lectura de huckel

Upload: nico-ariel-jaramillo

Post on 31-Oct-2015

49 views

Category:

Documents


0 download

TRANSCRIPT

  • Lecture 32 : The Hckel Method

    The material in this lecture covers the following in Atkins.

    14.0 The Hckel approximation (a)The secular determinant (b) Ethene and frontier orbitals (c) Butadiene and p-electron binding energy (d) benzene and aromatic stability

    Lecture on-line Huckel Theory (PowerPoint) Huckel Theory (PDF)

    Handout for this lecture

  • The Hckel method The Hckel approximationcan be used for conjugatedmolecules in which there is an alternation of single and double bonds along a chain One example is the conjugated - systems

    C2H4

    allyl cation

    ButadieneCyclo-Butadiene

    Benzene

    Conjugated systemsWe shall also use it for the - bond inethylene

  • Molecular orbital theory In molecular orbital theory we write our orbitals as linear combinations of atomic orbitals :

    k ii

    i niC( ) ( )1 1

    1=

    =

    =

    We next require that the corresponding orbital energies

    W C C H dvdvn

    k kk k

    (C1, ,.. ) ( )

    ( ) ( )211 1

    =

    be optimal with respect to {C1, ,.. }C Cn2or :

    WC

    i = 1,..,ni

    = 0;

    This leads to theset of homogeneous equations :

    C H WS

    i = 1,2,...,n.

    k ik ikk=1

    k=n = 0

    For which the secular determinantmust be zero

    H WS i = 1,2,...,n; k = 1,2,...,n

    ik ik = 0

    In order to obtainnon - trivial solutions

  • The Hckel method

    We are going to use as our atomic orbitals a single p function on each carbon atom.

    The p orbital is the p - function perpendicular to the molecular plane

    For ethylene we have two p orbitals

    pA pB

    pApB

    pCpD

    For butadiene we have four p orbitals

    Conjugated systems

  • The Hckel method For ethylene we have two p orbitals

    pA pBFor ethylene we canuse linear variationtheory to obtain a setof linear homogeneous equations

    H E H -ESH -ES H E

    11 12 1221 21 11

    = 0

    C H WS

    i = 1,2 and n = 1,2

    k ik ikk=1

    k=n = 0

    Non - trivial solutionsare only possible ifthe secular determinantis zero

    Each of the two roots W = E i = 1,2 can be substituted into the set of linear equations to obtain orbital coefficients

    i

    i ik k

    k=1

    k=nC p

    k = 1,2 ; i = 1,2

    =

    Ethylene

  • The Hckel method

    For butadiene we canuse linear variationtheory to obtain a setof linear homogeneous equations

    C H WS

    i = 1,4 and n = 1,4

    k ik ikk=1

    k=n = 0

    pApB

    pCpD

    For butadiene we have four p orbitals

    Butadiene

  • The Hckel method

    Each of the two roots W = E i = 1,4 can be substituted into the set of linear equations to obtain orbital coefficients

    i i i

    k kk=1

    k=nC p

    k = 1,4 ; i = 1,4

    =

    H E H -ES H -ES H -ESH -ES H E H -ES H -ESH -ES H -ES H E H -ESH -ES H -ES H -ES H E

    11 12 12 13 13 14 1421 21 22 23 23 24 2431 31 32 32 33 34 3441 41 42 42 43 43 44

    = 0

    Non - trivial solutionsare only possible ifthe secular determinant is zero

    Butadiene

  • The Hckel method

    H E H -ES H -ES H -ESH -ES H E H -ES H -ESH -ES H -ES H E H -ESH -ES H -ES H -ES H E

    11 12 12 13 13 14 1421 21 22 23 23 24 2431 31 32 32 33 34 3441 41 42 42 43 43 44

    = 0

    H E H -ESH -ES H E

    11 12 1221 21 11

    = 0

    The Hckel approximation 1 0. all overlaps are set to zero S ij =

    H E HH H E

    11 1221 11

    = 0

    H E H H HH H E H HH H H E HH H H H

    11 12 13 1421 22 23 2431 32 33 3441 42 43 44

    = 0

  • The Hckel method

    H E H H HH H E H HH H H E HH H H H

    11 12 13 1421 22 23 2431 32 33 3441 42 43 44

    = 0

    H E HH H E

    11 1221 11

    = 0

    The Hckel approximation 1 0. All overlaps are set to zero S ij =2. All diagonal terms are set equal to Coulomb integral

    =

    E H H HH E H HH H E HH H H -E

    12 13 1421 23 2431 32 3441 42 43

    0

    =E H

    H E12

    210

  • The Hckel method

    =

    E H H HH E H HH H E HH H H -E

    12 13 1421 23 2431 32 3441 42 43

    0

    =E H

    H E12

    210

    The Hckel approximation 1 0. All overlaps are set to zero S ij =2. All diagonal terms are set equal to Coulomb integral

    1

    2

    3

    4

    3. All resonance integrals between non - neighbours are set to zero

    =

    E H 0 0H E H 00 H E H0 0 H -E

    1221 23

    32 3443

    0

    =E H

    H E12

    210

  • The Hckel method

    =

    E H 0 0H E H 00 H E H0 0 H -E

    1221 23

    32 3443

    0

    =E H

    H E12

    210

    The Hckel approximation 1 0. All overlaps are set to zero S ij =2. All diagonal terms are set equal to Coulomb integral

    1

    2

    3

    4

    3. All resonance integrals between non - neighbours are set to zero4. All remaining resonance integrals are set to

    =

    E 0 0 E 0

    0 E 0 0 -E

    0

    =E

    E 0

  • The Hckel method

    =

    E 0 0 E 0

    0 E 0 0 -E

    0

    =E

    E 0

    The Hckel approximation 1 0. All overlaps are set to zero S ij =2. All diagonal terms are set equal to Coulomb integral

    1

    2

    3

    4

    3. All resonance integrals between non - neighbours are set to zero4. All remaining resonance integrals are set to

  • The Hckel method Solutions for ethylene

    = =E

    E E)2( 2 0

    C H WS

    i = 1,2 and n = 1,2

    k ik ikk=1

    k=n = 0

    E ( and negative)1 = + E ( and negative) 2 =

    1 1 2p p= +12

    12

    212

    12

    = +p p1 2

    i ik k

    k=1

    k=nC p

    k = 1,2 ; i = 1,2

    = ( ;( = E) E) = 2 2

  • The Hckel method

    =

    E 0 0 E 0

    0 E 0 0 -E

    Solutions for butadiene

    ( )

    EE

    EE

    0

    0

    =

    000

    EE

    ( ) ( ) ( )

    E E E E E2

    0

    +

    =

    2 2 0

    0E

    E E( )

    ( ) ( ) E E4 2 2 ( ) E 2 2 ( ) E 2 2 +4

    ( ) ( ) + =E E4 2 2 43 0

  • The Hckel method Solutions for butadiene

    Thus

    E = 1.62 and 0.62

    ( ) ( ) + =E E4 2 2 43 0

    Dividing by : 2

    ( ) ( )

    + =E E44

    223 1 0

    Introducing : x = ( -E)2

    2

    x2 + =3 1 0xx = 2.62 ; x = 0.38

  • The Hckel molecular orbital energy levels of butadiene and thetop view of the corresponding orbitals. The four p electrons (one supplied by each C)occupy the two lower orbitals.Note that the orbitals are delocalized.

    The Hckel method C H WS

    i = 1,4 and n = 1,4

    k ik ikk=1

    k=n = 0

    i ik k

    k=1

    k=nC p

    k = 1,4 ; i = 1,4

    =

    Solutions for butadiene

  • The Hckel method

    0.372p p p 0.372p1 2 3 4 + + +0 602 0 602. .

    1

    2

    3

    4

    +0 602. pp 0.372 0.372p + 0.602p1 2 3 4

    0 602. pp 0.372 0.372p + 0.602p1 2 3 4 1

    2

    3

    4

    0.372p p p 0.372p1 2 3 4 + 0 602 0 602. .1

    2

    3

    4

    1

    2

    3

    4

    Solutions for butadiene

  • The Hckel method Solutions for butadiene

    E1 =h2

    8mL2,

    E2 =h2

    8mL2,

    4

    E3 =h2

    8mL2,

    9

    FMOHuckel

    +1.62

    +.62

    .62

    Comparison between PIB and Huckel treatment ofbutadiene

    Same nodal structure

  • The Hckel method Solutions for butadiene We can write butadieneas two localized - bonds

    Or two delocalized - bonds 4

    +1.62

    +.62

    .62

    Butadiene

    +

    Ethylene

    E Bu E Et ( ) ( ) 2 delocalization energy

    E Bu ( ) ( . ) ( . )= + + +2 1 62 2 62

    2 4 4 4E Et ( ) ( )= + = += +4 4 48 .

    Delocalization energy = .48( )36 kJ mol-1

  • The Hckel method Cyclobutadiene

    12

    43

    =

    E 0 E 0

    0 E 0 -E

    0

    + 2

    2

    0.5p p p 0.5p1 2 3 4 + + +0 5 0 5. .

    0.5p p p 0.5p1 2 3 4 + 0 5 0 5. .

    0.5p p p 0.5p1 2 3 4 +0 5 0 5. .

    0.5p p p 0.5p1 2 3 4 + 0 5 0 5. .

  • + 2

    2

    +

    12

    43

    12

    43

    The Hckel method Cyclobutadiene

    No delocalization energy

  • The framework of benzene is formed by the overlap of Csp2 hybrids, which fit without strain into a hexagonal arrangement.

    The Hckel method Benzene

    Benzene

    The C - C and C - H - orbitals

  • Benzene The Hckel method

    =

    E 0 0 E 0 0 E 0 0

    0 0 E 0 0 0 -E 0 0 -E

    0

    00

    C H WS

    i = 1, 6 and n = 1, 6

    k ik ikk=1

    k=n = 0 i i

    k kk=1

    k=nC p

    k = 1, 6 ; i = 1, 6

    =

    E = 2 ; ;

  • Benzene The Hckel method

    + 2

    2

    +

    Delocalization energy = 2( + 2 ) + 4( + + ) ( ) =6 2

    150 kJ mol-1

  • What you should learn from this lecture

    1. Be able to construct the seculardeterminant for a conjugated - system within the Huckel approximation

    2. Be able to calculate orbital energies for simple systems

    3. You will not be asked to find the molecular orbitals. However, you should be able to discuss provided orbitals in terms of bonding and anti - bonding interactions

  • The Hckel method

    2

    3

    allyl cation

    E 0 E

    0 E = 0

    The allyl system

    + 1 42.

    1 42.

    0.5p p p1 2 3 + +0 707 0 5. .

    0.5p p p1 2 3 +0 707 0 5. .

    0.707p p1 3 0 707.