lecture lecture 07: 07: meanmean--variance analysis …markus/teaching/fin501/07lecture.pdf ·...

84
Fin 501: Asset Pricing Fin 501: Asset Pricing Lecture Lecture 07: 07: Mean Mean-Variance Analysis & Variance Analysis & Capital Asset Pricing Model Capital Asset Pricing Model (CAPM CAPM) (CAPM CAPM) Prof. Markus K. Brunnermeier Slide Slide 07 07-1 Mean Mean-Variance Analysis and CAPM Variance Analysis and CAPM

Upload: doankiet

Post on 01-Feb-2018

235 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis &Capital Asset Pricing ModelCapital Asset Pricing Model((CAPMCAPM))((CAPMCAPM))

Prof. Markus K. Brunnermeier

Slide Slide 0707--11MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 2: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

O iO iOverviewOverview

1. Simple CAPM with quadratic utility functions(derived from state(derived from state--price beta model)price beta model)

2.2. MeanMean--variance preferencesvariance preferences–– Portfolio TheoryPortfolio Theoryyy–– CAPM CAPM (intuition)(intuition)

33 CAPMCAPM3.3. CAPMCAPM–– ProjectionsProjections

Pricing Kernel and Expectation KernelPricing Kernel and Expectation KernelSlide Slide 0707--22MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

–– Pricing Kernel and Expectation KernelPricing Kernel and Expectation Kernel

Page 3: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

R ll St tR ll St t i B t d li B t d lRecall StateRecall State--price Beta modelprice Beta model

Recall:Recall:E[E[RRhh]] -- RRff == ββhh E[RE[R**-- RRff]]E[E[RR ] ] RR ββ E[RE[R RR ]]

where βh := Cov[R*,Rh] / Var[R*]

very general very general –– but what is Rbut what is R** in realityin reality??

Slide Slide 0707--33MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 4: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Simple CAPM with Quadratic Expected UtilitySimple CAPM with Quadratic Expected UtilitySimple CAPM with Quadratic Expected UtilitySimple CAPM with Quadratic Expected Utility1. All agents are identical

• Expected utility U(x x ) = ∑ π u(x x ) ⇒ m= ∂ u / E[∂ u]• Expected utility U(x0, x1) = ∑s πs u(x0, xs) ⇒ m= ∂1u / E[∂0u]• Quadratic u(x0,x1)=v0(x0) - (x1- α)2

⇒ ∂1u = [-2(x1 1- α),…, -2(xS 1- α)]1 [ ( 1,1 ), , ( S,1 )]• E[Rh] – Rf = - Cov[m,Rh] / E[m]

= -Rf Cov[∂1u, Rh] / E[∂0u]= -Rf Cov[-2(x - α) Rh] / E[∂ u]= -R Cov[-2(x1- α), R ] / E[∂0u]= Rf 2Cov[x1,Rh] / E[∂0u]

• Also holds for market portfolio• E[Rm] – Rf = Rf 2Cov[x1,Rm]/E[∂0u]

Slide Slide 0707--44MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 5: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Simple CAPM with Quadratic Expected UtilitySimple CAPM with Quadratic Expected UtilitySimple CAPM with Quadratic Expected UtilitySimple CAPM with Quadratic Expected Utility

2. Homogenous agents + Exchange economy d d i f l l d i h R⇒ x1 = agg. endowment and is perfectly correlated with Rm

E[E[RRhh]=]=RRff + + ββhh {E[{E[RRmm]]--RRff}} Market Security LineMarket Security Line

Slide Slide 0707--55MeanMean--Variance Analysis and CAPMVariance Analysis and CAPMN.B.: R*=Rf (a+b1RM)/(a+b1Rf) in this case (where b1<0)!

Page 6: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

O iO iOverviewOverview

1.1. Simple CAPM with quadratic utility functionsSimple CAPM with quadratic utility functions(derived from state(derived from state--price beta model)price beta model)

2.2. MeanMean--variance analysisvariance analysis–– Portfolio Theory Portfolio Theory

((P f li f i ffi i f i )P f li f i ffi i f i )((Portfolio frontier, efficient frontier, …)Portfolio frontier, efficient frontier, …)–– CAPM CAPM (Intuition)(Intuition)

33 CAPMCAPM3.3. CAPMCAPM–– ProjectionsProjections

P i i K l d E i K lP i i K l d E i K lSlide Slide 0707--66MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

–– Pricing Kernel and Expectation KernelPricing Kernel and Expectation Kernel

Page 7: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Definition: MeanDefinition: Mean--Variance DominanceVariance Dominancee o : ee o : e V ce o ceV ce o ce& Efficient Frontier& Efficient Frontier

• Asset (portfolio) A mean-variance dominates asset (portfolio) Basset (portfolio) B if μA ≥ μB and σA < σΒ or if μA>μBwhile σA ≤σB.Effi i t f ti l i f ll d i t d• Efficient frontier: loci of all non-dominated portfolios in the mean-standard deviation space. B d fi iti (“ ti l”) iBy definition, no (“rational”) mean-variance investor would choose to hold a portfolio not l t d th ffi i t f ti

Slide Slide 0707--77MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

located on the efficient frontier.

Page 8: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

E d P f li R & V iE d P f li R & V iExpected Portfolio Returns & VarianceExpected Portfolio Returns & Variance

• Expected returns (linear)μp := E[rp] = wjμj , where each wj =

hjPhj

• Variance2 V [ ] 0V ( )

µσ21 σ12

¶µw1

¶μp [ p] jμj , j P

jhj

σ2p := V ar[rp] = w0V w = (w1 w2)µ

1 12

σ21 σ22

¶µ1

w2

¶= (w1σ

21 + w2σ21 w1σ12 + w2σ

22)

µw1w2

recall that correlation

µw2

¶= w21σ

21 + w

22σ

22 + 2w1w2σ12 ≥ 0

since σ12 ≤ −σ1σ2.

Slide Slide 0707--88MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

coefficient ∈ [-1,1]

Page 9: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Ill t ti f 2 A t CIll t ti f 2 A t CIllustration of 2 Asset CaseIllustration of 2 Asset Case

• For certain weights: w1 and (1-w1)μp = w1 E[r1]+ (1-w1) E[r2] μp 1 [ 1] ( 1) [ 2]σ2

p = w12 σ1

2 + (1-w1)2 σ22 + 2 w1(1-w1)σ1 σ2 ρ1,2

(Specify σ2p and one gets weights and μp’s)( p y p g g μp )

• Special cases [w1 to obtain certain σR]

– ρ = 1 ⇒ w = (+/-σ – σ ) / (σ – σ )– ρ1,2 1 ⇒ w1 (+/-σp – σ2) / (σ1 – σ2)– ρ1,2 = -1 ⇒ w1 = (+/- σp + σ2) / (σ1 + σ2)

Slide Slide 0707--99MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 10: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

For ρ1,2 = 1: Hence, σp = |w1σ1 + (1− w1)σ2| w1 =±σp−σ2ρ1,2 ,

μp = w1μ1 + (1− w1)μ21 σ1−σ2

μp

E[r2]

E[r ]

σ1 σp σ2

E[r1]

The Efficient Frontier: Two Perfectly Correlated Risky Assets

Lower part with … is irrelevant

Slide Slide 0707--1010MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

The Efficient Frontier: Two Perfectly Correlated Risky Assets

Page 11: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

For ρ1,2 = -1: Hence, σp = |w1σ1 − (1− w1)σ2| w1 =±σp+σ2

+ρ1,2 ,

μp = w1μ1 + (1− w1)μ21 σ1+σ2

E[ ]E[r2]

E[r ]

σ2σ1+σ2

μ1 +σ1

σ1+σ2μ2

slope: μ2−μ1σ1+σ2

σp

slope: −μ2−μ1σ1+σ2

σp

σ1 σ2

E[r1] σ1+σ2 p

Efficient Frontier: Two Perfectly Negative Correlated Risky Assets

Slide Slide 0707--1111MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Efficient Frontier: Two Perfectly Negative Correlated Risky Assets

Page 12: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

For -1 < ρ1,2 < 1:ρ1,2

E[r2]

E[r1]

σ1 σ2

Efficient Frontier: Two Imperfectly Correlated Risky Assets

Slide Slide 0707--1212MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 13: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

For σ = 0For σ1 = 0

E[r ]

μp

E[r2]

E[r1]

σ1 σp σ2

E[r1]

The Efficient Frontier: One Risky and One Risk Free Asset

Slide Slide 0707--1313MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 14: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Effi i f i i h i kEffi i f i i h i kEfficient frontier with n risky assetsEfficient frontier with n risky assets

• A frontier portfolio is one which displays minimum variance among all feasible portfolios with the same expected portfolio return E[r]return.

Vww21min T

w

( )λ Eew .t.s T = ⎟⎠⎞⎜

⎝⎛ =∑ E)r~(Ew

N

ii

2w

σ

( )γ 11w T = ⎟⎠⎞⎜

⎝⎛ =∑

⎠⎝

=

=

1wN

1ii

1i

Slide Slide 0707--1414

⎠⎝ =1i

Page 15: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

∂L∂L∂w = V w − λe− γ1 = 0∂L = E wTe = 0∂L∂λ = E − wTe = 0∂L∂γ = 1− wT1 = 0

The first FOC can be written as:

∂γ

V wp = λe+ γ1 or

λV −1 + V −11wp = λV 1e+ γV 11

eTwp = λ(eTV −1e) + γ(eTV −11)Slide Slide 0707--1515

p ( ) + γ( )

Page 16: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

N i h T T i h fi f h d fNoting that eT wp = wTpe, using the first foc, the second foc

can be written as

E[r̃ ] = eTw = λ (eTV −1e)+γ (eTV −11)

pre-multiplying first foc with 1 (instead of eT) yields

E[rp] = e wp = λ (e V e)| {z }:=B

+γ (e V 1)| {z }=:A

pre-multiplying first foc with 1 (instead of e ) yields

1Twp = wTp 1 = λ(1TV −1e) + γ(1TV −11) = 1

( T 1 ) ( T 1 )1 = λ (1TV −1e)| {z }=:A

+γ (1TV −11)| {z }=:C

Solving both equations for λ and γ

λ= CE−AD and γ = B−AE

D

Slide Slide 0707--1616

where D = BC −A2.

Page 17: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Hence, wp = λ V-1e + γ V-11 becomes

111 −− −+

−= V

DAEBeV

DACEwp

(vector) (vector)

( ) ( )[ ] ( ) ( )[ ]E1VAeVC1eVA1VB1 1111 −−−− −+−=

λ (scalar) γ (scalar)

( ) ( )[ ] ( ) ( )[ ]VeVCD

eVVD

• Result: Portfolio weights are linear in expected portfolio return E h g wp +=

Slide Slide 0707--1717

pIf E = 0, wp = gIf E = 1, wp = g + h

Hence, g and g+h are portfolios on the frontier.

Page 18: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Ch t i ti f F ti P tf liCh t i ti f F ti P tf li• Proposition 6.1: The entire set of frontier

f li b d b ("

Characterization of Frontier Portfolios Characterization of Frontier Portfolios

portfolios can be generated by ("are convexcombinations" of) g and g+h.

• Proposition 6.2. The portfolio frontier can bedescribed as convex combinations of any twof yfrontier portfolios, not just the frontier portfolios gand g+h.

• Proposition 6.3 : Any convex combination offrontier portfolios is also a frontier portfolio

Slide Slide 0707--1818MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

frontier portfolios is also a frontier portfolio.

Page 19: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

…Characterization of Frontier Portfolios… …Characterization of Frontier Portfolios…

• For any portfolio on the frontier,with g and h as defined earlier.

( ) ( )[ ] ( )[ ]pT

pp rhEgVrhEgrE ~~]~[2 ++=σ

Multiplying all this out yields:

Slide Slide 0707--191910:13 Lecture MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 20: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

…Characterization of Frontier Portfolios… …Characterization of Frontier Portfolios…

• (i) the expected return of the minimum variance portfoliois A/C;

• (ii) the variance of the minimum variance portfolio is givenby 1/C;y

• (iii) equation (6.17) is the equation of a parabola with(1/C A/C) i h d / i dvertex (1/C, A/C) in the expected return/variance space and

of a hyperbola in the expected return/standard deviationspace. See Figures 6.3 and 6.4.

Slide Slide 0707--2020MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

p g

Page 21: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Slide Slide 0707--2121MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Figure 6-3 The Set of Frontier Portfolios: Mean/Variance Space

Page 22: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Slide Slide 0707--2222MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Figure 6-4 The Set of Frontier Portfolios: Mean/SD Space

Page 23: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Slide Slide 0707--2323MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Figure 6-5 The Set of Frontier Portfolios: Short Selling Allowed

Page 24: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Efficient Frontier with riskEfficient Frontier with risk--free assetfree assetEfficient Frontier with riskEfficient Frontier with risk free assetfree asset

Slide Slide 0707--2424

The Efficient Frontier: One Risk Free and n Risky Assets

Page 25: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Efficient Frontier with riskEfficient Frontier with risk--free assetfree assetEfficient Frontier with riskEfficient Frontier with risk free assetfree asset

1 Tminw12w

TV w

s.t. wTe+ (1− wT1)rf = E[rp]

FOC: wp = λV −1(e− rf1)f

Multiplying by (e–rf 1)T and solving for λ yields λ =E[rp]−rf

(e−rf1)TV −1(e−rf1)

wp = V−1(e− rf1)| {z }

1

E[rp]−rfH2

Slide Slide 0707--2525where is a n

n×1H =

qB − 2Arf + Cr2f

Page 26: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Effi i f i i h i kEffi i f i i h i k ffEfficient frontier with riskEfficient frontier with risk--free assetfree assetT

• Result 1: Excess return in frontier excess returnCov[rq, rp] = wTq V wp

= wTq (e− rf1)E[rp]− rf

H2q f| {z }E[rq]−rf

H2

=(E[rq]− rf )([E[rp]− rf )

=H2

V ar[rp, rp] =(E[rp]− rf )2

H2

E[rq]− rf =Cov[rq, rp]

V ar[rp](E[rp]− rf)

H2

Slide Slide 0707--2626

V ar[rp]| {z }:=βq,p

Holds for any frontier portfolio p, in particular the market portfol

Page 27: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Efficient Frontier with riskEfficient Frontier with risk--free assetfree assetEfficient Frontier with riskEfficient Frontier with risk free assetfree asset

• Result 2: Frontier is linear in (E[r], σ)-spaceV ar[r r ]

(E[rp]− rf )2V ar[rp, rp] =

p f

H2

E[rp] = rf +Hσp

H =E[rp]−rf

σpp

where H is the Sharpe ratio

Slide Slide 0707--2727

Page 28: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

T F d S tiT F d S tiTwo Fund SeparationTwo Fund Separation

• Doing it in two steps:– First solve frontier for n risky assetFirst solve frontier for n risky asset– Then solve tangency point

• Advantage:• Advantage:– Same portfolio of n risky asset for different agents

with different risk aversionwith different risk aversion– Useful for applying equilibrium argument (later)

Slide Slide 0707--2828

Page 29: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

TwoTwo Fund SeparationFund SeparationTwo Two Fund SeparationFund Separation

Price of Risk == highest

Sharpe ratio

Slide Slide 0707--2929Optimal Portfolios of Two Investors with Different Risk Aversion

Page 30: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

MM V i P fV i P fMeanMean--Variance PreferencesVariance Preferences∂U∂μ > 0, ∂U

∂σ2 < 0• U(μp, σp) with

– Example:

∂μp ∂σp

E[W ]− γ2V ar[W ]

p• Also in expected utility framework

– quadratic utility function (with portfolio return R)U(R) = a + b R + c R2( )

vNM: E[U(R)] = a + b E[R] + c E[R2]= a + b μp + c μp

2 + c σp2

= g(μp, σp)p p

– asset returns normally distributed ⇒ R=∑j wj rj normal• if U(.) is CARA ⇒ certainty equivalent = μp - ρA/2σ2

p(Use moment generating function)

Slide Slide 0707--3030

(Use moment generating function)

Page 31: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Equilibrium leads to CAPMEquilibrium leads to CAPM

• Portfolio theory: only analysis of demand– price/returns are taken as given

i i f i k f li i f ll i– composition of risky portfolio is same for all investors

• Equilibrium Demand = Supply (market portfolio)• Equilibrium Demand = Supply (market portfolio)

• CAPM allows to deriveCAPM allows to derive– equilibrium prices/ returns.– risk-premium

Slide Slide 0707--3131MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 32: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

The CAPM with a riskThe CAPM with a risk free bondfree bondThe CAPM with a riskThe CAPM with a risk--free bondfree bond

• The market portfolio is efficient since it is on theThe market portfolio is efficient since it is on theefficient frontier.

• All individual optimal portfolios are located on• All individual optimal portfolios are located onthe half-line originating at point (0,rf).

RRE −][• The slope of Capital Market Line (CML): .

M

fM RREσ

−][

pM

fMfp

RRERRE σ

σ−

+=][

][

Slide Slide 0707--3232MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 33: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

The Capital Market LineThe Capital Market LineThe Capital Market LineThe Capital Market Line

CML

MrM

jrf

Slide Slide 0707--3333MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

σ pσM

Page 34: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

The Security Market LineThe Security Market LineE(r)

The Security Market LineThe Security Market Line

E(ri)SML

E(rM)

rfslope SML = (E(ri)-rf) /β i

ββ iβ M= 1

Slide Slide 0707--3434MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 35: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

OverviewOverview

1.1. Simple CAPM with quadratic utility functionsSimple CAPM with quadratic utility functions(derived from state(derived from state--price beta model)price beta model)

2.2. MeanMean--variance preferencesvariance preferences–– Portfolio TheoryPortfolio Theory–– CAPM CAPM (Intuition)(Intuition)

3.3. CAPM CAPM (modern derivation)(modern derivation)

–– ProjectionsProjections–– Pricing Kernel and Expectation KernelPricing Kernel and Expectation Kernel

Slide Slide 0707--3535MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 36: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

ProjectionsProjections

• States s=1,…,S with πs >0 • Probability inner productProbability inner product

( f l h)• π-norm (measure of length)

Slide Slide 0707--3636MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 37: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

⇒⇒shrinkaxesy y

x x

x and y are π-orthogonal iff [x,y]π = 0, I.e. E[xy]=0

Slide Slide 0707--3737MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 38: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

…Projections……Projections…

• Z space of all linear combinations of vectors z1, …,zn• Given a vector y ∈ RS solve

• [smallest distance between vector y and Z space]

Slide Slide 0707--3838MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

• [smallest distance between vector y and Z space]

Page 39: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

…Projections…Projections

yZ

E[ε zj]=0 for each j=1,…,n (from FOC)ε⊥ z

Slide Slide 0707--3939MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

yZ is the (orthogonal) projection on Zy = yZ + ε’ , yZ ∈ Z, ε ⊥ z

Page 40: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Expected Value and CoExpected Value and Co--Variance…Variance…squeeze axis by

(1,1)

x [x,y]=E[xy]=Cov[x,y] + E[x]E[y]x [x,y] E[xy] Cov[x,y] E[x]E[y][x,x]=E[x2]=Var[x]+E[x]2

||x||= E[x2]½

Slide Slide 0707--4040MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 41: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

E t d V l d CE t d V l d C V iV i…Expected Value and Co…Expected Value and Co--Variance Variance

E[x] = [x, 1]=

Slide Slide 0707--4141MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 42: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

OverviewOverview

1.1. Simple CAPM with quadratic utility functionsSimple CAPM with quadratic utility functions(derived from state(derived from state--price beta model)price beta model)

2.2. MeanMean--variance preferencesvariance preferences–– Portfolio TheoryPortfolio Theory–– CAPM CAPM (Intuition)(Intuition)

3.3. CAPM CAPM (modern derivation)(modern derivation)

P j iP j i–– ProjectionsProjections–– Pricing Kernel and Expectation KernelPricing Kernel and Expectation Kernel

Slide Slide 0707--4242MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 43: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

New (LeRoy & Werner) NotationNew (LeRoy & Werner) Notation

• Main changes (new versus old)– gross return: r = Rgross return: r R– SDF: μ = m– pricing kernel: k = m*pricing kernel: kq m

– Asset span: M = <X>– income/endowment: wt = et

Slide Slide 0707--4343MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 44: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Pricing Kernel kPricing Kernel kqq……M f f ibl ff• M space of feasible payoffs.

• If no arbitrage and π >>0 there exists gSDF μ ∈ RS, μ >>0, such that q(z)=E(μ z).∈M SDF d t b i t• μ ∈M – SDF need not be in asset span.

• A pricing kernel is a kq ∈M such that for each z ∈M, q(z)=E(kq z).

• (kq = m* in our old notation.)

Slide Slide 0707--4444MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

( q )

Page 45: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

P i i K lP i i K l E lE l…Pricing Kernel …Pricing Kernel -- Examples…Examples…

• Example 1:– S=3,πs=1/3 for s=1,2,3,S 3,π 1/3 for s 1,2,3, – x1=(1,0,0), x2=(0,1,1), p=(1/3,2/3).– Then k=(1 1 1) is the unique pricing kernelThen k (1,1,1) is the unique pricing kernel.

• Example 2:S 3 s 1/3 f 1 2 3– S=3,πs=1/3 for s=1,2,3,

– x1=(1,0,0), x2=(0,1,0), p=(1/3,2/3).Th k (1 2 0) i th i i i k l

Slide Slide 0707--4545MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

– Then k=(1,2,0) is the unique pricing kernel.

Page 46: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

P i i K lP i i K l U iU i…Pricing Kernel …Pricing Kernel –– UniquenessUniqueness• If a state price density exists, there exists aIf a state price density exists, there exists a

unique pricing kernel.– If dim(M) = m (markets are complete),If dim(M) m (markets are complete),

there are exactly m equations and m unknowns

If dim(M) ≤ m (markets may be incomplete)– If dim(M) ≤ m, (markets may be incomplete) For any state price density (=SDF) μ and any z ∈ME[(μ k )z]=0E[(μ-kq)z]=0μ=(μ-kq)+kq ⇒ kq is the “projection'' of μ on M.• Complete markets ⇒ k =μ (SDF=state price density)

Slide Slide 0707--4646MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

• Complete markets ⇒, kq=μ (SDF=state price density)

Page 47: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

E t ti K l kE t ti K l kExpectations Kernel kExpectations Kernel kee• An expectations kernel is a vector k ∈MAn expectations kernel is a vector ke∈M

– Such that E(z)=E(ke z) for each z ∈M.• Example p

– S=3, πs=1/3, for s=1,2,3, x1=(1,0,0), x2=(0,1,0). – Then the unique ke=(1,1,0).

• If π >>0, there exists a unique expectations kernel.• Let e=(1,…, 1) then for any z∈M

E[( k ) ] 0• E[(e-ke)z]=0• ke is the “projection” of e on M

k if b d b li t d ( if k t l t )

Slide Slide 0707--4747MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

• ke = e if bond can be replicated (e.g. if markets are complete)

Page 48: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Mean Variance FrontierMean Variance FrontierMean Variance FrontierMean Variance Frontier• Definition 1: z ∈M is in the mean variance frontier if

there exists no z’ ∈M such that E[z’]= E[z], q(z')= q(z) and var[z’] < var[z].

• Definition 2: Let E the space generated by kq and ke.• Decompose z=zE+ε, with zE∈ E and ε ⊥ E. • Hence, E[ε]= E[ε ke]=0, q(ε)= E[ε kq]=0

Cov[ε,zE]=E[ε zE]=0, since ε ⊥ E.• var[z] = var[zE]+var[ε] (price of ε is zero, but positive variance)• If z in mean variance frontier ⇒ z ∈ E.• Every z ∈ E is in mean variance frontier

Slide Slide 0707--4848MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

• Every z ∈ E is in mean variance frontier.

Page 49: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

F ti R tF ti R tFrontier Returns…Frontier Returns…• Frontier returns are the returns of frontier payoffs with• Frontier returns are the returns of frontier payoffs with

non-zero prices.

• x

Slide Slide 0707--4949MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

• graphically: payoffs with price of p=1.

Page 50: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

M RS R3M = RS = R3

Mean-Variance Payoff FrontierMean-Variance Payoff Frontier

ε

kq

Mean-Variance Return Frontierp=1-line = return-line (orthogonal to kq)

Slide Slide 0707--5050MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

p ( g q)

Page 51: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

M V i (P ff) F tiMean-Variance (Payoff) Frontier

(1 1 1) standard deviation

0kq

(1,1,1)

expected return

standard deviation

q

Slide Slide 0707--5151MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

NB: graphical illustrated of expected returns and standard deviation changes if bond is not in payoff span.

Page 52: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

M V i (P ff) F ti

efficient (return) frontier

Mean-Variance (Payoff) Frontier

(1 1 1) standard deviation

0kq

(1,1,1)

expected return

standard deviation

q

inefficient (return) frontier

Slide Slide 0707--5252MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 53: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

…Frontier Returns…Frontier Returns(if agent is risk-neutral)

Slide Slide 0707--5353MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 54: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Mi i V i P tf liMi i V i P tf liMinimum Variance PortfolioMinimum Variance Portfolio

• Take FOC w.r.t. λ of

H MVP h f• Hence, MVP has return of

Slide Slide 0707--5454MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 55: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Illustration of MVPIllustration of MVPIllustration of MVPIllustration of MVP

E t d tM = R2 and S=3

Mi i d d

Expected return of MVP

(1,1,1)

Minimum standard deviation

Slide Slide 0707--5555MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 56: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

MM V i Effi i t R tV i Effi i t R tMeanMean--Variance Efficient ReturnsVariance Efficient Returns• Definition: A return is mean-variance efficient if there

is no other return with same variance but greater expectationexpectation.

• Mean variance efficient returns are frontier returns withE[r ] ≥ E[r ]E[rλ] ≥ E[rλ0].

• If risk-free asset can be replicatedM i ffi i t t d t λ ≤ 0– Mean variance efficient returns correspond to λ ≤ 0.

– Pricing kernel (portfolio) is not mean-variance efficient, since

Slide Slide 0707--5656MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 57: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

ZZ C i F ti R tC i F ti R tZeroZero--Covariance Frontier ReturnsCovariance Frontier Returns• Take two frontier portfolios with returns• Take two frontier portfolios with returns

and• CC

• The portfolios have zero co-variance ifp

• For all λ ≠ λ0 μ exists• μ=0 if risk-free bond can be replicated

Slide Slide 0707--5757MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 58: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Illustration of ZC Portfolio…Illustration of ZC Portfolio…Illustration of ZC Portfolio…Illustration of ZC Portfolio…M = R2 and S=3

arbitrary portfolio p(1,1,1)

y p p

Recall:

Slide Slide 0707--5858MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 59: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

…Illustration of ZC Portfolio…Illustration of ZC Portfolio…Illustration of ZC Portfolio…Illustration of ZC PortfolioGreen lines do not necessarily cross.

arbitrary portfolio p(1,1,1)

y p p

ZC of pp

Slide Slide 0707--5959MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 60: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

B t P i iB t P i iBeta Pricing…Beta Pricing…• Frontier Returns (are on linear subspace). Hence

• Consider any asset with payoff xjy p y j– It can be decomposed in xj = xj

E + εj

– q(xj)=q(xjE) and E[xj]=E[xj

E], since ε ⊥ E.q(xj) q(xj ) and E[xj] E[xj ], since ε ⊥ E. – Let rj

E be the return of xjE

– x– x– Using above and assuming λ ≠ λ0 and μ is

ZC-portfolio of λ

Slide Slide 0707--6060MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

ZC portfolio of λ,

Page 61: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

B t P i iB t P i i…Beta Pricing…Beta Pricing

• Taking expectations and deriving covariance• _

• If risk-free asset can be replicated, beta-pricing equation simplifies toequation simplifies to

• Problem: How to identify frontier returnsSlide Slide 0707--6161MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

• Problem: How to identify frontier returns

Page 62: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

C it l A t P i i M d lC it l A t P i i M d lCapital Asset Pricing Model…Capital Asset Pricing Model…

• CAPM = market return is frontier return– Derive conditions under which market return is frontier return– Two periods: 0,1.

– Endowment: individual wi1 at time 1, aggregate

where the orthogonal projection of on M is. – The market payoff:– Assume q(m) ≠ 0, let rm=m / q(m), and

assume that rm is not the minimum variance return.

Slide Slide 0707--6262MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 63: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

C it l A t P i i M d lC it l A t P i i M d l…Capital Asset Pricing Model…Capital Asset Pricing Model

• If rm0 is the frontier return that has zero covariance with rm then, for every security j,

• E[rj]=E[rm0] + βj (E[rm]-E[rm0]), with βj=cov[rj,rm] / var[rm].j j

• If a risk free asset exists, equation becomes,• E[rj]= rf + βj (E[rm]- rf) [ j] f βj ( [ m] f)

• N.B. first equation always hold if there are only two assets.

Slide Slide 0707--6363MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

q y y

Page 64: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

O td t d t i l f llO td t d t i l f llOutdated material followsOutdated material follows

• Traditional derivation of CAPM is less elegant• Not relevant for examsNot relevant for exams

Slide Slide 0707--6464MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 65: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Ch t i ti f F ti P tf liCh t i ti f F ti P tf li• Proposition 6.1: The entire set of frontier

f li b d b ("

Characterization of Frontier Portfolios Characterization of Frontier Portfolios

portfolios can be generated by ("are convexcombinations" of) g and g+h.

• Proposition 6.2. The portfolio frontier can bedescribed as convex combinations of any twof yfrontier portfolios, not just the frontier portfolios gand g+h.

• Proposition 6.3 : Any convex combination offrontier portfolios is also a frontier portfolio

Slide Slide 0707--6565MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

frontier portfolios is also a frontier portfolio.

Page 66: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Ch t i ti f F ti P tf liCh t i ti f F ti P tf li• Proposition 6.1: The entire set of frontier

Characterization of Frontier Portfolios Characterization of Frontier Portfolios p f f

portfolios can be generated by ("are convexcombinations" of) g and g+h.f) g g– Proof: To see this let q be an arbitrary frontier portfolio with

as its expected return.

Consider portfolio eights (proportions)( )qr~E

Consider portfolio weights (proportions) then, as asserted,( ) ( )qhgqg r~E and r~E1 =π−=π +

( )[ ] ( )( ) ( ) wr~hEghgr~Egr~E1 +++( )[ ] ( )( ) ( ) .wrhEghgrEgrE1 qqqq =+=++−

Slide Slide 0707--6666MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 67: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

• Proposition 6.2. The portfolio frontier can be described asconvex combinations of any two frontier portfolios, not justthe frontier portfolios g and g+h.

• Proof: To see this, let p1 and p2 be any two distinct frontier portfolios; since the frontier portfolios are E[rp1] ≠ E[rp2] different. Let q be an arbitrary frontier portfolio, with d e e t. et q be a a b t a y o t e po t o o, w texpected return equal to E[rq]. Since E[rp1] ≠ E[rp2] , there must exist a unique number such that

E[r ] = α E[r ] + (1 α) E[r ] (6 16)E[rq] = α E[rp1] + (1 - α) E[rp2] (6.16)Now consider a portfolio of p1 and p2 with weights α, 1- α,respectively, as determined by (6.16). We must show that

wq = α wp1 + (1 - α) wp2.

Slide Slide 0707--6767MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 68: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Proof of Proposition 6.2 (continued)

( ) ( )[ ] ( ) ( )[ ]2121 pppp r~hEg1r~hEgw1w +α−++α=α−+α

( ) ( ) ( )[ ]( ) ( ) ( )[ ]( ) onconstructiby ,r~hEg

r~E1r~Ehg

q

pp 21

+=

α−+α+=

portfolio.frontier a is q since ,wq=

Slide Slide 0707--6868MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 69: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

• Proposition 6.3 : Any convex combination of frontierf li i l f i f liportfolios is also a frontier portfolio.

• Proof : Let , define N frontier portfolios( represents the vector defining the composition of the ith

( )N1 w...w

iw( represents the vector defining the composition of the iportfolios) and let , i = 1, ..., N be real numbers suchthat . Lastly, let denote the expected returnof portfolio with weights

iwiα

1N1i i =∑ α= ( )irE

of portfolio with weights .The weights corresponding to a linear combination of theabove N portfolios are :

iw

( )( )∑ +α=∑α==

N

1iii

N

1iii r~hEgw

( )∑α+∑α=NN

r~Ehg ( )∑α+∑α=== 1i

ii1i

i rEhg

( )⎥⎦⎤

⎢⎣⎡∑α+=

=

N

1iii r~Ehg

N( ) ( )

N

Slide Slide 0707--6969MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Thus is a frontier portfolio with .∑α=

N

1iiiw ( ) ( )i

N

1ii r~ErE ∑α=

=

Page 70: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

…Characterization of Frontier Portfolios… …Characterization of Frontier Portfolios…

• For any portfolio on the frontier,with g and h as defined earlier.

( ) ( )[ ] ( )[ ]pT

pp rhEgVrhEgrE ~~]~[2 ++=σ

Multiplying all this out yields:

Slide Slide 0707--7070MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 71: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

…Characterization of Frontier Portfolios… …Characterization of Frontier Portfolios…

• (i) the expected return of the minimum variance portfoliois A/C;

• (ii) the variance of the minimum variance portfolio is givenby 1/C;y

• (iii) equation (6.17) is the equation of a parabola with(1/C A/C) i h d / i dvertex (1/C, A/C) in the expected return/variance space and

of a hyperbola in the expected return/standard deviationspace. See Figures 6.3 and 6.4.

Slide Slide 0707--7171MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

p g

Page 72: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Slide Slide 0707--7272MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Figure 6-3 The Set of Frontier Portfolios: Mean/Variance Space

Page 73: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Slide Slide 0707--7373MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Figure 6-4 The Set of Frontier Portfolios: Mean/SD Space

Page 74: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Slide Slide 0707--7474MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Figure 6-5 The Set of Frontier Portfolios: Short Selling Allowed

Page 75: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Characterization of Efficient PortfoliosCharacterization of Efficient PortfoliosCharacterization of Efficient Portfolios Characterization of Efficient Portfolios (No Risk(No Risk--Free Assets)Free Assets)

• Definition 6.2: Efficient portfolios are those frontier tf li hi h t i d i t dportfolios which are not mean-variance dominated.

• Lemma: Efficient portfolios are those frontier portfolios for which the expected return exceeds A/Cportfolios for which the expected return exceeds A/C, the expected return of the minimum variance portfolioportfolio.

Slide Slide 0707--7575MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 76: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

• Proposition 6.4 : The set of efficient portfolios is a convex set.– This does not mean, however, that the frontier of this set is convex-, ,

shaped in the risk-return space.

• Proof : Suppose each of the N portfolios considered above was• Proof : Suppose each of the N portfolios considered above wasefficient; then , for every portfolio i.( ) C/Ar~E i ≥

AANN

However ; thus, the convexcombination is efficient as well. So the set of efficient

f li h i d b h i f li i h i

( )CA

CAr~E

N

1ii

N

1iii ∑ =α≥∑α

==

portfolios, as characterized by their portfolio weights, is aconvex set.

Slide Slide 0707--7676MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 77: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Zero Covariance PortfolioZero Covariance Portfolio• Zero-Cov Portfolio is useful for Zero-Beta CAPM

• Proposition 6.5: For any frontier portfolio p, except theProposition 6.5: For any frontier portfolio p, except theminimum variance portfolio, there exists a unique frontierportfolio with which p has zero covariance.We will call this portfolio the "zero covariance portfolioWe will call this portfolio the zero covariance portfolio relative to p", and denote its vector of portfolio weights by

.( )pZC

• Proof: by construction.

Slide Slide 0707--7777MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 78: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

collect all expected returns terms, add and subtract A2C/DC2collect all expected returns terms, add and subtract A C/DCand note that the remaining term (1/C)[(BC/D)-(A2/D)]=1/C, since D=BC-A2

Slide Slide 0707--7878MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 79: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

For zero co-variance portfolio ZC(p)For zero co variance portfolio ZC(p)

For graphical illustration, let’s draw this line:

Slide Slide 0707--7979MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 80: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

Graphical Representation:

line through p (Var[r ] E[r ]) ANDp (Var[rp], E[rp]) ANDMVP (1/C, A/C) (use )

for σ2(r) = 0 you get E[rZC(p)]

( ) ( )C1

CAr~E

DCr~

2

pp2 +⎟

⎠⎞

⎜⎝⎛ −=σ

for σ (r) 0 you get E[rZC(p)]

Slide Slide 0707--8080MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 81: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

E ( r )

A/C

p

A/CMVP

ZC(p)E[r ( ZC(p)] ZC (p) on frontier

(1/C) Var ( r )

Slide Slide 0707--8181MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Figure 6-6 The Set of Frontier Portfolios: Location of the Zero-Covariance Portfolio

Page 82: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

ZeroZero Beta CAPMBeta CAPMZeroZero--Beta CAPM Beta CAPM (no risk(no risk--free asset)free asset)

(i) agents maximize expected utility with increasing andstrictly concave utility of money functions and assetreturns are multivariate normally distributed, or

(ii) each agent chooses a portfolio with the objective ofmaximizing a derived utility function of the formmaximizing a derived utility function of the form

, U concave.(iii) common time horizon,

( ) 0 U0, U,e,U 212 <>σ

( ) ,(iv) homogeneous beliefs about e and σ2

Slide Slide 0707--8282MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

Page 83: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

– All investors hold mean-variance efficient portfolios

th k t tf li i bi ti f ffi i t tf li– the market portfolio is convex combination of efficient portfolios ⇒ is efficient.

– Cov[rp,rq] = λ E[rq]+ γ (q need not be on the frontier) (6.22)– Cov[rp,rZC(p)] = λ E[rZC(p)] + γ=0

– Cov[rp,rq] = λ {E[rq]-E[rZC(p)]}p q q (p)

– Var[rp] = λ {E[rp]-E[rZC(p)]} .

Divide third by fourth equation:

( ) ( )( ) ( ) ( )( )[ ]MZCMMqMZCq r~Er~Er~Er~E −β+= (6.28)

( ) ( ) ( ) ( )[ ]r~Er~Er~Er~E β+= (6 29)

Slide Slide 0707--8383MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM

( ) ( )( ) ( ) ( )( )[ ]MZCMMjMZCj rErErErE −β+= (6.29)

Page 84: Lecture Lecture 07: 07: MeanMean--Variance Analysis …markus/teaching/Fin501/07Lecture.pdf · Lecture Lecture 07: 07: MeanMean--Variance Analysis &Variance Analysis & Capital Asset

Fin 501: Asset PricingFin 501: Asset Pricing

ZZ B t CAPMB t CAPMZeroZero--Beta CAPMBeta CAPM

• mean variance framework (quadratic utility or normal returns)

• In equilibrium market portfolio which is aIn equilibrium, market portfolio, which is a convex combination of individual portfolios

E[rq] = E[rZC(M)]+ βMq[E[rM]-E[rZC(M)]]

E[rj] = E[rZC(M)]+ βMj[E[rM]-E[rZC(M)]]

Slide Slide 0707--8484MeanMean--Variance Analysis and CAPMVariance Analysis and CAPM