linear flight dynamics - tu wien · 2015. 11. 27. · qsb r bb 2 cn p < 0 yaw moment –coupled...

22
Linear Flight Dynamics Extra material for assignment#4 Vitaly Shaferman 27 November 2015 * Based on am EOM course and slides given at the USAF TPS

Upload: others

Post on 03-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Linear Flight Dynamics

    Extra material for assignment#4

    Vitaly Shaferman

    27 November 2015

    * Based on am EOM course and slides given at the USAF TPS

  • 2Automation & Control InstituteVienna University of Technology

    Stability and Wind Axis System

    Xs

    Zs,w

    V

    a

    a

    XW

    YW

    Vb

    b

    YB

    XB

    ZB

    UV

    W

    Vta

    b YB

    XB

    ZB

    UV

    W

    Vta

    b

  • 3Automation & Control InstituteVienna University of Technology

    Positive Rotation Rates and Moments

    +P: Positive Roll Rate

    +L: Positive Rolling Moment

    Roll

    Rt Wing Down

    Yaw

    +R: Positive Yaw Rate

    +N: Positive Yawing Moment

    Nose Right

  • 4Automation & Control InstituteVienna University of Technology

    Sign Convention

    XB

    YBZB

    +L+P

    +U

    +V

    +W

    +C

    +N

    +Q

    +M

    +R

    +N

    +Y

  • 5Automation & Control InstituteVienna University of Technology

    Lateral Control Deflections

    Positive Aileron Deflection is Trailing Edge Down (TED)

    Then, a composite aileron deflection is calculated:

    Positive Composite Aileron Deflection causes

    a Positive Roll Rate (DP>0)

    a Positive Rolling Moment (DL>0)

    DDD ,, LPa

    2

    RL aaa

    +P: Positive Roll Rate

    +L: Positive Rolling

    Moment

    Roll

    Rt Wing Down

    +a

  • 6Automation & Control InstituteVienna University of Technology

    Directional Control Deflections

    Positive Rudder deflection is Trailing Edge Left (TEL) and causes

    a Negative Yaw Rate (DR

  • 7Automation & Control InstituteVienna University of Technology

    The Model

    b a b b ot

    y y a y r

    t

    p rqS

    mVC C C

    g

    Va r

    rlallrl

    t

    l

    xxxx

    xzrap CCrCpC

    V

    bC

    I

    Sbqr

    I

    Ip b b

    2

    rnannrn

    t

    n

    zzzz

    xzrap CCrCpC

    V

    bC

    I

    Sbqp

    I

    Ir b b

    2

    yzdmIyz

    XB

    ZB

  • 8Automation & Control InstituteVienna University of Technology

    Yt

    YB

    Vt

    XBb

    Yf

    b a b b ot

    y y a y r

    t

    p rqS

    mVC C C

    g

    Va r

    Side Force Equation

    Cyb < 0

    Cyr > 0

  • 9Automation & Control InstituteVienna University of Technology

    Roll Moment Equation (Spring, Mass, Damper)

    Clr

    IXX

    Clp Clb Cla

    Forcing Functions: Cla, Clr

    Spring Constant: Clb

    Damping Constant: Clp

    rlallrl

    t

    l

    xx

    rap CCrCpCV

    bC

    I

    Sbqp b b

    2

  • 10Automation & Control InstituteVienna University of Technology

    -b causes larger relative wind on left wing

    resulting in more lift on left wing and Cl > 0

    Roll Moment - Dihedral Effect

    Vt

    Vt

    Vn

    Vn

    Vt

    Xs

    b

    Swept Wing

    a

    b

    Yt

    ab

    YB

    Vertical Tail

    For a vertical tail above the roll

    axis, +b causes –Cl

    Clb < 0

    rlallrl

    t

    l

    xx

    rap CCrCpCV

    bC

    I

    Sbqp b b

    2

    Clb < 0

  • 11Automation & Control InstituteVienna University of Technology

    ZB

    DwDw

    Dv

    rlallrl

    t

    l

    xx

    rap CCrCpCV

    bC

    I

    Sbqp b b

    2

    YB

    XB

    R

    Flat, skidding turn

    Yt

    YB

    N

    N

    Roll Moment – Damping Terms

    Clp < 0

    Clr > 0

  • 12Automation & Control InstituteVienna University of Technology

    Tail above roll axis

    la laDNL

    DNR

    rlallrl

    t

    l

    xx

    rap CCrCpCV

    bC

    I

    Sbqp b b

    2

    Roll Moment – Control Terms

    Cla > 0

    Clr > 0

  • 13Automation & Control InstituteVienna University of Technology

    Forcing Functions: Cnr, Cna

    Spring Constant: Cnb

    Damping Constant: Cnr

    CnbCnr

    IZZ Ixy

    CnrCna

    Yaw Moment Equation (Spring, Mass, Damper)

    rnannrn

    t

    n

    zz

    rap CCrCpCV

    bC

    I

    Sbqr b b

    2

  • 14Automation & Control InstituteVienna University of Technology

    N

    Yt

    YB

    Vt

    XBb

    Yf

    Yaw Moment - “Spring”

    rnannrn

    t

    n

    zz

    rap CCrCpCV

    bC

    I

    Sbqr b b

    2

    Cnb > 0

  • 15Automation & Control InstituteVienna University of Technology

    YB

    XB

    N

    RDv

    DYt

    NtVertical Tail Contribution

    YB

    XB

    N

    R

    Nw

    Wing Contribution

    C

    C

    Left Wing, Higher Lift,

    Higher Drag due to Lift

    rnannrn

    t

    n

    zz

    rap CCrCpCV

    bC

    I

    Sbqr b b

    2

    Cnr < 0

    Cnr < 0

    Yaw Moment – Damping Term

  • 16Automation & Control InstituteVienna University of Technology

    rnannrn

    t

    n

    zz

    rap CCrCpCV

    bC

    I

    Sbqr b b

    2

    Cnp < 0

    Yaw Moment – Coupled Term

    ZB

    DwDw

    WingWing: Positive P rotates Lift

    vector forward on right wing -

    decreases chord force, creates

    negative Cn.

    ZB

    DvTail

    Vertical tail above roll axis:

    Positive P creates positive

    Cn. Cnp > 0

  • 17Automation & Control InstituteVienna University of Technology

    YB

    XB

    N

    DYt

    r

    lt

    Yaw Moment – Control Terms

    rnannrn

    t

    n

    zz

    rap CCrCpCV

    bC

    I

    Sbqr b b

    2

    Cnr < 0

    la la

    Cna 0

  • 18Automation & Control InstituteVienna University of Technology

    Typical Lat-Dir Pole Plot

    s

    jwd

    spiraldutch roll

    roll

  • 19Automation & Control InstituteVienna University of Technology

    Our System

    002.00

    001.00k

    kxu

    BuAxx

    -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4-3

    -2

    -1

    0

    1

    2

    3Poles of the open and closed loop

    Open Loop

    Closed Loop

  • 20Automation & Control InstituteVienna University of Technology

    Original System – Dutch Roll

    0 1 2 3 4 5 6 7 8 9 10-0.2

    0

    0.2

    b (

    deg)

    Dutch Roll Mode - Attitudes [b,s,

    s]

    0 1 2 3 4 5 6 7 8 9 10-1

    0

    1

    s (

    deg)

    0 1 2 3 4 5 6 7 8 9 10-0.2

    0

    0.2

    s (

    deg)

    Time (s)

  • 21Automation & Control InstituteVienna University of Technology

    Original System – Roll Mode

    0 1 2 3 4 5 6 7 8 9 10-0.4

    -0.3

    -0.2

    -0.1

    0p

    s (

    deg/s

    )

    Roll Mode [ps,

    s]

    0 1 2 3 4 5 6 7 8 9 100

    0.2

    0.4

    0.6

    0.8

    1

    s (

    deg)

    Time (s)

  • 22Automation & Control InstituteVienna University of Technology

    Original System – Spiral Mode

    0 10 20 30 40 50 60 70 80 90 100-8

    -7

    -6

    -5

    -4x 10

    -3

    r s (

    deg/s

    )

    Spiral Mode [rs,

    s]

    0 10 20 30 40 50 60 70 80 90 100-1.8

    -1.6

    -1.4

    -1.2

    -1

    -0.8

    s (

    deg)

    Time (s)