lecture 9 - arima modelscr173/sta444_sp17/slides/lec9.pdfeda time rwd 0 100 200 300 400 500 0 10 20...

38
Lecture 9 ARIMA Models Colin Rundel 02/15/2017 1

Upload: others

Post on 10-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

Lecture 9ARIMA Models

Colin Rundel02/15/2017

1

Page 2: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

MA(∞)

2

Page 3: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

MA(q)

From last time,

MA(q) : yt = δ + wt + θ1 wt−1 + θ2 wt−2 + · · · + θq wt−q

Properties:

E(yt) = δ

Var(yt) = (1+ θ21 + θ2 + · · · + θ2q)σ2w

Cov(yt, yt+h) =

{θh + θ1 θ1+h + θ2 θ2+h + · · · + θq−h θq if |h| ≤ q

0 if |h| > q

and is stationary for any values of θi

3

Page 4: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

MA(∞)

If we let q → ∞ then process will still be stationary if the moving averagecoefficients (θ ’s) are square summable,

∞∑i=1

θ2i < ∞

since this is necessary for Var(yt) < ∞.

Sometimes, a slightly strong condition called absolute summability,∑∞i=1 |θi| < ∞, is necessary (e.g. for some CLT related asymptotic results) .

4

Page 5: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

Invertibility

If a MA(q) process, yt = δ + θq(L)wt, can be rewritten as a purely ARprocess then it is said that the MA process is invertible.

MA(1) w/ δ = 0 example:

5

Page 6: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

Invertibility vs Stationarity

A MA(q) process is invertible if yt = δ + θq(L)wt can be rewritten as anexclusively AR process (of possibly infinite order), i.e. ϕ(L) yt = α + wt.

Conversely, an AR(p) process is stationary if ϕp(L) yt = δ + wt can berewritten as an exclusively MA process (of possibly infinite order), i.e.yt = δ + θ(L)wt.

So using our results w.r.t. ϕ(L) it follows that if all of the roots of θq(L) areoutside the complex unit circle then the moving average is invertible.

6

Page 7: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

Invertibility vs Stationarity

A MA(q) process is invertible if yt = δ + θq(L)wt can be rewritten as anexclusively AR process (of possibly infinite order), i.e. ϕ(L) yt = α + wt.

Conversely, an AR(p) process is stationary if ϕp(L) yt = δ + wt can berewritten as an exclusively MA process (of possibly infinite order), i.e.yt = δ + θ(L)wt.

So using our results w.r.t. ϕ(L) it follows that if all of the roots of θq(L) areoutside the complex unit circle then the moving average is invertible.

6

Page 8: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

Invertibility vs Stationarity

A MA(q) process is invertible if yt = δ + θq(L)wt can be rewritten as anexclusively AR process (of possibly infinite order), i.e. ϕ(L) yt = α + wt.

Conversely, an AR(p) process is stationary if ϕp(L) yt = δ + wt can berewritten as an exclusively MA process (of possibly infinite order), i.e.yt = δ + θ(L)wt.

So using our results w.r.t. ϕ(L) it follows that if all of the roots of θq(L) areoutside the complex unit circle then the moving average is invertible.

6

Page 9: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

Differencing

7

Page 10: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

Difference operator

We will need to define one more notational tool for indicating differencing

∆yt = yt − yt−1

just like the lag operator we will indicate repeated applications of thisoperator using exponents

∆2yt = ∆(∆yt)

= (∆yt) − (∆yt−1)

= (yt − yt−1) − (yt−1 − yt−2)

= yt − 2yt−1 + yt−2

∆ can also be expressed in terms of the lag operator L,

∆d = (1 − L)d

8

Page 11: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

Differencing and Stocastic Trend

Using the two component time series model

yt = µt + xt

where µt is a non-stationary trend component and xt is a mean zerostationary component.

We have already shown that differencing can address deterministic trend(e.g. µt = β0 + β1 t). In fact, if µt is any k-th order polynomial of t then∆kyt is stationary.

Differencing can also address stochastic trend such as in the case where µt

follows a random walk.

9

Page 12: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

Stochastic trend - Example 1

Let yt = µt + wt where wt is white noise and µt = µt−1 + vt with vtstationary as well. Is∆yt stationary?

10

Page 13: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

Stochastic trend - Example 2

Let yt = µt + wt where wt is white noise and µt = µt−1 + vt but nowvt = vt−1 + et with et being stationary. Is∆yt stationary? What about∆2yt,is it stationary?

11

Page 14: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

ARIMA

12

Page 15: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

ARIMA Models

Autoregressive integrated moving average are just an extension of an ARMAmodel to include differencing of degree d to yt, which is most often used toaddress trend in the data.

ARIMA(p, d, q) : ϕp(L) ∆d yt = δ + θq(L)wt

Box-Jenkins approach:

1. Transform data if necessary to stabilize variance

2. Choose order (p, d, and q) of ARIMA model

3. Estimate model parameters (ϕs and θs)

4. Diagnostics

13

Page 16: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

ARIMA Models

Autoregressive integrated moving average are just an extension of an ARMAmodel to include differencing of degree d to yt, which is most often used toaddress trend in the data.

ARIMA(p, d, q) : ϕp(L) ∆d yt = δ + θq(L)wt

Box-Jenkins approach:

1. Transform data if necessary to stabilize variance

2. Choose order (p, d, and q) of ARIMA model

3. Estimate model parameters (ϕs and θs)

4. Diagnostics

13

Page 17: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

Using forecast - random walk with drift

Some of R’s base timeseries handling is a bit wonky, the forecast packageoffers some useful alternatives and additional functionality.

rwd = arima.sim(n=500, model=list(order=c(0,1,0)), mean=0.1)

library(forecast)Arima(rwd, order = c(0,1,0), include.constant = TRUE)## Series: rwd## ARIMA(0,1,0) with drift#### Coefficients:## drift## 0.0641## s.e. 0.0431#### sigma^2 estimated as 0.9323: log likelihood=-691.44## AIC=1386.88 AICc=1386.91 BIC=1395.31

14

Page 18: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

EDA

Time

rwd

0 100 200 300 400 500

010

2030

40

Time

diff(

rwd)

0 100 200 300 400 500

−3

−2

−1

01

23

0.0

0.4

0.8

AC

F

0 5 10 15 20 25

−0.

100.

000.

10

AC

F

0 5 10 15 20 25

15

Page 19: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

Over differencing

Time

diff(

rwd,

2)

0 100 200 300 400 500

−4

−2

02

4

−0.

10.

10.

30.

5

Lag

AC

F

0 5 10 15 20 25

diff(

rwd,

3)

0 100 200 300 400 500

−4

−2

02

4

0.0

0.2

0.4

0.6

AC

F

0 5 10 15 20 25

16

Page 20: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

AR or MA?ts

1

0 50 100 150 200 250

−30

−25

−20

−15

−10

−5

0

ts2

0 50 100 150 200 250

020

4060

17

Page 21: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

EDA

Time

ts1

0 50 100 150 200 250

−30

−20

−10

0

−0.

20.

20.

61.

0Lag

AC

F5 10 15 20

−0.

20.

20.

61.

0

Lag

Par

tial A

CF

5 10 15 20

ts2

0 50 100 150 200 250

020

4060

−0.

20.

20.

61.

0

AC

F

5 10 15 20

−0.

20.

20.

61.

0

Par

tial A

CF

5 10 15 20

18

Page 22: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

ts1 - Finding d

d=1

Time

diff(

ts1)

0 50 100 150 200 250

−3

−1

13

d=2

Time

diff(

ts1,

2)

0 50 100 150 200 250

−6

−2

02

4

d=3

Time

diff(

ts1,

3)

0 50 100 150 200 250

−5

05

−0.

20.

00.

20.

4

Lag

AC

F

5 10 15 20

−0.

20.

20.

6

Lag

AC

F

5 10 15 20

−0.

20.

20.

6

Lag

AC

F

5 10 15 20

−0.

20.

00.

20.

4

Par

tial A

CF

5 10 15 20

−0.

40.

00.

4

Par

tial A

CF

5 10 15 20

−0.

40.

00.

40.

8

Par

tial A

CF

5 10 15 20

19

Page 23: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

ts2 - Finding d

d=1

Time

diff(

ts2)

0 50 100 150 200 250

−3

−1

12

34

d=2

Time

diff(

ts2,

2)

0 50 100 150 200 250

−6

−2

24

6

d=3

Time

diff(

ts2,

3)

0 50 100 150 200 250

−5

05

−0.

20.

20.

6

Lag

AC

F

5 10 15 20

−0.

20.

20.

6

Lag

AC

F

5 10 15 20

−0.

20.

20.

6

Lag

AC

F

5 10 15 20

−0.

20.

20.

6

Par

tial A

CF

5 10 15 20

−0.

20.

20.

6

Par

tial A

CF

5 10 15 20

−0.

20.

20.

6

Par

tial A

CF

5 10 15 20

20

Page 24: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

ts1 - Models

p d q AIC BIC

0 1 2 729.43 740.001 1 2 731.23 745.312 1 2 731.57 749.182 1 1 744.29 758.382 1 0 747.55 758.121 1 0 747.61 754.651 1 1 748.65 759.210 1 1 764.98 772.020 1 0 800.43 803.95

21

Page 25: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

ts2 - Models

p d q AIC BIC

2 1 0 683.12 693.681 1 2 683.25 697.342 1 1 683.83 697.922 1 2 685.06 702.671 1 1 686.38 696.951 1 0 719.16 726.200 1 2 754.66 765.220 1 1 804.44 811.480 1 0 890.32 893.85

22

Page 26: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

ts1 - Model Choice

Arima(ts1, order = c(0,1,2))## Series: ts1## ARIMA(0,1,2)#### Coefficients:## ma1 ma2## 0.4138 0.4319## s.e. 0.0547 0.0622#### sigma^2 estimated as 1.064: log likelihood=-361.72## AIC=729.43 AICc=729.53 BIC=740

23

Page 27: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

ts2 - Model Choice

Arima(ts2, order = c(2,1,0))## Series: ts2## ARIMA(2,1,0)#### Coefficients:## ar1 ar2## 0.4392 0.3770## s.e. 0.0587 0.0587#### sigma^2 estimated as 0.8822: log likelihood=-338.56## AIC=683.12 AICc=683.22 BIC=693.68

24

Page 28: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

Residuals

ts1 Residuals

Time

ts1_

resi

d

0 50 100 150 200 250

−3

−1

13

−0.

20.

00.

2Lag

AC

F5 10 15 20

−0.

20.

00.

2

Lag

Par

tial A

CF

5 10 15 20

ts2 Residuals

ts2_

resi

d

0 50 100 150 200 250

−2

01

23

−0.

20.

00.

2

AC

F

5 10 15 20

−0.

20.

00.

2

Par

tial A

CF

5 10 15 20

25

Page 29: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

Electrical Equipment Sales

26

Page 30: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

Data

elec_sales

2000 2005 2010

8090

100

110

0 5 10 15 20 25 30 35

−0.

20.

20.

6

Lag

AC

F

0 5 10 15 20 25 30 35

−0.

20.

20.

6

Lag

PAC

F

27

Page 31: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

1st order differencing

diff(elec_sales, 1)

2000 2005 2010

−10

−5

05

10

0 5 10 15 20 25 30 35

−0.

3−

0.1

0.1

0.3

Lag

AC

F

0 5 10 15 20 25 30 35

−0.

3−

0.1

0.1

0.3

Lag

PAC

F

28

Page 32: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

2nd order differencing

diff(elec_sales, 2)

2000 2005 2010

−10

−5

05

10

0 5 10 15 20 25 30 35

−0.

20.

00.

20.

4

Lag

AC

F

0 5 10 15 20 25 30 35

−0.

20.

00.

20.

4

Lag

PAC

F

29

Page 33: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

Model

Arima(elec_sales, order = c(3,1,0))## Series: elec_sales## ARIMA(3,1,0)#### Coefficients:## ar1 ar2 ar3## -0.3488 -0.0386 0.3139## s.e. 0.0690 0.0736 0.0694#### sigma^2 estimated as 9.853: log likelihood=-485.67## AIC=979.33 AICc=979.55 BIC=992.32

30

Page 34: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

Residuals

Arima(elec_sales, order = c(3,1,0)) %>% residuals() %>% tsdisplay(points=FALSE)

.

2000 2005 2010

−5

05

0 5 10 15 20 25 30 35

−0.

2−

0.1

0.0

0.1

0.2

Lag

AC

F

0 5 10 15 20 25 30 35

−0.

2−

0.1

0.0

0.1

0.2

Lag

PAC

F

31

Page 35: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

Model Comparison

Arima(elec_sales, order = c(3,1,0))$aic## [1] 979.3314

Arima(elec_sales, order = c(3,1,1))$aic## [1] 978.1664

Arima(elec_sales, order = c(4,1,0))$aic## [1] 978.9048

Arima(elec_sales, order = c(2,1,0))$aic## [1] 996.6795

32

Page 36: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

Model fit

plot(elec_sales, lwd=2, col=adjustcolor(”blue”, alpha.f=0.75))Arima(elec_sales, order = c(3,1,0)) %>% fitted() %>% lines(col=adjustcolor(’red’,alpha.f=0.75),lwd=2)

Time

elec

_sal

es

2000 2005 2010

8090

100

110

33

Page 37: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

Model forecast

Arima(elec_sales, order = c(3,1,0)) %>% forecast() %>% plot()

Forecasts from ARIMA(3,1,0)

2000 2005 2010

6070

8090

100

110

34

Page 38: Lecture 9 - ARIMA Modelscr173/Sta444_Sp17/slides/Lec9.pdfEDA Time rwd 0 100 200 300 400 500 0 10 20 30 40 Time diff(rwd) 0 100 200 300 400 500-3-2-1 0 1 2 3 0.0 D 0.8 ACF 0 5 10 15

General Guidance

1. Positive autocorrelations out to a large number of lags usuallyindicates a need for differencing

2. Slightly too much or slightly too little differencing can be corrected byadding AR or MA terms respectively.

3. A model with no differencing usually includes a constant term, amodel with two or more orders (rare) differencing usually does notinclude a constant term.

4. After differencing, if the PACF has a sharp cutoff then consider addingAR terms to the model.

5. After differencing, if the ACF has a sharp cutoff then consider addingan MA term to the model.

6. It is possible for an AR term and an MA term to cancel each other’seffects, so try models with one fewer AR term and one fewer MA term.

Based on rules from https://people.duke.edu/~rnau/411arim2.htm andhttps://people.duke.edu/~rnau/411arim3.htm

35