life sciences x-sheet 7sciencemfundo.weebly.com/.../2/0/2/3/20238913/excretion.pdf ·...

12
Life Sciences x-sheet 7 EXCRETION Life Sciences

Upload: others

Post on 25-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Life Sciences x-sheet 7sciencemfundo.weebly.com/.../2/0/2/3/20238913/excretion.pdf · 2019-08-31 · Nephron: the functional unit responsible for excretion and osmoregulation in the

Life Sciences X-SheetsLife Sciences X-Sheetslearn learn

Life Sciencesx-sheet 7

EXCRETION

Life Sciences

Page 2: Life Sciences x-sheet 7sciencemfundo.weebly.com/.../2/0/2/3/20238913/excretion.pdf · 2019-08-31 · Nephron: the functional unit responsible for excretion and osmoregulation in the

37Life Sciences X-SheetsLife Sciences X-Sheets

learn learn

EXCRETION

EXCRETIONKEY CONCEPTSIn this session we will focus on summarising what you need to know about:

• The different organs responsible for excretion in the human body

• The macroscopic structure of the urinary system

• The macroscopic and nicroscopic structure and functioning of the kidney

• Disorders of the kidney

TERMINOLOGY & DEFINITIONSActive absorption: absorption of substances against the concentration gradient using energy

Ascending limb: a part of the loop of Henlé of the renal tubule of the nephron which carries wastes from

the hairpin bend towards the distal convoluted tubule

Bowman’s capsule: cup-shaped structure surrounding the glomerulus of the nephron in the human

kidney

Calyx: wide funnel-like structure found in the kidney into which the collecting tubules open

Descending limb: a part of the loop of Henlé of the renal tubule of the nephron which carries wastes from the proximal convoluted tubule towards the hairpin bend

Dialysis: a method of artificially removing waste products from the bloodstream if the kidneys are unable

to do so on their own

Distal convoluted tubule: the twisted portion of the renal tubule that is furthest away from the

Malpighian body

Duct of Bellini: tubes formed by the union ( joining) of the collecting ducts in the kidney

Excretion: removal of waste products of metabolism from cells

Filtration: the process by which water and small solutes, including metabolic wastes, are extracted from

the body fluid and passed into the excretory system

Glomerulus: capillary network within Bowman’s capsule of the nephron of the human kidney; also

referred to as the first capillary network

Loop of Henlé: region of the nephron of the human kidney which lies between the proximal and distal

convoluted tubules

Malpighian body: part of the nephron of the human kidney; made up of the Bowman’s capsule and the

glomerulus

Nephron: the functional unit responsible for excretion and osmoregulation in the kidney

Passive absorption: absorption of substances down a concentration gradient i.e. from high concentration

to low concentration

Podocytes: specialised squamous cells in the inner layer of the Bowman’s capsule in the nephron; assist

in the filtration process

Proximal convoluted: the twisted portion of the renal tubule that is closest to the Malpighian body

Renal artery: blood vessel carrying oxygenated blood with nitrogenous wastes to the kidney

Renal capsule: the thin, fibrous, protective outer covering of the kidney

Renal vein: blood vessel carrying de-oxygenated blood with very little nitrogenous wastes away from

the kidney

Page 3: Life Sciences x-sheet 7sciencemfundo.weebly.com/.../2/0/2/3/20238913/excretion.pdf · 2019-08-31 · Nephron: the functional unit responsible for excretion and osmoregulation in the

38

Life Sciences

Life Sciences

Life Sciences X-SheetsLife Sciences X-Sheetslearn learn

Selective absorption: the absorption of only certain solutes from blood filtrate; takes place in the excretory organs of animals

Slit pores: tiny pores between the podocytes which form the lining of the Bowman’s capsule; the

pores enable the podocytes to act as selective filters

Tubular secretion: movement of waste substances, from the second capillary network, into the

renal tubule of the nephron in the human body

Ureter: the duct which conveys urine from the kidney to the bladder

Urethra: tube transporting urine from the bladder to the exterior

DIAGRAMSThe urinary system

A – Renal capsule E - Pelvis

B- Cortex F - Calyx

C- Medulla G - Ureter

D- Renal vein

EXCRETION

Page 4: Life Sciences x-sheet 7sciencemfundo.weebly.com/.../2/0/2/3/20238913/excretion.pdf · 2019-08-31 · Nephron: the functional unit responsible for excretion and osmoregulation in the

39Life Sciences X-SheetsLife Sciences X-Sheets

learn learn

1 – Bowman’s capsule 2 – Glomerulus

3 – Afferent arteriole 4 – Efferent arteriole

5 – Proximal convoluted tubule 6 – Descending limb of Henle

7 – Distal convoluted tubule 8 – Secondary capillary network

9 – Collecting tubule

A – Afferent arteriole B – efferent arteriole

C – Glomerulus D – Bowman’s capsule

E – Proximal convoluted tubule

X-PLANATIONWhat is excretion?Excretion, which is the removal of waste products formed by metabolism, ensures that these waste products (like CO2 and nitrogenous wastes) do not build up to toxic levels.

EXCRETION

Page 5: Life Sciences x-sheet 7sciencemfundo.weebly.com/.../2/0/2/3/20238913/excretion.pdf · 2019-08-31 · Nephron: the functional unit responsible for excretion and osmoregulation in the

40

Life Sciences

Life Sciences

Life Sciences X-SheetsLife Sciences X-Sheetslearn learn

The different organs responsible for excretion in the human body Excretion organ Substance

excreted

Excretion organ Substance excreted Origin of substance excreted

Lungs CO2 + Water vapour Cellular respiration

Kidneys Urine (Urea, Uric acid, Water, Salts, Ammonia)

Metabolic waste

Liver Bile pigments into the alimentary canal

Dead red blood cells

Bladder Urine Metabolic waste

Skin Sweat (H2O, Salts, Urea) Metabolic waste

The macroscopic structure of the urinary systemThe urinary system consists of two kidneys, two ureters, the urinary bladder and the urethra.

The renal artery carries blood to the kidney and the renal vein carries blood away from the kidney.

The renal artery, renal vein and ureter are attached to the kidney at its hilum.

The ureters begin within each kidney (the pelvis) and carry urine from the kidneys to the bladder.

The bladder stores urine temporarily.

The urethra carries urine from the bladder to the exterior. In the male, the urethra, carriers urine

as well as semen. In the female, the urethra and vagina open separately.

The structure and functioning of the kidneyInternal structure of the kidney:The kidney is covered and protected by the thin renal capsule. Within the renal capsule is the outer cortex and inner medulla. The medulla is made up of a number of cone-shaped pyramids. The

pyramids have a number of tubes called the ducts of Bellini. The ureter extends into each kidney

as a widened pelvis. The pelvis branches into a number of calyces each of which encloses the apex

of a pyramid. Embedded within each kidney there are about 1 million nephrons.

The nephron:Consists of two parts:

a) The Malpighian body

• Made up of cup-shaped Bowman’s capsule and the glomerulus

• The inner wall of the capsule is made up of specialised cells, the podocytes.

• They form slit pores between them.

• The space between the inner and outer wall of the Bowman’s capsule is called the capsular space.

b) The renal tubule

• Consists of: proximal convoluted tubule, loop of Henlé (descending limb, ascending limb, hairpin bend) and distal convoluted tubule.

• The collecting tubules unite to form a duct of Bellini which runs through the pyramids and open into the calyces of the pyramids.

EXCRETION

Page 6: Life Sciences x-sheet 7sciencemfundo.weebly.com/.../2/0/2/3/20238913/excretion.pdf · 2019-08-31 · Nephron: the functional unit responsible for excretion and osmoregulation in the

41Life Sciences X-SheetsLife Sciences X-Sheets

learn learn

Blood supply of the nephron:• Renal artery → afferent arterioles → glomerulus → efferent arteriole → second capillary network →

venules → renal vein

Functioning of the kidney

Function Where it takes place What happens

1. Transport of blood to the

glomerulus

From the renal artery to the glom-erulus

Blood carrying useful and waste

substances is carried to the

glomerulus via the afferent

arteriole.

2. Glomerular filtration

(ultra-filtration)

In the glomerulus All the substances in the blood,

except blood corpuscles and

proteins, are forced into the

capsular space of Bowman’s capsule.

3. Selective re-absorption

(tubular re-absorption)

At the:

Proximal convoluted tubule

Distal convoluted tubule

Parts of loop of Henlé

Collecting tubules

Water, salts, glucose and amino

acids are selectively re-absorbed

(by osmosis and active transport)

by the blood capillaries

surrounding the tubules.

4. Tubular excretion Along the entire kidney tubule Cells in the walls of the tubule

excrete waste into the blood

capillaries. These substances in-clude salts, hydrogen ions and some poisons.

5. Transport of urine to the

bladder and urination

Bladder and urethra From the tubules the urine passes

into the pelvis and then down the

ureters into the bladder. From

time to time the bladder is

emptied. The urine passes along

the urethra to the outside. The

process is called urination.

The structural suitability of the nephron for its functions:a) Adaptations of the Malpighian body for its functions:

• The efferent arteriole is narrower than the afferent arteriole allowing a pressure system to develop which is essential for filtration.

• The small size of the slit pores between the podocytes ensures that the blood corpuscles and large plasma proteins do not pass through into the capsular space.(filtration)

• The Bowman’s capsule is cup-shaped allowing more close contact with the blood capillaries of the glomerulus for filtration.

• A single layer of endothelial cells of the capillary wall and a single layer of podocytes of the

Bowman’s capsule form a thin surface for filtration.

• Large surface area of the capillary network of the glomerulus increases the efficiency of filtration. (many capillaries increase the surface area for reabsorption and excretion).

• Pores on endothelium of the capillaries allow for a passageway of substances during filtration.

EXCRETION

Page 7: Life Sciences x-sheet 7sciencemfundo.weebly.com/.../2/0/2/3/20238913/excretion.pdf · 2019-08-31 · Nephron: the functional unit responsible for excretion and osmoregulation in the

42

Life Sciences

Life Sciences

Life Sciences X-SheetsLife Sciences X-Sheetslearn learn

b) Adaptations of the renal tubule for its functions:

• It is long and convoluted allowing sufficient time for re-absorption of useful substances.

(also increasing surface area)

• The second capillary network allows for the re-absorption of useful substances and for

excretion of waste substances into the tubules.

• The cells of the tubules are richly supplied with mitochondria providing energy for active

re-absorption to take place.

• The cells of the tubule have micro-villi to increase the surface area for excretion and

re-absorption.

• The sodium pump ensures that the medulla always has a high concentration of salts

ensuring that large amounts of water can be absorbed from the distal tubule and the

collecting tubule by osmosis.(rephrase to include difference in water potential/water

potential gradient)

Role of the kidney in osmoregulation:

EXCRETION

Page 8: Life Sciences x-sheet 7sciencemfundo.weebly.com/.../2/0/2/3/20238913/excretion.pdf · 2019-08-31 · Nephron: the functional unit responsible for excretion and osmoregulation in the

43Life Sciences X-SheetsLife Sciences X-Sheets

learn learn

Role of the kidney in salt regulation:

Disease leading to kidney failureE.g. kidney stones, kidney infections, bilharzia

Disease Cause Symptoms Treatment

Bilharzia Bilharzia worm Tiredness

Headaches

Swollen liver and spleen

Drugs, e.g. praziquantel

Protection of the kidneys:We can keep our kidneys healthy by:

• Drinking enough water

• Avoiding overuse of painkillers, anti-inflammatory drugs,

• Avoiding physical injury

Dialysis:People with severe renal failure can be treated using an artificial kidney. An artificial kidney is a machine

that uses the process of dialysis to purify the blood.

Dialysis is the separating of small molecules such as urea from large molecules such as proteins. A dialysis

tube is used, through which the small molecules can diffuse.

Two or three times a week, a patient is connected to a kidney machine for three to six hours. Blood is taken

from a vein, usually in the arm, and pumped through he fine tubes in the artificial kidney and back into

another vein. The fine tubes are made of selectively permeable membranes. Dialysis fluid flows into the

EXCRETION

Page 9: Life Sciences x-sheet 7sciencemfundo.weebly.com/.../2/0/2/3/20238913/excretion.pdf · 2019-08-31 · Nephron: the functional unit responsible for excretion and osmoregulation in the

44

Life Sciences

Life Sciences

Life Sciences X-SheetsLife Sciences X-Sheetslearn learn

kidney machine around these tubes and out again. The dialysis fluid contains salts, glucose and other

blood plasma constituents in the same concentration as the blood, but contains no wastes. Dialysis

occurs. Wastes such as urea diffuse from the blood into the dialysis fluid, which then leaves the

machine.

Advantages and disadvantages of kidney transplants and dialysis treatment:

Treatment Advantages Disadvantages

Kidney transplant More permanent solution to the problem.

The patient’s immune system might reject the transplanted kidney.

Very expensive.

Dialysis treatment Can be used for many years. It is expensive to travel to the hospital to have dialysis.

There is a high demand for the machine.

Patients need to live close to a hos-pital that has a dialysis machine.

If the machine is not cleaned prop-erly, patients could catch blood-borne diseases.

X-AMPLE QUESTIONSQuestion 1(Adapted from Senior Certificate Examination, March 2004, Biology SG, Paper II, Question 4.2.2)

Study the passage below and answer the questions that follow.

Urine is formed by the nephrons. The two kidneys contain approximately two million nephrons. The basic function of the nephron is to "clean" or "clear" the blood plasma of unwanted substances as it passes through the kidney, while retaining in the blood those substances that are still needed by the body.

(i) How many nephrons will there be in ONE kidney? (1)

(ii) What is the basic function of a nephron? (1) (iii) Give any other function of the kidney apart from the function mentioned in (ii). (1)

(iv) Give any THREE useful substances which are retained in the blood. (3)

(v) Name THREE unwanted substances which will not be reabsorbed into the blood

and eventually become part of urine. (3)

Question 2(Adapted from Senior Certificate Examination, March 2004, Biology HG, Paper II, Question 5.1)

The following graph indicates the concentrations of certain substances as they move through the vari-ous regions of the nephron. Study the graph and answer the questions that follow.

EXCRETION

Page 10: Life Sciences x-sheet 7sciencemfundo.weebly.com/.../2/0/2/3/20238913/excretion.pdf · 2019-08-31 · Nephron: the functional unit responsible for excretion and osmoregulation in the

45Life Sciences X-SheetsLife Sciences X-Sheets

learn learn

2.1 Name the regions indicated by A and B. (4)

2.2 Which of the substances indicated on the graph is not excreted as part of urine? (1)

2.3 Which product, according to the graph, occurs in a higher concentration in urine than in the

blood entering the kidney? (1)

2.4 Explain the changes in the glucose concentration during the movement through region B. (5)

2.5 Explain the decrease in water concentration in the distal convoluted tubules. (6)

Question 3(Adapted from Senior Certificate Examination, Oct./Nov. 2004, Biology HG, Paper II, Question 3.2)

Study the passage and diagram below and answer the questions that follow.

Kidneys can become so damaged that they no longer function properly and we say that the person

is in renal failure. People with severe renal failure can be treated by dialysis, using a kidney machine

to purify the blood. Dialysis is the separation of molecules by size, the smaller molecules diffusing

through a selectively permeable membrane. Blood is taken from an artery, usually in the arm, pumped through a kidney machine and back into the vein of the arm. In the machine, blood circulates through

fine tubes made of selectively permeable membranes. The composition of dialysis fluid needs to be

similar to the composition of blood leaving the kidney. The process takes between three and six hours

and needs to be done two or three times a week.

(Modified from: Focus on Biology Grade 12: L Buckley et al)

EXCRETION

Page 11: Life Sciences x-sheet 7sciencemfundo.weebly.com/.../2/0/2/3/20238913/excretion.pdf · 2019-08-31 · Nephron: the functional unit responsible for excretion and osmoregulation in the

46

Life Sciences

Life Sciences

Life Sciences X-SheetsLife Sciences X-Sheetslearn learn

3.1 In which part of the nephron does a similar process take place as illustrated by the

kidney machine? (1)

3.2 Which parts of the kidney and associated blood vessels can be compared with the

parts of the kidney machine listed below?

Explain your answer in each case by referring to kidney functioning.

(i) Inlet tube containing the blood (2)

(ii) Pump (3)

(iii) Dialysis tubes (2)

3.3 Name ONE organic and ONE inorganic substance which should be present in the

dialysis fluid coming into the machine. (2)

3.4 Explain the role of the composition of the dialysis fluid in the functioning of the

kidney machine. (5)

3.5 At what temperature should the dialysis fluid be kept? (1)

3.6 For how many hours per week should a person who is suffering from renal failure,

be connected to a kidney machine? (2)

3.7 Explain why it is necessary to connect the patient on the kidney machine for as many

hours as mentioned in QUESTION 3.6. (4)

X-ERCISE1 Which ONE of the following structures does not leave or enter the kidney?

A Renal vein

B Urethra

C Ureter

D Renal artery

2 The darker outer area of the kidney is the renal ...

A medulla

B pyramid

C pelvis

D cortex

EXCRETION

Page 12: Life Sciences x-sheet 7sciencemfundo.weebly.com/.../2/0/2/3/20238913/excretion.pdf · 2019-08-31 · Nephron: the functional unit responsible for excretion and osmoregulation in the

47Life Sciences X-SheetsLife Sciences X-Sheets

learn learn

3 Which of the following form part of the Malpighian body?

A Tubules and glomerulus

B Bowman’s capsule and efferent arteriole

C Afferent arteriole and peritubular capillaries

D Bowman’s capsule and Loop of Henle

4 Urea and uric acid are produced and excreted by the...

A liver and lungs

B liver and kidneys

C kidneys and skin

D pancreas and kidney

5 If the pH of the blood becomes too low, which substance will the cells of the renal tubule

extract from the blood and pass into the filtrate to correct this imbalance?

A Potassium ion

B Carbonate ions

C Bicarbonate ions

D Hydrogen ions

EXCRETION