lecture 4: stratospheric transport - gfd-dennou · 2010-11-26 · lecture 4: stratospheric...

55
Lecture 4: Stratospheric Transport (i) Quantifying transport rates: Effective diffusivity (ii) Quantifying transport rates: Age (iii) Stratospheric trace gases: Global structure and tracer-tracer relationships FDEPS 2010 Alan Plumb, MIT Nov 2010

Upload: tranhuong

Post on 05-Jul-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Lecture 4:

Stratospheric Transport

(i) Quantifying transport rates: Effective diffusivity

(ii) Quantifying transport rates: Age

(iii) Stratospheric trace gases:Global structure and tracer-tracer relationships

FDEPS 2010

Alan Plumb, MIT

Nov 2010

stirring diabatic motion

gfdsemi
タイプライターテキスト
Plumb et al (2007)

(i) Quantifying transport rates:

Effective diffusivity

A(Q,t)

“Effective diffusivity”

[Nakamura, J Atmos Sci, 1996]

∂q

∂t+ u ⋅ ∇q = κ∇2q

X = ∮X dl|∇q |

/ ∮ dl|∇q |

∂q

∂t=

∂Q

∂t A

u ⋅ ∇q = 0

κ∇2q = ∂A∂Q

−1∂∂Q

κ ∂A∂Q

|∇q |2

∂Q

∂t= 1

a2 cos φe

∂∂φe

Keff cos φe∂Q

∂φe

K eff = κLe

2

4π2a2 cos2φe

= κLe

2

L2φe

L eQ = ∮|∇q | dl ∮ dl|∇q |

diffusion equation

effective diffusivity

equiivalent length

A(Q,t)

“Effective diffusivity”

[Nakamura, J Atmos Sci, 1996]

∂q

∂t+ u ⋅ ∇q = κ∇2q

X = ∮X dl|∇q |

/ ∮ dl|∇q |

∂q

∂t=

∂Q

∂t A

u ⋅ ∇q = 0

κ∇2q = ∂A∂Q

−1∂∂Q

κ ∂A∂Q

|∇q |2

∂Q

∂t= 1

a2 cos φe

∂∂φe

Keff cos φe∂Q

∂φe

K eff = κLe

2

4π2a2 cos2φe

= κLe

2

L2φe

L eQ = ∮|∇q | dl ∮ dl|∇q |

diffusion equation

effective diffusivity

equiivalent length

color: Keff

contours: zonal wind

[Haynes & Shuckburgh, J Atmos Sci,2002]

vortexmidlatitude

“surf zone”

tropics

gfdsemi
タイプライターテキスト
Plumb et al (2007)
gfdsemi
タイプライターテキスト
Haynes & Shuckburgh, J Atmos Sci, 2002

vortex

gfdsemi
タイプライターテキスト
Haynes & Shuckburgh, J Atmos Sci, 2002

vortex

midlatitude “surf zone”

gfdsemi
タイプライターテキスト
Haynes & Shuckburgh, J Atmos Sci, 2002

vortex

midlatitude “surf zone”tropics

gfdsemi
タイプライターテキスト
Haynes & Shuckburgh, J Atmos Sci, 2002

vortex

midlatitude “surf zone”tropics

summer

gfdsemi
タイプライターテキスト
Haynes & Shuckburgh, J Atmos Sci, 2002

In “surf zone”,

Keff ∼ 3 × 106m2s−1

mixing time across L = 3000km:

τmix ∼ L2

Keff∼

3 × 1062

3 × 106∼ 3 × 106 s ∼ 35 days

Time scale for residual advection across surf zone (v̄∗ ∼ 0. 1ms−1):

τadv ∼ Lv̄∗

∼ 3 × 107s ∼ 1 year

τmix ≪ τadv

Stirring and mixing is the dominant poleward transport process

Transport rates

tropopause

gfdsemi
タイプライターテキスト
Plumb et al (2007)
gfdsemi
タイプライターテキスト
Plumb et al (2007)

tropopause

entrainment across edges into surf zone (and some detrainment)

gfdsemi
タイプライターテキスト
Plumb et al (2007)

(ii) Quantifying transport rates: Age

a stratospheric clock

tropopause

Γ(λ,γ,z)

Γ=0

conserved tracer:∂q

∂t+ u ⋅ ∇q − κ∇ 2q =

∂q

∂t+ Tq = 0

age: ∂Γ∂t

+ TΓ = 1

gfdsemi
タイプライターテキスト
Plumb et al (2007)

linearly growing tracer q0t = Q0 + Λt

→ in equilibrium qϕ,z, t = Qϕ,z + Λt

∂q

∂t+ Tq = Λ + TQ = 0

→ Qϕ,z = −T−1Λ ; Qϕ0,z0 = Q0

→ Q − Q0 = − ΛΓ

→ qϕ,z, t = Q0 + Λt − Γ

= q0t − Γ

SP Equator NP

100 10 1 0.1

hP

a

4

4.5

3

Modeled age (annual mean; yrs)

∂Γ∂t

+ TΓ = 1

steady equilibrium: TΓ = 1 → Γϕ, z = T−11 ; Γ0 = 0

Theoretical (ideal) age:

Age from observed tracers:

Age from observed tracers:

Andrews et al,

J.Geophys Res, 2001

Surface values

balloon measurements

Lines are smoothed surface values

delayed by 4, 4.5, 5 years

linearly growing tracer q0t = Q0 + Λt

→ in equilibrium qϕ,z, t = Qϕ,z + Λt

∂q

∂t+ Tq = Λ + TQ = 0

→ Qϕ,z = −T−1Λ ; Qϕ0,z0 = Q0

→ Q − Q0 = − ΛΓ

→ qϕ,z, t = Q0 + Λt − Γ

= q0t − Γ

CO2 – derived age (yr)

z

[Engel et al, Nature Geoscience,

2008]

Global flux of age

∂Γ∂t

+ TΓ = ∂Γ∂t

+ 1ρ ∇ ⋅ F Γ = 1

in equilibrium 1ρ ∇ ⋅ F Γ = 1

Integrate over volume above surface θ = Θ :

→ ∫∫∫θ>Θ

∇ ⋅ FΓ dV = ∫∫∫θ>Θ0

ρ dV = MΘ

∫∫∫θ>Θ

∇ ⋅ FΓ dV = ∫∫θ=Θ

FΓ ⋅ n dA

→ ∫∫θ=Θ

FΓ ⋅ n dA = MΘ

→ so we know the net flux of age through any surface ifwe know the mass above that surface (which we do if weknow p along the surface)

θ

YOUNG

OLD

Z

WINTER

POLESUMMER

POLE

→ ∫∫θ=Θ

FΓ ⋅ n dA = MΘ

FΓ = ρwdΓ

→ ∫∫θ=Θ

FΓ ⋅ n dA = ∫∫θ=Θ

ρwdΓdA

= ∫∫up

ρwdΓdA + ∫∫down

ρwdΓdA

= −M ⟨Γ⟩down− ⟨Γ⟩up

If diabatic diffusion is negligible (Kzz weak in stratosphere),flux through θ surface is purely advective:

M = ∫∫up

ρwddA = − ∫∫down

ρwddA

⟨Γ⟩down= − 1

M∫∫

down

ρwdΓdA ; ⟨Γ⟩up= 1M

∫∫up

ρwdΓdA

where

overturning mass flux

ΔΓΘ = ⟨Γ⟩down

− ⟨Γ⟩up

=MΘMΘ

YOUNG

OLD

Z

WINTER

POLESUMMER

POLE

[Garcia & Randel, J Atmos Sci, 2008]

Age trends from WACCM

age (

yr)

[Engel et al, Nature Geoscience, 2008]

(iii) Stratospheric trace gases:

Global structure and tracer-tracer relationships

HALOE data

[Russell et al, J Geophys Res, 1993]

CH4

tropospheric source stratospheric sink

HF

stratospheric source tropospheric sink

Similar isopleth shapes,

despite different locations of

sources and sinks

CH4 : HF comparison

(HALOE data)

gfdsemi
タイプライターテキスト
Plumb Haynes & Shuckburgh, J Atmos Sci,2002et al (2007)

In situ data

(SOLVE experiment 2000)

Ertel PV, 480K

Compact tracer-tracer relationships

gfdsemi
タイプライターテキスト
Plumb et al (2002)

[Plumb, Rev Geophys, 2007]

In situ balloon data (LACE, Elkins/Moore)

CFC-11 : N2O

Different relationships in different regions

In situ balloon data (LACE, Elkins/Moore)

CFC-11 : N2O

[Plumb, Rev Geophys, 2007]

vortex

middle latitudes

tropics

Different relationships in different regions

Space-based data (ATMOS)

CH4 : N2O

Michelsen et al, J Geophys Res, 1998]

Different relationships in different regions

Space-based data (ATMOS)

CH4 : N2O

Michelsen et al, J Geophys Res, 1998]

Different relationships in different regions

vortex

middle latitudes

tropics

[Plumb, Rev Geophys, 2007]

Space-based data (ATMOS)

CH4 : N2O

Michelsen et al, J Geophys Res, 1998]

In situ balloon data (LACE, Elkins/Moore)

CFC-11 : N2O

Different relationships in different regions

0 100 200 3000

50

100

150

200

250S Hem

0 100 200 300N2O (ppb)

0

50

100

150

200

250

CF

C-1

1 (

pp

t)

Tropics

0 100 200 300N2O (ppb)

0

50

100

150

200

250global

P(N2O,CFC-11) 22 Jan 2000

0 100 200 3000

50

100

150

200

250

CF

C-1

1 (

pp

t)

N Hem

from chemical transport model

[Plumb et al., J Geophys Res, 2002]

vortex midlatitudes

tropics

Theory: τmix ≪ τadv

∂χ∂t

+ u ⋅ ∇χ − κ∇ 2χ = S

∂χ∂t

+ ud ⋅ ∇χ + θ̇∂χ∂θ

+Hχ = Stracer mixing ratio sources and sinks

[Plumb, Rev Geophys, 2007]

Theory: τmix ≪ τadv

∂χ∂t

+ u ⋅ ∇χ − κ∇ 2χ = S

∂χ∂t

+ ud ⋅ ∇χ + θ̇∂χ∂θ

+Hχ = S

slow diabatic transport rapid isentropic stirring / mixing

gfdsemi
タイプライターテキスト
Plumb (2007)

Theory: τmix ≪ τadv

∂χ∂t

+ u ⋅ ∇χ − κ∇ 2χ = S

∂χ∂t

+ ud ⋅ ∇χ + θ̇∂χ∂θ

+Hχ = S

∂σ∂t

+ ∇ ⋅ σud +∂∂θ σθ̇ = 0

σ = −g −1 ∂p

∂θ is density in θ − coordinates

gfdsemi
タイプライターテキスト
Plumb (2007)

Theory: τmix ≪ τadv

∂χ∂t

+ u ⋅ ∇χ − κ∇ 2χ = S

∂χ∂t

+ ud ⋅ ∇χ + θ̇∂χ∂θ

+Hχ = S

Properties ofH :

● only acts on isentropic gradients: Hfθ, t = 0

● it is linear:Hχ + φ = Hχ +Hφ and Hfθ, tχ = fθ, tHχ● redistribution operator (does not create or destroy tracer)

∫∫σHχ dA = boundary fluxes

● it is uniquely invertible; solution to

Hχ = X

subject to zero net boundary flux, has solution

χ = H−1X

(solvability condition:

X̄ = ∫∫σ dA−1

∫∫σX dA = 0

gfdsemi
タイプライターテキスト
Plumb (2007)

Theory: τmix ≪ τadv

Tmixing ≪ Tdiabatic,T t ≪ Tchem

∂χ∂t

+ ud ⋅ ∇χ + θ̇∂χ∂θ +Hχ = S

θ̇ = θ̇0 + θ̇1 ,

∂∂t

= ∂∂t

+ ∂∂τ

S = 2S0

χ = χ0 + χ1 + 2χ2 +. . . . . . . . . . . . .

∂χ∂t

+ ud ⋅ ∇χ + θ̇∂χ∂θ +Hχ = S

At leading order ε0,

Hχ 0 = 0

→ χ 0 = χ0θ, t

→ complete isentropic homogenization

χ0n

= χ0nθ, t → Ωχ0

1,χ0

2, t = 0 , triviallyfχ0

1, χ0

2, t = 0

∂χ∂t

+ ud ⋅ ∇χ + θ̇∂χ∂θ +Hχ = S

At order ε1,

Hχ1 = S −∂χ0

∂t− ud ⋅ ∇χ0 − θ̇

∂χ0

∂θ

solvability condition

∂χ0

∂t+ θ̇

∂χ0

∂θ = S̄ + 1τe

χT − χ0 ,

where τe = ∫∫σ dA / ∮σV dl

entrainment velocitytime for entrained air to fill surf zone

mixing ratio of entrained tropical air

advection by average vertical motion

∂χ∂t

+ ud ⋅ ∇χ + θ̇∂χ∂θ +Hχ = S

Hχ1 = S −∂χ0

∂t− ud ⋅ ∇χ0 − θ̇

∂χ0

∂θ

distribution of entrained air

χ1 = H−1S ′ − θ̇′∂χ0

∂θ + τeφσV S̄ − θ̇

∂χ0

∂θ− ∂χ0

∂t

if χ0 steady, and S̄ negligible,

χ1n

= −ζ∂χ 0

n

∂θ, where

ζ = H−1θ̇′ − θ̇τeφσV

ζλ,ϕ, t is the vertical displacement of tracer isoplethsit is purely kinematic: same for all tracers

At order ε1,

χ1n

= −ζ∂χ0

n

∂θ , where

ζ = H−1θ̇′ − θ̇τeφσV

→ all (long-lived) tracrs have the same isopleth shapes→ “equilibrium slopes” [Ehhalt et al. 1983;

Mahlman et al, 1986; Holton 1986]

In tracer-tracer space:

The O departure from the canonical curve fχ01

,χ02

, t = 0 is

Δ = χ11

,χ12

⋅∂χ0

2

∂θ,−

∂χ01

∂θ∂χ0

1

∂θ

2

+∂χ0

1

∂θ

2 −1/2

= − ζ∂χ0

1

∂θ + ζ∂χ0

2

∂θ ⋅∂χ0

2

∂θ , −∂χ0

1

∂θ∂χ 0

1

∂θ

2

+∂χ0

1

∂θ

2 −1/2

= 0

→ the O correction lies along the canonical curve, so

fχ1 ,χ2, t = 0

remains valid at this order: non-trivial compact relationships

χ(1)

χ(2)

χ f

χ1

f (χ

, t

) =0

(1)

(2)

gfdsemi
タイプライターテキスト
Plumb (2007)

T

E

χ (1)

χ

e

t

TROPICS EXTRATROPICS

θ

latitude

e t

tracer spacephysical space

Creation of tropical relationships

2 tropospheric source gases, destroyed in tropical stratosphere

tracer 2 has shorter lifetime than tracer 1 � tracer-tracer relation in

tropics is curved as shown (T)

t e

Increasing

altitude

χ

χ(1)

χ(2)

z,θ

TROPICS

T

E

χ (1)

χ

e

t

TROPICS EXTRATROPICS

θ

latitude

e t

tracer spacephysical space

Creation of tropical relationships

2 tropospheric source gases, destroyed in tropical stratosphere

tracer 2 has shorter lifetime than tracer 1 � tracer-tracer relation in

tropics is curved as shown (T)

t e

Increasing

altitude

χ(1)

χ(2)

T

Increasing

altitude

T

E

χ (1)

χ

e

t

TROPICS EXTRATROPICS

θ

latitude

e t

tracer spacephysical space

Creation of midlatitude relationships

t e

χ(1)

χ(2)

T

t

e

midlatitude air at e is

a mixture of tropical air from higher

altitudes

M

tropical air entrained and

mixed into midlatitudes

T

E

χ (1)

χ

e

t

TROPICS EXTRATROPICS

θ

latitude

e t

tracer spacephysical space

Creation of midlatitude relationships

tropical air entrained and

mixed into midlatitudes

midlatitude air at e is

a mixture of tropical air from higher

altitudes

midlatitude curve lies on concave side of tropical curve

t e

χ(1)

χ(2)

T

t

e

M

TE

χ (1)

χ

TROPICS EXTRATROPICS

θ

latitude

tracer spacephysical space

VORTEX

V

Creation of vortex relationshipsmidlatitude air entrained

and mixed into vortex

vortex curve lies on concave side of midlatitude curve

χ(1)

χ(2)

T

M

V

vortex air is a mixture of

midlatitude air from higher altitudes

0 100 200 3000

50

100

150

200

250S Hem

0 100 200 300N2O (ppb)

0

50

100

150

200

250

CF

C-1

1 (

pp

t)

Tropics

0 100 200 300N2O (ppb)

0

50

100

150

200

250global

P(N2O,CFC-11) 22 Jan 2000

0 100 200 3000

50

100

150

200

250

CF

C-1

1 (

pp

t)

N Hem

from chemical transport model

[Plumb et al., J Geophys Res, 2002]

T

M

V

[Plumb, Rev Geophys, 2007]

Space-based data (ATMOS)

CH4 : N2O

Michelsen et al, J Geophys Res, 1998]

In situ balloon data (LACE, Elkins/Moore)

CFC-11 : N2O

Different relationships in different regions

V

TM

M

T

V

HALOE data

[Russell et al, J Geophys Res, 1993]

CH4

tropospheric source stratospheric sink

HF

stratospheric source tropospheric sink

HALOE data

[Russell et al, J Geophys Res, 1993]

CH4

tropospheric source stratospheric sink

HF

stratospheric source tropospheric sink

TR

OP

ICS

MID

LA

TIT

UD

ES

VO

RT

EX

TR

OP

ICS

MID

LA

TIT

UD

ES

VO

RT

EX

References● Andrews et al, 2001: Mean ages of stratospheric air derived from in

situ observations of CO2, CH4, and N2O, J.Geophys Res, 106, 32295-32314

● Engel et al, 2008: Age of stratospheric air unchanged within uncertainties over the past 30 years,

● N. Geosci., 14, 28-31● Garcia and Randel, 2008: Acceleration of the Brewer?Dobson

Circulation due to Increases in Greenhouse Gases, J. Atmos. Sci., 65, 2731-2739.

● Haynes and Shuckburgh, 2002: Effective diffusivity as a diagnostic of atmospherictransport 1. Stratosphere, J. Atmos. Sci., 105, 22777-22794.

● Michelsen et al, 1998: Correlations of stratospheric abundances of NOy, 03, NO, and CH 4 derived from ATMOS measurements, J. Geophys. Res., 03, 28347-28359.

References● Russell et al,1993: THE HALOGEN OCCULTATION EXPERIMENT, J.

Geophys. Res., 98, 10777-10797● Plumb et al., 2002: Global tracer modeling during SOLVE: High-

latitude descent and mixing, J. Geophys. Res., 108, 14 pp.● Plumb, R. A., 2007: Tracer interrelationships in the stratosphere, Rev.

Geophys., 45, 33 pp.● NCEP,

http://www.ncep.noaa.gov/