edby

S=

c 4π(E

×B

)(2

.33)

The

units

ofS

are

erg

cm−

2s−

1,i

.e.,

pow

ertr

ansp

orte

dth

roug

han

area

,i.e

.,S

=dW

/dA

),an

d(E

2+

B2)/

8πis

anen

ergy

dens

ity,i

.e.,

has

units

erg

cm−

3.

Page 9: Literature - FAU

2–7

Inor

der

tode

rive

Poy

ntin

g’s

theo

rem

,le

t’slo

okat

the

mec

hani

calw

ork

done

ona

part

icle

iby

the

elec

tric

and

the

mag

netic

field

s.T

his

wor

kis

give

nby

vi·F

i=

q iv

i·(

E+

vi c×

B)

=q i

vi·E

(2.3

4)

sinc

ev

i⊥

(vi×

B).

Sum

min

gov

eral

lpar

ticle

sat

ace

rtai

npo

sitio

nth

engi

ves

P=

i

δ(x−

xi(

t))q

ivi·E

=j·E

(2.3

5)

Bec

ause

ofA

mpè

re’s

law

,

∇×

B=

4π cj

+1 c

∂E ∂t

⇒j

=c 4π

(∇×

B)−

1 4π

∂E ∂t

(2.4

)

we

find

j·E

=c 4π

(

E·(∇

×B

)−

1 cE

·∂E ∂t

)

(2.3

6)

=c 4π

E·(∇

×B

)−

1 8π

∂(E

2)

∂t

(2.3

7)

Ana

logo

usly

to(a

×b)

·c=

(b×

c)·a

one

has

E·(∇

×B

)=

∇B·(B

×E

)=

−∇

B·(

B)

(2.3

8)

whe

re∇

Bop

erat

eson

lyon

B.

The

refo

re

j·E

=−

c 4π∇

B·(E

×B

)−

1 8π

∂E

2

∂t

(2.3

9)

Not

eth

at

∇·(E

×B

)=

∇B·(E

×B

)+

∇E·(

B)

(2.4

0)

The

refo

re,

add

(c/4

π)∇

E(E

×B

)to

Eq.

2.39

: j·E

=−

c 4π

(

∇B·(

B)+

∇E(E

×B

)−

∇E(E

×B

))

−1 8π

∂E

2

∂t

(2.4

1)

=−

c 4π∇

·(E

×B

)+

c 4π∇

E(E

×B

)−

1 8π

∂E

2

∂t

(2.4

2)

2–7

but∇

E(E

×B

)=

(∇×

E)·B

(sim

ilar

toE

q.2.

38) =−

c 4π∇

·(E

×B

)+

c 4π(∇

×E

)·B

−1 8π

∂E

2

∂t

(2.4

3)

Cal

cula

te∇

×E

usin

gFa

rada

y’s

law

(Eq.

2.2)

,i.e

.,

c 4π(∇

×E

)·B

=−

1 4π

∂B ∂t·B

=−

1 8π

∂ ∂t(B

·B)

=−

1 8π

∂B

2

∂t

(2.4

4)

such

that

we

final

lyob

tain

Poy

ntin

g’s

theo

rem

−j·E

=c 4π∇

·(E

×B

)+

∂ ∂t

(

E2

8π+

B2

)

(2.3

2)

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–8

Rad

iatio

nQ

uant

ities

1

Flu

xD

ensi

ty,I

dAW

eno

wre

late

the

elec

trod

ynam

ic

quan

titie

ssu

chas

E,B

,orS

to

mea

sura

bles

.B

efor

ew

eca

ndo

this

,

need

toin

trod

uce

som

ede

finiti

ons.

Defi

nitio

n.E

nerg

yflu

x,F

,is

defin

ed

asth

een

ergy

dE

pass

ing

thro

ugh

area

dA

intim

ein

terv

aldt:

dE

=F

dA

dt

(2.4

5)

Uni

tsof

Far

eer

gcm

−2

s−1.

Fde

pend

son

the

orie

ntat

ion

ofdA

,and

can

also

depe

ndon

the

freq

uenc

y.

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–9

Rad

iatio

nQ

uant

ities

2

Flu

xD

ensi

ty,I

I

Flu

xfr

oman

isot

ropi

cra

diat

ion

sour

ce,i

.e.,

aso

urce

emitt

ing

equa

lam

ount

sof

ener

gyin

alld

irect

ions

.

Sph

eric

ally

sym

met

ricst

ars

are

isot

ropi

cra

diat

ion

sour

ces,

othe

ras

tron

omic

alob

ject

ssu

chas

,e.g

.,A

ctiv

eG

alac

ticN

ucle

i,ar

eno

t.

r1 r 2

Bec

ause

ofen

ergy

cons

erva

tion,

flux

thro

ugh

two

shel

lsar

ound

sour

ceis

iden

tical

:

4πr2 1

F(r

1)

=4π

r2 2F

(r2)

(2.4

6)

and

ther

efor

ew

eob

tain

the

inve

rse

squa

rela

w,

F(r

)=

cons

t.

r2(2

.47)

Page 10: Literature - FAU

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–10

Rad

iatio

nQ

uant

ities

3

Spe

cific

Inte

nsity

,I

Bet

ter

desc

riptio

nof

radi

atio

n:en

ergy

carr

ied

alon

gin

divi

dual

ray.

n

Pro

blem

:R

ays

are

infin

itely

thin

=⇒

No

ener

gyca

rrie

dby

them

...

=⇒

Look

aten

ergy

pass

ing

thro

ugh

area

dA

(with

norm

aln

)in

all

rays

goin

gin

tosp

atia

ldire

ctio

n

.

The

spec

ific

inte

nsity

,Iν,i

nth

eba

nd

ν,..

.,ν

+dν

isde

fined

via

dE

=I ν

dA

dtdΩ

(2.4

8)

I νis

mea

sure

din

units

ofer

gs−

1cm

−2

sr−

1H

z−1

and

depe

nds

onlo

catio

n,

dire

ctio

n,an

dfr

eque

ncy.

Inan

isot

ropi

cra

diat

ion

field

,Iν

=co

nst.

for

alld

irect

ions

.

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–11

Rad

iatio

nQ

uant

ities

4

Spe

cific

Inte

nsity

,II

Usi

ngth

ede

finiti

onof

I,w

eca

nca

lcul

ate

the

netfl

uxin

adi

rect

ion

n.

n

θ

Con

trib

utio

nto

flux

indi

rect

ion

nfr

om

flux

into

dire

ctio

ndΩ

:

dF

ν=

I νco

(2.4

9)

Inte

grat

eov

eral

lang

les

toob

tain

the

tota

lflux

:

=

4πsr

I νco

=

π

θ=0

0

I ν(θ

,φ)co

sin

θdθ

(2.5

0)

2–11

θ

Esp

ecia

llyin

the

theo

ryof

stel

lar

atm

osph

eres

,w

here

ofte

nde

als

with

the

radi

ativ

etr

ansp

ort

thro

ugh

asl

abof

mat

eria

land

can

assu

me

cylin

dric

alsy

mm

etry

,one

writ

es

µ=

cosθ

(2.5

1)

whe

reθ

isth

ean

gle

betw

een

the

z-d

irect

ion

(“up

”-“d

own”

dire

ctio

n)an

dth

edi

rect

ion

ofth

elig

htra

y.T

hen

=−

sin

θ(2

.52)

and

=

−1

µ=

+1

φ=

0I ν

(µ,θ

)(−

µ)si

sin

θdφ

(2.5

3)

=

+1

µ=−

1

φ=

0I µ

(µ,θ

)µdµ

(2.5

4)

taki

ngin

toac

coun

tthe

cylin

dric

alsy

mm

etry

,

=2π

+1

−1

I ν(µ

)µdµ

(2.5

5)

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–12

Rad

iatio

nQ

uant

ities

5

Spe

cific

Inte

nsity

,III

The

spec

ific

inte

nsity

isco

nsta

ntal

ong

the

line

ofsi

ght.

Pro

of:

Con

side

rth

efo

llow

ing

figur

e:

R

dAdA

12

Ene

rgy

carr

ied

thro

ugh

area

dA

1an

d

dA

2is

give

nby

dE

1=

I 1dA

1dtdΩ

1dν

(2.5

6)

dE

2=

I 2dA

2dtdΩ

2dν

(2.5

7)

whe

redΩ

1:

solid

angl

esu

bten

ded

by

dA

2at

dA

1,a

ndvi

ceve

rsa:

1=

dA

2/R

2(2

.58)

2=

dA

1/R

2(2

.59)

Ene

rgy

cons

erva

tion

impl

ies

dE

1=

dE

2,i

.e.,

I 1dA

1dt

dA

2

R2

=I 2

dA

2dt

dA

1

R2

(2.6

0)

that

is:I 1

=I 2

=co

nst..

QE

D.

Page 11: Literature - FAU

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–13

Rad

iatio

nQ

uant

ities

6

Spe

cific

Inte

nsity

,IV

I=

cons

t.al

ong

ara

ydo

esno

tcon

trad

ictt

hein

vers

esq

uare

law

!

θR

c

θP

r

Pro

of:

Ass

ume

sphe

reof

unifo

rmbr

ight

ness

,

B,t

heflu

xm

easu

red

atpo

intP

isth

eflu

x

from

allv

isib

lepo

ints

ofsp

here

:

F=

Ico

(2.6

1)

=B

·∫

π

0

θ c

0si

cosθ

(2.6

2)

whe

resi

nθ c

=R

/r.

The

refo

re

F=

2πB

arcs

in(R

/r)

0si

cosθ

(2.6

3)

butb

ecau

se∫

α 0si

nx

cosx

dx

=1 2si

n2α

,

=2π

1 2

(

R r

)

2

=πB

(

R r

)

2

∝1 r2

(2.6

4)

=⇒

inve

rse

squa

rela

wis

cons

eque

nce

ofde

crea

sing

solid

angl

eof

obje

cts!

2–13

One

cons

eque

nce

ofE

q.2.

64is

that

the

flux

onth

esu

rfac

eof

aso

urce

ofun

iform

brig

htne

ssis

give

nby

F=

πB

(2.6

5)

The

refo

re,

espe

cial

lyfo

rst

ella

rat

mos

pher

es,

one

som

etim

esde

fines

the

astr

ophy

sica

lflux

,

F:=

F π(2

.66)

such

that

for

star

s(w

hich

roug

hly

have

unifo

rmsu

rfac

ebr

ight

ness

),F

=B

(2.6

7)

Be

awar

eof

this

sour

ceof

poss

ible

conf

usio

n!

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–14

Rad

iatio

nQ

uant

ities

7

Ene

rgy

Den

sity

and

Mea

nIn

tens

ity

The

last

impo

rtan

trad

iatio

nqu

antit

y(f

orth

em

omen

t)is

the

ener

gyde

nsity

,uν.

For

ace

rtai

ndi

rect

ion,

Ω,a

ndvo

lum

eel

emen

tdV

,uν

isde

fined

via

dE

=u

ν(Ω

)dV

(2.6

8)

But

for

light

,the

volu

me

elem

entc

anbe

writ

ten

as

dV

=c

dt·

dA

(2.6

9)

such

that

Eq.

2.68

beco

mes

dE

=cu

ν(Ω

)dΩ

dtdν

(2.7

0)

Com

pare

this

toth

ede

finiti

onof

the

inte

nsity

:

dE

=I ν

dA

dtdΩ

(2.4

8)

The

refo

re,

uν(Ω

)=

I ν/c

(2.7

1)

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–15

Rad

iatio

nQ

uant

ities

8

Ene

rgy

Den

sity

and

Mea

nIn

tens

ity

The

tota

lene

rgy

dens

ityat

freq

uenc

isth

en

=

4πsr

uν(Ω

)dΩ

=1 c

4πsr

I ν(Ω

)dΩ

=:

4π cJ

ν(2

.72)

whe

reth

em

ean

inte

nsity

isde

fined

by

=1 4π

4πsr

I ν(Ω

)dΩ

(2.7

3)

Not

eth

atfo

ran

isot

ropi

cra

diat

ion

field

,Iν(Ω

)=

I ν,I

ν=

Jν.

The

tota

lrad

iatio

nde

nsity

isob

tain

edby

inte

grat

ion:

u=

=4π c

0

(2.7

4)

Page 12: Literature - FAU

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–16

Rad

iativ

eTr

ansf

er1

Intr

oduc

tion

Afte

rde

finin

gra

diat

ion

quan

titie

s,w

eca

nno

wst

udy

the

tran

spor

tofr

adia

tion

(“ra

diat

ive

tran

sfer

”).

Thr

eeef

fect

sin

fluen

cera

diat

ion

1.em

issi

onof

radi

atio

n

2.ab

sorp

tion

ofra

diat

ion

3.sc

atte

ring

Sca

tterin

gca

nbe

trea

ted

asco

mbi

natio

nof

emis

sion

and

abso

rptio

n,w

illno

t

talk

abou

ttha

ther

e.

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–17

Rad

iativ

eTr

ansf

er2

Em

issi

on

Rad

iatio

nca

nbe

emitt

ed,a

ddin

gen

ergy

toth

ebe

am:

dE

ν=

j νdV

dt

(2.7

5)

whe

rej ν

isco

effic

ient

for

spon

tane

ous

emis

sion

,i.e

.,en

ergy

adde

dpe

run

it

volu

me,

unit

angl

e,an

dun

ittim

e,un

itsof

j νar

eer

gcm

−3

s−1

sr−

1H

z−1.

The

chan

gein

inte

nsity

is

dI ν

=j ν

ds

(2.7

6)

(writ

ing

dV

=dA

ds)

Not

eth

atj ν

depe

nds

ondi

rect

ion!

For

anis

otro

pic

emitt

eron

ly(e

.g.,

rand

omly

orie

nted

sour

ces)

:

j ν=

1 4πP

ν(2

.77)

whe

reP

νis

the

radi

ated

pow

erpe

run

itvo

lum

e.

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–18

Rad

iativ

eTr

ansf

er3

Abs

orpt

ion

Rad

iatio

nis

also

abso

rbed

.

Med

ium

with

part

icle

num

ber

dens

ityn

(cm

−3),

each

havi

ngef

fect

ive

abso

rbin

g

area

(cro

ssse

ctio

n)σ

ν(c

m2):

•N

umbe

rof

abso

rber

s:n

dA

ds

•To

tala

bsor

bing

area

:nσ

νdA

ds

=⇒

Ene

rgy

abso

rbed

outo

fbea

m:

−dI ν

dA

dtdν

=Inσ

νdA

ds

dtdν

(2.7

8)

or

dI ν

=−

νI ν

ds

=:−

ανI ν

ds

(2.7

9)

whe

reα

ν:

abso

rptio

nco

effic

ient

(uni

tscm

−1).

2–18

Inth

est

udy

ofst

ella

rin

terio

rs,o

neof

ten

enco

unte

rsth

ean

gle

inte

grat

edem

issi

vity

,ǫν,d

efine

das

the

emitt

eden

ergy

per

unit

mas

s,

dE

ν=

ǫ νρ

dV

dtdt

4π(2

.80)

whe

reth

efa

ctor

/4π

isth

efr

actio

nof

ener

gyem

itted

into

dire

ctio

ndΩ

.

For

isot

ropi

cem

issi

on,

ǫ ν=

ρ

4πj ν

(2.8

1)

Like

wis

e,th

eab

sorp

tivity

isal

som

easu

red

per

unit

mas

sof

abso

rbin

gm

ater

ial,

thro

ugh

αν

=nρ

σν ρ

=ρ·nσ

ν

ρ=

:ρκ

ν(2

.82)

whe

reκ

νis

the

mas

sab

sorp

tion

coef

ficie

nt,o

rth

eop

acity

coef

ficie

nt,a

ndha

sun

itsof

cm2g−

1.

Page 13: Literature - FAU

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–19

Rad

iativ

eTr

ansf

er4

Equ

atio

nof

radi

ativ

etr

ansf

er

Com

bini

ngE

qs.2

.76

and

2.79

give

s

dI ν ds

=j ν

−α

νI ν

(2.8

3)

the

equa

tion

ofra

diat

ive

tran

sfer

(RT

)

For

pure

emis

sion

,αν

=0,

such

that

dI ν ds

=j ν

(2.8

4)

Sep

arat

ion

ofva

riabl

esan

das

sum

ing

the

path

star

tsat

s=

0gi

ves:

I ν(s

)=

I ν(0

)+

s

0

j ν(s

′ )ds′

(2.8

5)

For

pure

emis

sion

,the

brig

htne

ssin

crea

seis

equa

lto

the

inte

grat

ed

emis

sivi

tyal

ong

the

line

ofsi

ght.

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–20

Rad

iativ

eTr

ansf

er5

Opt

ical

Dep

th,I

For

pure

abso

rptio

n,E

q.(2

.83)

isdI ν ds

=−

ανI ν

(s)

(2.8

6)

Atd

epth

sof

am

ediu

mirr

adia

ted

with

I(s

=0)

=I 0

,sep

arat

ion

ofva

riabl

esgi

ves

I ν(s

)=

I 0ex

p

(

s

ν(s

′ )ds′

)

=:I 0

e−τ ν

(2.8

7)

For

pure

abso

rptio

n,th

ein

tens

ityde

crea

ses

expo

nent

ially

with

the

optic

alde

pth.

The

optic

alde

pth,

τ,i

sde

fined

by

τ ν(s

)=

s

ν(s

′ )ds′

=

s

0n(s

′ )σ

νds′

=nσ

νs

(2.8

8)

whe

reth

ela

stst

epis

valid

for

aho

mog

eneo

usm

ediu

m.

τis

cent

ralt

ode

scrib

ing

mos

teffe

cts

inR

T.

τ>

1=⇒

“med

ium

isop

tical

lyth

ick

or“o

paqu

e”

τ<

1=⇒

“med

ium

isop

tical

lyth

inor

“tra

nspa

rent

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–21

Rad

iativ

eTr

ansf

er6

Opt

ical

Dep

th,I

I

Exp

onen

tiala

bsor

ptio

nla

w=⇒

Pro

babi

lity

for

phot

onto

trav

eldi

stan

ce>

τ:

exp(−

τ).

=⇒

Mea

nop

tical

dept

htr

avel

ed:

〈τν〉

=

0

τ νex

p(−

τ ν)dτ ν

=1

(2.8

9)

The

path

leng

thco

rres

pond

ing

toτ

=1

isca

lled

the

mea

nfr

eepa

th,

τ ν=

νl ν

=⇒

〈l〉

=1

ν(2

.90)

Inan

inho

mog

eneo

usm

ediu

m,t

hem

ean

free

path

isde

fined

loca

lly.

Exa

mpl

e:In

the

cent

erof

the

Sun

,ρ∼

150

gcm

−3,(

wro

ngly

)as

sum

ing

pure

H,t

his

mea

ns

n∼

1025

part

icle

scm

−3.

The

cros

sse

ctio

nis

onth

eor

der

of10

−25

cm2

(see

late

r)=⇒

〈l〉 ⊙

∼1

mm

.C

ompa

reth

isto

aso

lar

radi

usof

1010

cm..

.

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–22

Rad

iativ

eTr

ansf

er7

For

mal

Sol

utio

n

Itis

usef

ulto

writ

eR

Tin

term

sof

τ.

τ ν=

s 0α

ν(s

′ )ds′

impl

ies

ds

=dτ ν

/αν,s

uch

that

αν

dI ν

dτ ν

=j ν

−α

νI ν

(2.9

1)

and

ther

efor

e,dI ν

dτ ν

=j ν α

ν−

I ν=

:S

ν−

I ν(2

.92)

whe

reS

νis

calle

dth

eso

urce

func

tion.

One

can

obta

ina

form

also

lutio

nof

the

tran

sfer

equa

tion

inte

rms

ofS

(see

man

uscr

ipt)

:

I ν(τ

ν)

=I ν

(0)e

−τ ν

+

τ ν

0e−

(τν−

τ′ ν) S

(τ′ ν)dτ′ ν

(2.9

3)

Inte

rpre

tatio

n:

The

inte

nsity

emer

ging

from

anab

sorb

ing

med

ium

equa

lsth

eirr

adia

ted

inte

nsity

,cor

rect

edfo

r

abso

rptio

npl

usth

e(a

bsor

bed)

inte

grat

edso

urce

cont

ribut

ions

.

Sin

ceα

νca

nco

ntai

nef

fect

sfr

omst

imul

ated

emis

sion

(∝I ν

,see

late

r),t

hefo

rmal

solu

tion

can

notb

eob

tain

edfo

ran

ym

eani

ngfu

lphy

sica

lsys

tem

.

Page 14: Literature - FAU

2–22

The

deriv

atio

nof

Eq.

2.93

isst

raig

htfo

rwar

dal

gebr

a:

dI ν

dτ ν

=S

ν−

I ν(2

.94)

eτν

dI ν

dτ ν

=eτ

ν

Sν−

eτν

I ν(2

.95)

eτν

dI ν

dτ ν

+eτ

ν

I ν=

eτν

(2.9

6)

d dτ ν

(eτν

I ν)=

eτν

(2.9

7)

Sep

arat

ion

ofva

riabl

esgi

ves

eτν

I ν(τ

ν)−

I ν(0

)=

τν

0eτ

′ νS

ν(τ

′ ν)dτ′ ν

(2.9

8)

such

that

final

ly

I ν(τ

ν)

=I ν

(0)e

−τν

+

τν

0e−

(τν−

τ′ ν) S

(τ′ ν)dτ′ ν

(2.9

3)

I

EF

CO

DRI

L

AI

N

R

DN

XAEA

ESII

C

M LMVA

AI

AD

R

E

LGE

2–23

Rad

iativ

eTr

ansf

er8

For

mal

Sol

utio

n

Ifth

era

diat

ion

isin

com

plet

eth

erm

odyn

amic

aleq

uilib

rium

,not

hing

isal

low

edto

chan

ge,i

.e.,

Eq.

2.92

read

s

dI ν

dτ ν

=S

ν−

I ν=

0(2

.99)

such

that

Inth

erm

odyn

amic

equi

libriu

m:S

ν=

I ν=

whe

reB

νis

the

Pla

nck

func

tion,

=2h

ν3

c21

exp(h

ν/k

T)−

1(3

.31)

tobe

deriv

edne

xt.

Ifth

eas

sum

ptio

nS

ν=

ism

ade

loca

lly,o

nesp

eaks

oflo

calt

herm

odyn

amic

equi

libriu

m,L

TE

.