lecture.8.fermions and the dirac...

18
Fermions and the Dirac Equation In 1928 Dirac proposed the following form for the electron wave equation: 4row column matrix 4x4 matrix 4x4 unit matrix The four μ matrices form a Lorentz 4vector, with components. That is, they transform like a 4vector under Lorentz transformations between moving frames. Each μ is a 4x4 matrix.

Upload: doancong

Post on 31-Aug-2018

255 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Lecture.8.Fermions and the Dirac Equationweb.mst.edu/~hale/courses/Physics_357_457/Notes/Lecture.8.Dirac... · Dirac derived the properties of the matrices by requiring that the solution

Fermions and the Dirac Equation

In 1928 Dirac proposed the following form for the electron wave equation:

4‐row column matrix

4x4 matrix 4x4 unit matrix

The four µ matrices form a Lorentz 4‐vector, with components, µ. That is, they transform like a 4‐vector p , µ , yunder Lorentz transformations between moving 

frames.  Each µ is a 4x4 matrix.

Page 2: Lecture.8.Fermions and the Dirac Equationweb.mst.edu/~hale/courses/Physics_357_457/Notes/Lecture.8.Dirac... · Dirac derived the properties of the matrices by requiring that the solution

Pauli spinors:p

Page 3: Lecture.8.Fermions and the Dirac Equationweb.mst.edu/~hale/courses/Physics_357_457/Notes/Lecture.8.Dirac... · Dirac derived the properties of the matrices by requiring that the solution

The   0   and  1,2,3  matrices anti‐commute

The  1,2,3,  matrices  anti‐commute with  each other

The square  of the 1,2,3, matrices equal  minus  the  unit  matrix  

The square of the 0 matrixThe square of the 0 matrixequals   the unit  matrix 

All of the above can be summarized in the following expression:All of the above can be summarized in the following expression:

Here gµ is not a matrix, it is a component of the inverse metric tensor.

4x4 unit matrix4x4 matrices

Page 4: Lecture.8.Fermions and the Dirac Equationweb.mst.edu/~hale/courses/Physics_357_457/Notes/Lecture.8.Dirac... · Dirac derived the properties of the matrices by requiring that the solution

With the above properties for the matrices one can show that if  satisfies With the above properties for the matrices one can show that if  satisfies the Dirac equation, it also satisfies the Klein Gordon equation.  It takes some work.

4 component column matrixKlein‐Gordon equation:

4x4 unit matrix

Dirac derived the properties of the  matrices by requiring that the solution tothe Dirac equation  also be a solution to the Klein‐Gordon equation.  In the process it became clear that the  matrices  had dimension 4x4 and that the  was a column matrix with 4 rows.

Page 5: Lecture.8.Fermions and the Dirac Equationweb.mst.edu/~hale/courses/Physics_357_457/Notes/Lecture.8.Dirac... · Dirac derived the properties of the matrices by requiring that the solution

The Dirac equation in full matrix form

0 1 2

3

spin dependence

space‐timepdependence 

Page 6: Lecture.8.Fermions and the Dirac Equationweb.mst.edu/~hale/courses/Physics_357_457/Notes/Lecture.8.Dirac... · Dirac derived the properties of the matrices by requiring that the solution

After taking partial derivatives … note 2x2 blocks.

p0

Page 7: Lecture.8.Fermions and the Dirac Equationweb.mst.edu/~hale/courses/Physics_357_457/Notes/Lecture.8.Dirac... · Dirac derived the properties of the matrices by requiring that the solution

Writing the above as a 2x2 (each block of which is also 2x2)

Page 8: Lecture.8.Fermions and the Dirac Equationweb.mst.edu/~hale/courses/Physics_357_457/Notes/Lecture.8.Dirac... · Dirac derived the properties of the matrices by requiring that the solution

Incorporate the p and E into the matrices …

Page 9: Lecture.8.Fermions and the Dirac Equationweb.mst.edu/~hale/courses/Physics_357_457/Notes/Lecture.8.Dirac... · Dirac derived the properties of the matrices by requiring that the solution

The exponential (non‐zero) can be cancelled out.

Page 10: Lecture.8.Fermions and the Dirac Equationweb.mst.edu/~hale/courses/Physics_357_457/Notes/Lecture.8.Dirac... · Dirac derived the properties of the matrices by requiring that the solution

Finally, we have the relationships  between the upper and lower spinor components

Page 11: Lecture.8.Fermions and the Dirac Equationweb.mst.edu/~hale/courses/Physics_357_457/Notes/Lecture.8.Dirac... · Dirac derived the properties of the matrices by requiring that the solution
Page 12: Lecture.8.Fermions and the Dirac Equationweb.mst.edu/~hale/courses/Physics_357_457/Notes/Lecture.8.Dirac... · Dirac derived the properties of the matrices by requiring that the solution

Spinors for the particle with p along z direction

p along  z and spin = +1/2

p along  z and spin = ‐1/2

Page 13: Lecture.8.Fermions and the Dirac Equationweb.mst.edu/~hale/courses/Physics_357_457/Notes/Lecture.8.Dirac... · Dirac derived the properties of the matrices by requiring that the solution

Spinors for the anti‐particle with p  along  z  direction

p along  z and spin = +1/2

p along  z and spin = ‐1/2

Page 14: Lecture.8.Fermions and the Dirac Equationweb.mst.edu/~hale/courses/Physics_357_457/Notes/Lecture.8.Dirac... · Dirac derived the properties of the matrices by requiring that the solution

Field operator for the spin ½ fermionField operator for the spin ½ fermion

Spinor for antiparticlewith momentum p and spin s

Creates antiparticle with momentum p and spin s

Note:     pµ pµ  = m2 c2

Page 15: Lecture.8.Fermions and the Dirac Equationweb.mst.edu/~hale/courses/Physics_357_457/Notes/Lecture.8.Dirac... · Dirac derived the properties of the matrices by requiring that the solution

Creates particle with momentum p and spin s

r, s =  1/2

Page 16: Lecture.8.Fermions and the Dirac Equationweb.mst.edu/~hale/courses/Physics_357_457/Notes/Lecture.8.Dirac... · Dirac derived the properties of the matrices by requiring that the solution

Lagrangian Density for Spin 1/2 FermionsLagrangian Density for Spin 1/2 Fermions

Comments:

1.  This Lagrangian density is used for all the quarks and leptons –only the masses will be different!

2.  The Euler Lagrange equations, when applied to this Lagrangiandensity, give the Dirac Equation!

3. Note that L is a Lorentz scalar.3.  Note that L is a Lorentz scalar.

Page 17: Lecture.8.Fermions and the Dirac Equationweb.mst.edu/~hale/courses/Physics_357_457/Notes/Lecture.8.Dirac... · Dirac derived the properties of the matrices by requiring that the solution

The Euler – Lagrange equations applied to L:

Dirac equation

Page 18: Lecture.8.Fermions and the Dirac Equationweb.mst.edu/~hale/courses/Physics_357_457/Notes/Lecture.8.Dirac... · Dirac derived the properties of the matrices by requiring that the solution

Lagrangian Density for Spin 1/2Lagrangian Density for Spin 1/2 Quarks and Leptons 

Now we are ready to talk about the gauge invariance that leads tothe Standard Model  and all its interactions.  Remember a “gaugeinvariance”  is  the  invariance  of  the above  Lagrangian under

transformations like     e i .   The physics is in the ‐‐ which can be a matrix operator and depend on  x,y, z and t.