lecture 3 : rigid body kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/l3n.pdf · lecture 3 : rigid...

28
Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects

Upload: phamtuyen

Post on 08-Jun-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Lecture 3 : Rigid Body Kinematics

or describing the motion of finite sized objects

Page 2: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

3. Rigid Body Kinematics

3.1. Preliminaries

3.1.1. What is a rigid body ?

A rigid body is an object that doesn’t change it’s shape..

In other words ...

1) The distance between any two points on a rigid body remains

the same.

2) You need to check its orientation as it moves.

Page 3: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

3.1.2. How do you describe the motion of a rigid body ?

In general, a rigid body can

a) translate in three dimensions

and

b) change its orientation (i.e. rotate)

about three axes.

Animate

Page 4: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

A rigid body has a maximum of 6 degrees of freedom.

Why ?

3.1.3. How many degrees of freedom are there ?

How many degrees of freedom does a particle have at most ?

Page 5: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

3.1.4. What happens if the rigid body motion is restricted to a

plane ?

For example if the rigid body lies

on the XY plane, it can also rotate

about the Z axis.

X

Y

Hence there are only at most 3 degrees of freedom

Good news : In this course we will restrict the study of rigid

body motion to this planar case.

Page 6: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

3.2. Rigid body kinematics

3.2.1. How to relate the motion of two points on a rigid body

1. The motion of any two points A and B on a rigid body cannot

be independent.

How to find the relation ?

2. The trick is to embed a reference frame on the rigid body

and let the reference frame rotate with the rigid body.

Page 7: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

A

Br

w

VB = VA + VB/A

= VA + d rB/A /dt

= VA + ( rB/A ’ + w x rB/A )

= VA + w x rB/A

embedded reference

frame

i

j

Page 8: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

VB = VA + w x rB/A

Formula : Hence we can relate the velocity of any two points

on a rigid body as follows :

Page 9: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

3.2.2. What about the accelerations of any two points on a

rigid body?

Similarly, accelerations of any two points are not independent.

Using the same trick ...

aB = aA + aB/A

= aA + d2 rB/A /dt2

= aA + ( rB/A ’’ + w x (w x rB/A )

+ w ' x rB/A + 2 w x rB/A ’ )

= aA + w x (w x rB/A ) + w ' x rB/A

Page 10: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

Formula : Accelerations of any two points on a rigid body are

related as follows :

aB = aA + w x ( w x rB/A ) + w ' x rB/A

Page 11: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

3.2.3. Simplification for planar motion

If the rigid body is moving in a plane

then the angular velocity vector w is

perpendicular to rB/A .

Saves you the trouble of taking two cross products !

w x ( w x rB/A ) = - w2 rB/A rB/A

w

Holds only for planar motion !

Page 12: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

Example : A sliding rod

1. Rod AB, length L m

Step 1 : What is the first step for any dynamics problem ?

X

Y

Answer : Define a suitable reference frame

2. Point A sliding down at VA m/s

3. Find VB for given

Page 13: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

Y

X

Step 2 : What is the principle involved ?

Answer : Relate velocities of two points

on a rigid body

VB = VA + w x rB/A

Step 3 : Write the vectors out

rB/A =

VA =

VB =

w =

Page 14: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

Putting it together ....

VB = VA + w x rB/A

Step 4 : Are the no. of equations equal to the no. of unknowns ?

Solve the 2 equations for 2 unknowns VB and w

i component :

j component :

Page 15: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

Learning how to teach yourself ....

What about accelerations ?

Can we find aB given aA ?

Do we need any additional information ?

Page 16: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

Example : Crank-slider - The systematic vector approach

Given :

1) AB = R m BP = L m

2) ’ = rad/s (constant)

Find :

1) angular acceleration of BP

2) acceleration of point P

for a given value of (ie at a given moment in time)

Page 17: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

R L

NB : If R, L and are given then is a known quantity. Why ?

Answer :

Page 18: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

I

J

2. Consider rigid body AB (crank)

VB = VA + w x rB / A

VA = w =

rB / A =

=

1. Define a reference frameR

Page 19: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

aB = aA - 2 rB/A + w ' x rB/A

aA = w =

rB / A =

=

Similarly for acceleration of point B

In other words ....

We can find the velocity and acceleration of point B

Page 20: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

3. Consider rigid body BP (link). What’s special about VP ?

Answer :

rP / B = w =

Using VP = VB + w x rP / B

we have two equations for the two unknowns VP , w

L

I

J

Page 21: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

Similarly using

aP = aB - w2 rP /B + w’ x rP /B

We have two equations for the two unknowns aP and w’.

w’ =aP =

I

J

Page 22: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

3.3 Instantaneous centre of rotation

If the rigid body moves on a plane then at each instance in time

there is a point about which the rigid body seems to rotate.

VB

VAA

B

w

C

Given velocity of point A we can

find a point C such that

VA = w x rA/C 1)

For any other point of the rigid body

VB = VA + w x rB/A

2)

Page 23: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

Substitute 1) in 2)

VB = w x rA/C + w x rB/A

= w x ( rB/A + rA/C )

= w x rB/C

Hence every other point of the rigid body rotates about point C too.

Note that

i) The point C is the instantaneous centre of rotation for plane motion.

ii) Its location changes with time.

iii) It need not lie on the rigid body.

Page 24: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

Example : A sliding rod – using instantaneous centre

1. Rod AB, length L m

2. Point A sliding down at VA m/s

3. Find VB and w for given

Solution

1. The instantaneous centre C

lies on a line perpendicular

to VA passing through A.

2. Point C must also lies on a

line perpendicular to VB

passing through B.

VA

VB

C

Page 25: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

VA

VB

C From the geometry

VA = w L sin

VB = w L cos

These are the same equations

obtained by the previous method.

Hence

w = VA / ( L sin)

VB = VA / tan

Warning : Do not apply this method for computing accelerations !

Page 26: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

Example : Crank slider – using instantaneous centre

R L

I

J

O

A

B

Given VA and find

i) VB and

ii) w the angular speed of AB

Page 27: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

R L

I

J

O

A

B

Question : Where is the instantaneous centre ?

Answer :.

VA

VB

From the geometry

1. Find OB

2. BC =

3. OC =

4. AC =

Page 28: Lecture 3 : Rigid Body Kinematicsdynlab.mpe.nus.edu.sg/mpelsb/me3112/L3n.pdf · Lecture 3 : Rigid Body Kinematics or describing the motion of finite sized objects. ... If the rigid

Gerard Leng, ME Dept, NUS

Using the concept of instantaneous centre

VA =

VB =

2 equations for the 2 unknowns w and VB or solve graphically.