lecture 3. - tu berlinblanchard, chapter 10 – 13 prof. dr. frank heinemann avwl ii seite 2 growth...

33
Lecture 3. Lecture 3. Growth and Technological Progress Blanchard, Chapter 10 – 13 AVWL II Prof. Dr. Frank Heinemann Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow model 3.4 Population growth and technological progress in the Solow model 3.5 The role of the technological progress in growth processes 3.6 Determinants of technological progress 3.7 Allocation effects of technological progress

Upload: others

Post on 25-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 1

Lecture 3.Lecture 3.Growth and

Technological Progress

Blanchard, Chapter 10 – 13

AVWL II Prof. Dr. Frank Heinemann Seite 2

Growth and Technological Progress

3.1 Stylized facts

3.2 Production function

3.3 The Solow model

3.4 Population growth and technological progress in the Solow model

3.5 The role of the technological progress in growth processes

3.6 Determinants of technological progress

3.7 Allocation effects of technological progress

Page 2: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 3

Literature

- Blanchard: Macroeconomics

- Mankiw: Macroeconomics, Chap. 4 – 5

General textbooks on growth theory:

- Barro / Sala-i-Martin: Economic Growth

- Jones: Introduction to Economic Growth

- Romer: Advanced Macroeconomics

AVWL II Prof. Dr. Frank Heinemann Seite 4

3.1 Stylized Facts

Page 3: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 5

3.1 Stylized Facts

Annual growth rate GNP per capitareal GNP per capita (%) (1996 dollars)

Ratio: realGNP per capita

1950-1973 1974-2000 1950 2000 2000 / 1950

France 4,2 1,6 5.489 21.282 3,9

Germany 4,8 1,7 4.642 21.910 4,7

Japan 7,8 2,4 1.940 22.039 11,4

United Kingdom 2,5 1,9 7.321 21.647 3,0

United States 2,2 1,7 11.903 30.637 2,6

Average 4,3 1,8 6.259 23.503 3,7

AVWL II Prof. Dr. Frank Heinemann Seite 6

Growth Forecast EU15 et al.

Quelle: Eurostat

0

1

2

3

4

5

6

7

8

EU

(15

Län

der)

Bel

gien

Dän

emar

k

Deu

tsch

land

Irla

nd

Grie

chen

land

Spa

nien

Fra

nkre

ich

Ital

ien

Luxe

mbu

rg

Nie

derla

nde

Öst

erre

ich

Por

tuga

l

Fin

nlan

d

Sch

wed

en

Ver

eini

gtes

Kön

igre

ich

Isla

nd

Nor

weg

en

Sch

wei

z

Ver

eini

gte

Sta

aten

Japa

nPrognose 2008 Prognose 2009

Page 4: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 7

Growth Forecast of Accession Countries et al.

Source: Eurostat

0

1

2

3

4

5

6

7

8

EU

(27

Länd

er)

Bul

garie

n

Tsc

hech

isch

eR

epub

lik

Est

land

Zyp

ern

Lett

land

Lita

uen

Ung

arn

Mal

ta

Pol

en

Rum

änie

n

Slo

wen

ien

Slo

wak

ei

Kro

atie

n

Maz

edon

ien

Tür

kei

Prognose 2008 Prognose 2009

AVWL II Prof. Dr. Frank Heinemann Seite 8

3.1 Stylized Facts

Convergence of production per capita, OECD countriesConvergence of production per capita, OECD countries

Page 5: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 9

3.1 Stylized Facts

There is no reliable rule of convergence, Countries from all regionsThere is no reliable rule of convergence, Countries from all regions

AVWL II Prof. Dr. Frank Heinemann Seite 10

3.1 Stylized Facts

Data according to country groupsData according to country groups

Page 6: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 11

3.1 Stylized Facts

What growth rates are normal?What growth rates are normal?

• From the end of the Roman Empire till 1500 there was no growth in production per capita in Europe

• 1500-1820 – low growth (0.1% till 1700, afterwards 0.2%)

• 1820-1950 – moderate growth (USA 1.5%)

• The high growth rates of the 50s and 60s are atypical

AVWL II Prof. Dr. Frank Heinemann Seite 12

3.1 Stylized Facts

Reasons for high national income / growthReasons for high national income / growth

Infrastructure

Political und legal stability

Access to the international market

Human capital

Efficient use of scarce resources

Capital accumulation

Technological progress

Page 7: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 13

3.2 Production Function

Output: Y = Aggregate Production, Aggregate Income

Factors: K = CapitalN = Labor

Aggregate production functionAggregate production function

Y = F (K, N)

Growth rate: ΔY / Y

AVWL II Prof. Dr. Frank Heinemann Seite 14

3.2 Production Function

F(K,N) increasing in K and in N

Marginal product of a factor decreases with increasing factor input

Aggregate production functionAggregate production function

Properties of production fun. Y = F (K, N)

Diminishing returns: d2F/dK2 < 0 d2F/dN2 < 0

Positive partial derivative: dF/dK > 0 dF/dN > 0

Why do marginal product decline with increasing factor input?

Page 8: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 15

3.2 Production Function

Inputs from production factors are decided by supply and demand.

Price: Interest rate = Price of the factor capital (r)

Wage rate= Price of the factor labor (w)

AVWL II Prof. Dr. Frank Heinemann Seite 16

3.2 Production Function

Firms carry out investments when they (i) make a contribution to firms’ profit and (ii) are financially feasible.

Assumptions: perfect capital market, constant prices

Firms have access to unlimited credit at interest rate r.

firms implement all projects, whose returns are larger than capital cost r. ⇒

Page 9: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 17

3.2 Production Function

125/100 – 1 = 25%125100C

330/300 – 1 = 10%330300D

290/250 – 1 = 16%290250B

210/200 – 1 = 5%210200A

Returns(~ marginal product of capital)

Paymentin t=2

Required capital in t=1

Project

Example

AVWL II Prof. Dr. Frank Heinemann Seite 18

3.2 Production Function

Projects ordered according to returns

C – B – D – A

Output in t=2

Investmentsin t=1100 350 650 850

125

415

745

955

Approximation by continuous and concave production function

C B D A

Page 10: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 19

A project is profitable when its returns are above the market interest rate.

The most profitable project should be undertaken first. => Marginal product of capital falls with increasing capital input

Returns

C B D A

100 350 650 850

25%

5%

10%

16%

r = 8%

Investmentsin t=1I =

3.2 Production Function

AVWL II Prof. Dr. Frank Heinemann Seite 20

3.2.2. Production Factor Capital

The saving rate (savings as a fraction of national income) 1950-2000

U.S.A. 18,6%Germany 24,6%Japan 33,7%

What do you think…

Would a higher saving rate in Germany lead to lasting higher growth?Would a higher saving rate in Germany lead to lasting higher growth?

Sources of growthSources of growth

Page 11: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 21

3.3 The Slow Model

How does a constant saving rate affect capital

accumulation and growth?

Is there an optimal saving rate?

What effects does technological progress have on

capital accumulation?

Literature: Blanchard/Illing, Chapter 10.3 – 12.Heijdra/van der Ploeg, Ch. 14.Mankiw, Chap. 4 – 5.

Barro / Sala-i-Martin, Chapter 1

Sources of growthSources of growth

AVWL II Prof. Dr. Frank Heinemann Seite 22

3.3 The Solow Model

( , )Y F K N=Production functionProduction function

Diminishing returns: d2F/dK2 < 0 d2F/dN2 < 0

( , ) ( , ) 0F K N F K Nλ λ λ λ= ∀ >

Aggregate production function

An increase in inputs of all production factors by x% raises production likewise by x%.

Assumption 1: constant returns to scale

Positive returns: dF/dK > 0 dF/dN > 0

Page 12: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 23

3.3 The Solow Model

N/1=λ

( , ) ( , ) 0F K N F K Nλ λ λ λ= ∀ >

Consequence: Per capita output Y/N depends only on the ratio of capital to labor K/N:

Assumption 1: constant returns to scale

Choose

N

YNKF

NNKFNKF === ),(

1)1,/(),( λλ

F(k,1) = y=Y/NLet k=K/N.

AVWL II Prof. Dr. Frank Heinemann Seite 24

3.3 The Solow Model

Let y=Y/N Output per work unit,

k=K/N capital intensity

Then: y = F(k,1) = f(k)

Per capita output as a function of capital intensity

Notice: here per capita mean per work unit

Positive, but declining returns of capital:

=> f ’ = dF/dK > 0 , f ’’ = d2F/dK2 < 0

Next we assume constant working population.

Page 13: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 25

3.3 The Solow Model

Output and capital per employeeOutput and capital per employee

y = f(k)

k

y

Capital accumulation

AVWL II Prof. Dr. Frank Heinemann Seite 26

The Solow Model

The long-term relationship between production and capitalThe long-term relationship between production and capital

- The capital stock decides how much to be produced

- The production level determines how much to be saved and to be invested

The Solow model describes these interactions and dependencies.

Assumption 2: The saving rate is constant

Saving rate s = Savings / National income

Page 14: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 27

3.3 The Solow Model

Capital, Production and Savings/Investments

),( NKFY =

),( NKFY tt =

ttt YsSI ==

ondepreciatiIK tt −=Δ

ttt KKK Δ+=+1

),( 11 NKFY tt ++ = tt YYGrowth −= +1

Savings/Invest-ment

Production / Income

Capital stock

Change of capital stock

AVWL II Prof. Dr. Frank Heinemann Seite 28

The Solow Model

GDP Yt = F(Kt,N)

Savings s Yt

Consumption Ct = (1 – s) Yt

Depreciation δ Kt

Saving rate s and depreciation rate δ are constant and between 0 and 1.

Assumption 3: Closed economy with balanced government budget ⇒ Gross investment = savings

Change of capital stock over time:

Kt+1 – Kt = s Yt – δ Kt

Page 15: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 29

The Solow Model

GDP Yt / N = F(Kt / N ,1)

Savings s Yt / N

Consumption Ct / N = (1 – s) Yt / N

Depreciation δ Kt / N

Change of capital stock over time:

Kt+1 – Kt s Yt – δ Kt

N N N N

Per capita values:

=

AVWL II Prof. Dr. Frank Heinemann Seite 30

The Solow model

Per capita values: GDP yt = f (kt)

Gross investment = saving s yt

consumption ct = (1 – s) yt

Depreciation δ kt

Change of capital intensity over time:

kt+1 – kt = s f(kt) – δ kt

Let yt = Yt / N, kt = Kt / N, ct = Ct / N

Page 16: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 31

The Solow Model

yt = f ( kt )

k

y

s yt

Consumption per employee

Savings per employee

capital intensity at period t

kt

AVWL II Prof. Dr. Frank Heinemann Seite 32

The Solow Model

yt = f ( kt )

k

y

savings s yt = gross investment

Depreciation δ kt

Increasing capital intensity

decreasing capital intensity

steady state k*

In steady state k* : gross investment = Depreciation => Net investment. = 0

Page 17: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 33

The Solow Model

Calculation of steady state k*: Change of capital intensity over time:

kt+1 – kt = s f(kt) – δ kt = 0

⇔ s f ( k* ) = δ k*

Solving this equation for k* gives the steady state (= long-term growth equation).

Production level in steady state y* = f(k*)

consumption in steady state c* = (1-s) y*

AVWL II Prof. Dr. Frank Heinemann Seite 34

The Solow Model

Total differentiation of the equation

gives:( *) '( *) * *f k ds s f k dk dkδ+ =

* ( *)0,

'( *)

dk f k

ds sf kδ⇔ = >

−as in steady state δ > s f ‘

( *) *s f k kδ=

Comparative statistics:

How does the steady state react to the saving rate?

> 0

Page 18: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 35

The Solow Model

yt = f ( kt )

k

y

savings s yt

depreciation δ kt

steady state k*

Slope: s f‘ (kt)

Slope δ

In steady state δ > s f‘ (kt)

AVWL II Prof. Dr. Frank Heinemann Seite 36

The Solow Model

k

y

s0 f(kt)

δ k

Increasing the savings rate from s0 to s1 increases the steady state and leads to temporary growth

s1 f(kt)

y0*

y1*

Page 19: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 37

The Solow Model

Following an increase in the savings rate:Increase of production level over time

t

y

In period t0, the saving rate increases from s0 to s1.

y0*

y1*

AVWL II Prof. Dr. Frank Heinemann Seite 38

The Solow Model

““What impact does the savings rate have on the growth rate of What impact does the savings rate have on the growth rate of production?production?””

The previous analysis provides us three answers to these questions:

1. A high savings rate causes a stronger growth of production for a certain period until the new steady state is reached.

2. The savings rate does not affect the long-term growth rate of production per employee. This growth rate is zero.

3. The saving rate determines the size of the long-term production level per employee. Ceteris paribus, countries with a higher saving rate, therefore, have a higher production level.

Page 20: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 39

AVWL II Prof. Dr. Frank Heinemann Seite 40

Examples of the Solow Model

The production function: let F(K,N) = 15 K2/3 N1/3,

Saving rate s = 20%, depreciation rate δ = 10%, labor N = 10 Mio.

a) Determine the intensity form of production function.

b) How high is the capital intensity in steady state?

c) How long will it take to reach steady state?

d) How high is the per-capita-consumption in steady state?

Answer in the lecture

Page 21: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 41

The Solow Model

y = f ( k )

k

y

s yt

c*(s) = per capita consumption in steady state at saving rate s

k*(s) capital intensity in steady state at saving rate s

AVWL II Prof. Dr. Frank Heinemann Seite 42

The Solow Model

y = f ( k )

k*(s)

y

Per capita consumption in steady states at different saving rate (s1 – s4)

s1 f ( k )

s2 f ( k )

s3 f ( k )

s4 f ( k )

Page 22: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 43

The Solow Model

c* (s)

Per capita consumption c

Maximum per capita consumption in a steady state

Saving rate sOptimale saving rate s* 10

AVWL II Prof. Dr. Frank Heinemann Seite 44

The Solow Model

The steady state of the Golden Rule gives a higher per-capita-consumption than every other steady state. [Edmund Phelps, Nobel price 2006]

Lit: Phelps (1961) The Golden Rule of Accumulation: A Fable for Growthman, AER 51, 638-643

The capital intensity in steady state of Golden Rule results from

max ( )k f k kδ−

Optimality condition '( )f k δ=Solving the equation for k gives ** 1' ( )k f δ−=

Page 23: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 45

The Solow Model

How do we figure out the steady state of the Golden Rule? With the optimal savings rate s*, the economy converges towards the steady state of the Golden Rule.

We can calculate s* from k**. In a steady state

( )sf k kδ=* ** **/ ( )s k f kδ=

Thus

AVWL II Prof. Dr. Frank Heinemann Seite 46

The Solow Model

yt = f ( kt )

k

y

s* yt

δ kt

Per capita consumption in steady state of

the Golden Rule

Golden Rule steady state k**

δ

s* = optimal savings rate

Page 24: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 47

The Solow Model

When the savings rate is under s*, a higher future consumption can only be reached by saving more. => Trade-off between current and future consumption

Time preference, distribution between generations is not considered in the Solow Model

AVWL II Prof. Dr. Frank Heinemann Seite 48

The Solow Model

With a saving rate above s*, a drop in capital stocks leads to a higher per capita consumption in (lower) steady state.

A decline in savings goes hand-in-hand with an increase in future consumption.

Current and future consumption can be increased.

Dynamic inefficiency!

The saving rate is too high!

Page 25: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 49

3.4 The Solow Model: Population Growth and Technological Progress

GDP Yt = F(Kt, AtNt)

Labor efficiency At

Savings s Yt

Consumption Ct = (1 – s) Yt

Depreciation δ Kt

Change of capital stocks over time:

Kt+1 – Kt = s Yt – δ Kt

Population growth Nt+1 = (1+n) Nt

Population growth rate n

Technological progress At+1 = (1+g) At

Rate of technological progress g

AVWL II Prof. Dr. Frank Heinemann Seite 50

The Solow Model: Population Growth and Technological Progress

constant return to scale => GDP per unit of labor efficiency

Change of capital intensity over time:

kt+1 – kt = ?

Capital intensity kt = Kt / (AtNt)

Gross investment = savings s yt

Consumption Ct/(AtNt) = ct = (1 – s) yt

Depreciation δ kt

yt = Yt / (AtNt) = F (Kt / (AtNt), 1) = f (kt)

Page 26: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 51

The Solow Model with Population growth and technological Progress

ttt k

ng

ksy−

++−+

=)1)(1(

)1( δ

)1()1(

)(

ng

kgnngsy tt

+++++−

ttt

ttt k

NA

Kkk −=−

++

++

11

11

Change of capital intensity over time:

Steady state k*: s f(k*) = (δ+g+n) k*

ttt

ttt kNnAg

KsYK−

++−+

=)1()1(

δ

)1)(1(

)1)(1(

)1)(1(

)1(

ng

kng

ng

ksy ttt

++++

−++

−+=

δ

gn is insignificant with small percentage values.

)1()1(

)(

ng

kngsy tt

++++−

≈δ

AVWL II Prof. Dr. Frank Heinemann Seite 52

The Solow Model: Population Growth and Technological Progress

yt = f ( kt )

k

y

savings s yt

(δ+g+n) kt

Increasing capital intensity

Decreasing capital intensity

steady state k*

Page 27: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 53

The Solow Model: Population Growth and Technological Progress

GDP per capita

GDP per unit of labor efficiency yt = Yt / (At Nt)

Yt / Nt = At yt

At = (1+g)t A0

At f(k*) = (1+g)t A0 f(k*)

GDP per capita in steady state

Growth rate of GDP per capita in steady state

= Rate of technological progress g

Growth rate of labor efficiency g

AVWL II Prof. Dr. Frank Heinemann Seite 54

The Solow Model: Population Growth and Technological ProgressPer capita magnitudes in steady state by technological progress

t

Per capita magnitudes of capital stock, output and consumption grow with the rate of technological progress in the long term

Kt / Nt = At k*

Y / N Yt / Nt = At f ( k* )

savings s Yt / Nt

consumption (1–s) Yt / Nt

Page 28: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 55

The Solow Model: Population Growth and Technological Progress

The capital intensity in steady state depends on s, n and g * * *( , , ) : ( ) ( )k s n g sf k n g kδ= + +

Total differentiation gives

* * * *'( ) ( )sf k dk n g dk k dnδ= + + +* *

*0

'( )

k k

n sf k n gδ∂

⇒ = <∂ − − −

* *

*

( )0

'( )

k f k

s n g sf kδ∂

= >∂ + + −

equivalently

AVWL II Prof. Dr. Frank Heinemann Seite 56

The Solow Model: Population Growth and Technological Progress

Golden Rule

**'( )f k n gδ= + +

Optimality condition

f ‘ = marginal product of capital

*

* *max ( ) ( )k

f k n g kδ− + +

k**:

** 1( ') ( )k f n gδ−= + +

Page 29: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 57

The Solow Model: Population Growth and Technological Progress

**** 1

''( ) 0''

dkf dk dn

dn f⇒ ⋅ = ⇔ = <

The capital intensity should increase with a decline in population growth.

**'( )f k n gδ= + +From the optimality condition

follows

AVWL II Prof. Dr. Frank Heinemann Seite 58

The Solow Model: Decline in Population Growth

k

y

(δ+n1+g) kt

With a decline in growth of population, less investments are necessary to maintain capital intensity. Therefore a constantsaving rate leads to a higher capital intensity.

s yt

sy0*sy1*

(δ+n0+g) kt

Page 30: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 59

The Solow Model: Decline in Population Growth

On the one hand, capital intensity should increase when n goes down.

On the other hand, the decline in population growth automatically leads to an increase in capital intensity with a constant savings rate.

How does the savings rate react to a decline in population growth?

AVWL II Prof. Dr. Frank Heinemann Seite 60

The Solow Model: Decline in Population Growth

Total differential of the equation

* **''( )

k kf ds dn dn

s n

⎡ ⎤∂ ∂⋅ + =⎢ ⎥∂ ∂⎣ ⎦

Comparative statistics:

* *'( ( , , ))f k s n g n gδ= + +

( )''( )

'( )

f ds k dnf dn

n g sfδ⋅ −

⇔ ⋅ =+ + − ⋅

gives

''( ) ( ) ''( ) ( '( ))f f ds f k dn n g sf dnδ⇔ ⋅ ⋅ − ⋅ = + + − ⋅

Inserting the formula from Slide 54 gives

Page 31: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 61

The Solow Model: Decline in Population Growth

'( ) ''( )

''( ) ( )

ds n g sf f k

dn f f

δ + + − ⋅ + ⋅⇔ =

⋅ ⋅The denominator is negative. The numerator can be either positive or negative!

A clear answer to the question of whether the savings rate rises or falls with a decline in n can be only reached with more information of production function.

When the saving rate cannot adjust, can k increase beyond the Golden Rule?

► Over investment ! ► Japan ?

AVWL II Prof. Dr. Frank Heinemann Seite 62

The Solow Model: Decline in Population Growth

Consumption per unit of labor efficiency with a decline of n and a constant savings rate.

t

c

At period t0 the growth rate of the working population drops from n0 to n1.

c0*

c1* c1* = (1-s) f(k1*)

c0* = (1-s) f(k0*)

Page 32: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 63

The Solow Model: Population Growth and Technological Progress

t

C / N

C0*/N = (1-s) At f(k0*)

C1*/N = (1-s) At f(k1*)

Consumption per capita with a decline of n and a constant savings rate

At period t0 the growth rate of the working population drops from n0 to n1.

AVWL II Prof. Dr. Frank Heinemann Seite 64

The Solow Model: Example

Example: f(k) = kα 0 < α < 1

Steady state: ( ) ( )sf k n g kδ= + +

( )sk n g kα δ⇔ = + +

1k n gαα δ−⇔ = + +

'( )f k n gδ= + +

1

1sk

n g

α

δ

−⎛ ⎞⇔ = ⎜ ⎟+ +⎝ ⎠

Golden Rule: 1

1

kn g

ααδ

−⎛ ⎞⇔ = ⎜ ⎟+ +⎝ ⎠

Page 33: Lecture 3. - TU BerlinBlanchard, Chapter 10 – 13 Prof. Dr. Frank Heinemann AVWL II Seite 2 Growth and Technological Progress 3.1 Stylized facts 3.2 Production function 3.3 The Solow

AVWL II Prof. Dr. Frank Heinemann Seite 65

The Solow Model: Example

In steady state the Golden Rule holds:

s α=

1 1

1 1sk

n g n g

α ααδ δ

− −⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠

Hence it follows:

The production function f(k) = kα

describes a limiting case where the optimal savings rate is independent of n.

AVWL II Prof. Dr. Frank Heinemann Seite 66

The Solow Model

The Solow model describes the optimal saving in steady state.

Adjustment process takes time though. The Solow model does not describe the optimal adjustment track.

The ‘optimal savings rate’ maximizes the per capita consumption in steady state. The steady state will never be completely reached.

Time preference: future consumption should be discounted. Consumption during the adjustment phase must be considered.

These critiques are considered by the Ramsey model.

Recession studies: business cycles, growth and employment