learning outcomes introduction b7... · learning outcomes upon completion of ... solution and...

23
1 EXPERIMENT B7: GREEN CRYSTAL Learning Outcomes Upon completion of this lab, the student will be able to: 1) Synthesize an inorganic salt and purify it using the method of recrystallization. 2) Test the purity of the synthesized crystals. 3) Analyze the synthesized crystals and predict its formula using methods such as: titration, spectrophotometry, and determination of percent hydrate. Introduction One of the most exciting aspects of chemistry is the ability to synthesize new materials. These synthetic materials are in a variety of consumer products and can be found in products such as food, health and beauty supplies, and pharmaceuticals. Chemists employ conceptual chemical models to formulate relatively simple procedures to synthesize such substances reliably and in high yield. Once synthesized, the substances must be purified and analyzed to confirm the chemical identity. This ensures the quality and effectiveness of the product in question. Accordingly, synthesis, purification, and analysis are three essential methodologies every chemist must be familiar with. In this experiment a Green Crystal will be synthesized from iron (III) chloride and potassium oxalate and then purified via recrystallization, a common technique in synthetic procedures. The exact chemical formula of the crystal will initially be unknown, though the general formula can be written as KwFex(C2O4)y(H2O)z. Titration and spectrophotometry will be used analyze the purified materials in order to determine the precise formula of the crystal. Part 1: Synthesis of Green Crystal Aqueous solutions of iron (III) chloride hexahydrate and potassium oxalate monohydrate will be reacted at a temperature of around 90°C to produce the Green Crystal. The unbalanced chemical equation for the process may be written as follows: FeCl3!6H2O(aq) +K2C2O4!H2O(aq) " KCl(aq) +KwFex(C2O4)y!zH2O(s) Cooling the reaction mixture will result in the formation of green crystals. The crystals obtained in this step are considered as the “crude product” as they are not pure. The solid product will be separated from the aqueous supernatant by

Upload: vuthuan

Post on 07-Feb-2018

225 views

Category:

Documents


2 download

TRANSCRIPT

1

EXPERIMENTB7:GREENCRYSTAL

LearningOutcomesUponcompletionofthislab,thestudentwillbeableto:

1) Synthesizeaninorganicsaltandpurifyitusingthemethodofrecrystallization.

2) Testthepurityofthesynthesizedcrystals.3) Analyzethesynthesizedcrystalsandpredictitsformulausingmethods

suchas:titration,spectrophotometry,anddeterminationofpercenthydrate.

IntroductionOneofthemostexcitingaspectsofchemistryistheabilitytosynthesizenewmaterials.Thesesyntheticmaterialsareinavarietyofconsumerproductsandcanbefoundinproductssuchasfood,healthandbeautysupplies,andpharmaceuticals.Chemistsemployconceptualchemicalmodelstoformulaterelativelysimpleprocedurestosynthesizesuchsubstancesreliablyandinhighyield.Oncesynthesized,thesubstancesmustbepurifiedandanalyzedtoconfirmthechemicalidentity.Thisensuresthequalityandeffectivenessoftheproductinquestion.Accordingly,synthesis,purification,andanalysisarethreeessentialmethodologieseverychemistmustbefamiliarwith.InthisexperimentaGreenCrystalwillbesynthesizedfromiron(III)chlorideandpotassiumoxalateandthenpurifiedviarecrystallization,acommontechniqueinsyntheticprocedures.Theexactchemicalformulaofthecrystalwillinitiallybeunknown,thoughthegeneralformulacanbewrittenasKwFex(C2O4)y(H2O)z.Titrationandspectrophotometrywillbeusedanalyzethepurifiedmaterialsinordertodeterminethepreciseformulaofthecrystal.Part1:SynthesisofGreenCrystalAqueoussolutionsofiron(III)chloridehexahydrateandpotassiumoxalatemonohydratewillbereactedatatemperatureofaround90°CtoproducetheGreenCrystal.Theunbalancedchemicalequationfortheprocessmaybewrittenasfollows:

FeCl3!6H2O(aq)+K2C2O4!H2O(aq)"KCl(aq)+KwFex(C2O4)y!zH2O(s)

Coolingthereactionmixturewillresultintheformationofgreencrystals.Thecrystalsobtainedinthisstepareconsideredasthe“crudeproduct”astheyarenotpure.Thesolidproductwillbeseparatedfromtheaqueoussupernatantby

2

decantingtheliquid,andthenthecrudeproductwillbepurifiedinthenextstepoftheprocess.Part2:PurificationoftheGreenCrystalThepurificationoftheGreenCrystalisdonethroughaprocesscalledrecrystallization.Inrecrystallization,thecrudeproductisdissolvedinasmallamountofhotsolvent,completelydissolvingtheentiresample.Atthisstageboththeimpuritiesandthedesiredproductaredissolved.Thechoiceofsolventissuchthat,thepureproductismuchlesssolubleinthecoldsolvent,causingthemtosolidify(recrystallize)asthesolutioncools,whiletheimpuritiesshouldremaindissolved.Theliquid,containingtheimpurities,canthenberemovedviafiltration,leavingthepuresolidproductbehind.Inthisexperiment,themostlikelyimpuritiescombinedwiththepureproductarethestartingmaterials.Accordingtothesolubilityrules,chloridesalts(suchasFeCl3!6H2O)andpotassiumsalts(suchasK2C2O4!H2O)arehighlysolubleinwater.Thedesiredproduct,theGreenCrystal(KwFex(C2O4)y!zH2O)isasparinglysolublesaltthatonlydissolvesinwaterathightemperatures.Therefore,waterisagoodsolventchoicefortherecrystallizationprocess.Thequalityofthecrystalsisimprovedifthecoolingisdoneslowly.Giventhis,itisnotrecommendedthatthecoolingbedoneovericeinitially.Itisbesttoallowthesolutiontocooltoroomtemperatureslowlyandthenplacethesolutioninanicebathonlyifnecessary.Thepercentagepurityoftherecrystallizedproductcanbegreatlyincreasediftheprocessisrepeatedmorethanonce.Whilemultiplerecrystalliztionsincreasethequalityoftheproduct,eachiterationalsodecreasesthequantityofproductthatcanbeisolated,resultinginanoveralldiminishedpercentyield.Giventhisconcernonlyoneortworecrystallizationsaretypicallycarriedoutinatypicalsyntheticscheme.Part3:AnalysisofthePercentofOxalateintheGreenCrystalThepercentofoxalate(C2O42-)intheGreenCrystalwillbeanalyzedbytitration(seeexperimentsA7andA9forareviewoftitration).Oxalatereactswithpermanganateinanacidicmediumaccordingtothefollowingequation:

2MnO4−(aq)+5C2O42-(aq)+16H+(aq)"2Mn2+(aq)+10CO2(g)+8H2O(l)

Theabovereactionisanexampleofaredoxtitration.TheMnO4−isreducedtoMn2+andtheC2O42-isoxidizedtoCO2.Anintroductiontooxidation-reduction(redox)reactionscanbefoundintheTypesofReactionschapterofanyGeneralChemistrytextbook,whileamoredetailedtreatmentmaybefoundinthelater

3

electrochemistrychapter.BothofthesesectionswillbediscussedoverthecourseoftheGeneralChemistryseries.Theprimaryfocusforthepresentisthefactthataccordingtothestoichiometryofthereaction,2molesofMnO4−willcompletelyreactwith5molesofC2O42-.Duringthistitration,aknownmassoftheGreenCrystalwillbedissolvedinwarmacidicwater.Thissolutionwillbecolorlessinitially.Astandardizedpermanganatesolution(whosemolarityispreciselyknown)willbeslowlyaddedfromaburetintoasolutioninwhichsomeoftheGreenCrystalwasdissolved.Thepurplecolorofthepermanganatewilldisappearasitreactswiththeoxalateinthereactionflask.Justpasttheequivalentpoint,whenalltheoxalatehascompletelyreacted,additionofonemoredropofthepermanganatewillleaveanexcessofpermanganateinthesolutionandthereforeapalepurplecolorinthereactionflask.Thisistheendpointofthetitration.Thevolumeofpermanganatesolutionneededforthetitrationandthemolarityofthepermanganatewillbeusedtodeterminethemolesofpermanganateusedforthetitration.Fromthestoichiometricrelationshipbetweenthepermanganateandtheoxalate,themolesoftheoxalatetitratedcanthenbedetermined.Thisisthenusedtocalculatethemasspercentofoxalateinthesample.Part4:AnalysisofPercentofIroninGreenCrystalTheanalysisofthepercentageofironintheGreenCrystalwillbedoneusingthemethodofspectrophotometry.SpectrophotometryandBeer’slawhavebeenextensivelydiscussedinpreviousexperiments(seeExperimentsB4andB6).TheironintheGreenCrystalhasanoxidationstateof+3.TheanalysisisgreatlyfacilitatedbyconvertingalltheFe(III)toFe(II).Inordertoreducetheironfromits+3to+2oxidationstate,severalstepsarerequired.Thesampleisfirstplacedinanammoniumacetatesolution,whichactsasabuffertostabilizethepHofthesolution.ThereductionofFe(III)toFe(II)isdonebyaddinghydroxylaminehydrochloride.Finally,thereagentortho-phenanthrolineisaddedtotheFe(II)togivethesolutionanorangecolor.Ortho-phenanthrolineactsasaLewisbasehere,donatingelectrondensitytotheironcation,formingtheLewisadduct[Fe(phen)3]2+,called“ferroin.”ThisorangecoloredcomplexiscommonlyusedforthephotometricdeterminationofFe(II)concentrations.Theorangecoloredferroincomplexhasawavelengthofmaximumabsorbance(λmax)at510nm.Therefore,spectrophotometricanalysisofthesampleiscarriedoutat510nm.

4

InthepreviousdiscussionsofspectrophotometryandBeer’slaw,thecalculationoftheconcentrationofasamplewhoseabsorbanceisknownusestheformula:

A=ε×C×l

Intheaboveformula:Aistheabsorbanceofthesample,Cistheconcentration,listhepathlengthoftheinstrumentandεisthemolarextinctioncoefficientofthesubstancebeinganalyzed.Theaboveformulacanonlybeusedifthemolarextinctioncoefficientofthesampleisknown.Intheabsenceofthisinformation,additionalstepsmustbeemployedtodeterminetheconcentrationoftheunknownsample.Oneofthesimplestmethodsinvolvesconstructingastandardcurveusingknownconcentrationsoftheunknown.Thisstandardcurveisaplotoftheabsorbanceofknownconcentrationsoftheanalyte,andisoftenreferredtoasa“Beer’sLawPlot.”Aplotofabsorbance(y-axis)vs.concentration(x-axis)shouldresultinacurvewhoseregressionequationcorrespondstothatofastraightline,y=mx+b.Uponmeasuringtheabsorbanceoftheunknownsample,theregressionequationobtainedfromthestandardcurvewillbeusedtocalculatetheconcentrationoftheunknown(concentrationx=(y–b)/m).Ineffect,theslopevalueobtainedinthisgraphshouldequaltheproductofthepathlengthandthemolarextinctioncoefficient,ε×l.Ifdesired,thevalueofthemolarextinctioncoefficientcanbedeterminedatthispointaswellbydividingtheslopebythepathlength.Bywayofexampleastohowthiswouldbeemployedinanexperiment,assumethatastocksolutionoftheanalytewithaconcentrationof1mg/mlhasbeenprovided.Theknownsolutioncanbedilutedtoobtainasetofsolutionsofknownconcentrationssuchas:0.2,0.4,0.6,0.8,and1.0mg/ml.Theabsorbancemeasurementofeachofthesesolutionsandtheunknownsolutionmayresultinadatasetsuchasispresentedbelow:

Solution(mg/ml) Absorbance0.0 0.0120.2 0.2220.4 0.3800.6 0.6120.8 0.7901.0 0.995

Unknown 0.585

5

Inordertoascertaintheconcentrationoftheunknown,astandardcurvemustbeconstructed.Asmentionedbefore,thestandardcurveisaplotofabsorbance(y-axis)vs.concentration(x-axis).Thegraphbelowisthestandardcurveobtainedfromtheabovedata.Theequationofthebest-fitline(seeExperimentB2)isalsoshowninthegraph.

Sincetheabsorbanceoftheunknownsampleis0.585,itsconcentrationiscalculatedusingtheequationofthelineasfollows:

y = 0.9787x + 0.0125

x =y − 0.01250.9787

x =0.585 − 0.0125

0.9787= 0.58 ≈ 0.6mg

ml Part5:AnalysisofPercentHydrateinGreenCrystalFromtheformulaoftheGreenCrystal,KwFex(C2O4)y!zH2O,itshouldbeapparentthatthesubstanceisahydrate.AswasdiscussedinExperimentA3,hydratesareinorganiccompoundswithwatermoleculesboundtothem.Inahydratedcompoundafixednumberofwatermolecules,calledthewaterofhydration,arechemicallycombinedwiththemetalion.Inthispartoftheanalysis,themasspercentofwaterinthehydratedGreenCrystalwillbedeterminedusingmethodsoriginallydescribedinExperimentA3.The

y=0.9787x+0.0125R²=0.99857

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Absorbance

Concentration(mg/ml)

StandardCurve

6

procedureinvolvesmeasuringthemassofthesubstancebeforeandafteritisdehydratedbyheatinginordertodeterminethemassofwaterlostintheprocess.Part6:AnalysisofPercentPotassiuminGreenCrystalThedeterminationofmasspercentsofiron,oxalate,andwaterwasdiscussedinParts3,4,and5,respectively.Themasspercentofpotassiumisthencalculatedbydifference.Noseparateanalyticalprocedureisneededforthisdetermination.

7

ExperimentalDesignThisexperimentwillbeperformedoveraperiodoffourlaboratorydays.Day1:Iron(III)chloridehexahydrateandpotassiumoxalatemonohydratewillbecombinedinanaqueousmediumatatemperatureof90°CandcooledtoobtainthecrudeproductoftheGreenCrystal.ThecrudeproductwillthenberecrystallizedusingwaterasthesolventandcooledovernighttoobtainthepureformoftheGreenCrystal.Day2:ThemasspercentofoxalateinthepurifiedGreenCrystalwillbedeterminedbytitrationwithstandardizedpotassiumpermanganate.Day3:ABeer’sLawPlotwillbeconstructedandthemasspercentofironinthepurifiedGreenCrystalwillbedeterminedbyspectrophotometricanalysis.Day4:ThemasspercentofwaterinthepurifiedGreenCrystalwillbedeterminedbymeasuringthemassofthehydratedanddehydratedsalt.ReagentsandSuppliesSolidIron(III)chloridehexahydrate,solidpotassiumoxalatemonohydrate,0.04MStandardizedKMnO4,3MH2SO4,Standardironsolution(0.05mg/ml),10%hydroxylaminehydrochloride,3%o-phenanthroline,1MammoniumacetatesolutionFilterpaper,filterflask,Hirschfunnel,25-mLburet,hotplate,seven10-mLvolumetricflasks,two25-mLvolumetricflasks,Spectrophotometer,cuvettes,microcrucible(SeepostedMaterialSafetyDataSheets)

8

ProcedurePART1:SYNTHESISOFGREENCRYSTAL1. Obtainahotplatefromthestockroom.2. Measure3-4gramsofiron(III)chloridehexahydrateandtransferittoa250-mL

beaker.Recordtheexactmass.3. Add15mLofdeionizedwatertotheiron(III)chloridehexahydratetodissolve.

Warmslightlyifnecessary.4. Measure8-9gramsofpotassiumoxalatemonohydrateandtransferittoa250-

mLbeaker.Recordtheexactmass.5. Add30mLofdeionizedwatertothepotassiumoxalatemonohydratetodissolve.

Heatthesolutiontoboiling.6. Transfertheiron(III)chloridehexahydratesolutiontothebeakercontainingthe

boilingpotassiumoxalatemonohydrate.7. Heatthemixturetoabout90°C.8. Whenthemixturereaches90°C,fromheatusingtongs.Placethebeakeronared

tileandallowittocoolslowlyforfiveminutes.9. Prepareatraywithice.10. Placethebeakercontainingthemixtureofreagentsoniceandallowittocoolfor

30-40minutes.11. Oncecrystallizationiscomplete,slowlydecantthesupernatantanddiscardthe

liquidintoanappropriatewastecontainerprovidedbytheinstructor.12. Thesolidcrystalsarethecrudeproduct.Taketheseforwardtothenextstep.

9

PART2:PURIFICATIONOFTHEGREENCRYSTAL1. Heatapproximately25mLofdeionizedwatertonearboiling.2. AddacoupleofmLofhotwaterfromStep1tothecrudeproductfromPart1

andheatthismixturealongwiththedeionizedwater.Continueaddingsmallincrementsofhotwatertothemixturecontainingthecrudeproductuntilthecrudeproductiscompletelydissolved.Makesurenottoaddtoomuchwater.[NOTE:Inorderfortherecyrstalizationtobesuccessful,thecrudeproductmustbedissolvedinaminimumamountofhotsolvent.]

3. Coverthebeakerwithawatchglass.4. Placethebeakercontainingthedissolvedcrudeproductinsidethelocker.

Purifiedcrystalswillformasthesolutioncools.5. ThisisagoodstoppingpointforDay1activities.Day26. Coolasquirtbottlecontainingdeionizedwaterinanicebath.7. ObtainthebeakercontainingthepureGreenCrystalsfromthelocker.8. SetupavacuumfiltrationusingaHirschfunnelandafilterflask.9. TransferthecrystalsfromthebeakertothefilterpaperontheHirschfunnel.

Scrapeanycrystalsstucktothebottomofthebeaker.10. Rinsethebeakerwithtwosmallaliquotsofice-coldwaterandaddthistothe

crystals.11. RemovethefilterpapercontainingthecrystalsfromtheHirschfunnelandplace

onawatchglass.12. Allowthecrystalstoairdry.13. WhilethecrystalsaredryingstartworkingonPart3andreturntoattendtothe

crystalswhentheyarecompletelydry.14. Obtainthemassofthedrycrystals.Besuretoweighallthecrystalssynthesized.15. Transferthecrystalsintoalabeledbeakerandplacetheminthelockeruntilthe

endoftheexperiment.

10

PART3:ANALYSISOFTHEPERCENTOXALATEINTHEGREENCRYSTAL1. Obtainabout20mLofstandardizedKMnO4solution.Recordtheexactmolarity

oftheKMnO4.

2. Obtaina25-mLburetandahotplatefromthestockroom.3. Setupaburetstandandclamptheburettothestand.Turnonthehotplate.4. RinsetheburettwicewithdeionizedwaterandconditiontheburetwithKMnO4.5. FilltheburetwiththeKMnO4solutionandrecordtheinitialburetreading.6. Measure0.1to0.12gramsofpureGreenCrystals.Recordtheexactmass.7. Transferthecrystalstoa125-mLErlenmeyerflask.8. Addabout12.5mLofdeionizedwaterand2.5mLof3Msulfuricacidtothe

Erlenmeyerflask.Addaboilingchipintotheflask.9. GentlyheattheErlenmeyerflaskonthehotplateuntilthecrystalsdissolve

completely.10. PlacetheErlenmeyerflaskcontainingthehotsolutionbelowtheburet

containingtheKMnO4solutionandbegintitrating.Constantlyswirltheflasktothoroughlymixthecontents.Stopthetitrationattheappearanceofapermanentpalepurplecolor.

11. Recordthefinalburetreading.12. Repeatsteps6to12anadditionaltwotothreetimes,asneeded.Youshould

have2trialsinwhichthemasspercentagreeswithin10%.13. Discardallthewasteinanappropriatewastecontainerprovidedbythe

instructor.

11

PART4:ANALYSISOFPERCENTIRONINGREENCRYSTALNOTE:Thispartoftheexperimentwillbeperformedingroupsoftwo.Theinstructorwillobtainthedataforthestandardcurvethatwillbeusedbytheentireclass.Bothmembersofthegroupmustpreparetheirownsampleforanalysis.1. Eachgroupshouldobtaintwo10-mLvolumetricflasksandtwo25-mL

volumetricflasksfromthestockroom.2. Obtaintwocuvettesandaspectrophotometer.Powerupthespectrophotometer

andallowtheinstrumenttowarmupfor10minutes.Theinstructorwilldemonstratetheproperuseofthespectrophotometer.

PreparationofStandards(Steps3-9willbedonebytheinstructor)3. Labelfive10-mLvolumetricflasksas1,2,3,4,and5andaddthefollowing

reagentsintotheflaskusingelectronicpipetsfordispensingthereagents.Flask Iron-standard,

µLAmmoniumacetate,µL

Hydroxylaminehydrochloride,µL

O-phenanthroline,µL

1 100 100 100 1002 200 100 100 1003 300 100 100 1004 400 100 100 1005 500 100 100 1004. Fillthevolumetricflaskswithdeionizedwateruntilthecalibrationmark.Iftoo

muchwaterhasbeenadded,discardthissolutioninthewastecontainerandredothepreparation.

5. Capthevolumetricflask,ensurethatthecapissecure,andthoroughlymixthe

contentsoftheflaskbyinverting.6. Preparefive“Blank”solutionscorrespondingtoeachstandardsolutionby

substitutingtheIron-standardwithanequivalentamountofdeionizedwater.7. Measuretheabsorbanceofthesamplesat510nm.8. Addtheblanksolutiontooneofthecuvettes.Placethecuvettecontainingthe

blankinsidethesamplecompartment,aligntheguidemarkonthecuvettewiththeguidemarkatthefrontofthesamplecompartment,closethelidandadjusttheabsorbancereadingtozero.

12

9. Addthestandardfromvolumetricflask1toacuvette.Nowplacethecuvettecontainingthestandardinsidethesamplecompartment,aligntheguidemarkonthecuvettewiththeguidemarkatthefrontofthesamplecompartment,closethelidandrecordtheabsorbance.

PreparationofSamples(individually)10. Measure0.01gramsoftheGreenCrystal.RecordtheexactmassoftheGreen

Crystal.Transferthecrystalstoasmallbeaker.11. Add10mlofdeionizedwatertothebeaker.12. Add0.5mlof3Msulfuricacid,usingamicroburet.13. Heatthebeakertillallthesaltdissolves.14. Transferthecontentsintoa25-mLvolumetricflask.Rinsethebeakerwith

deionizedwaterandtransfertherinsesolutionintothevolumetricflaskaswell.15. Fillthevolumetricflaskwithdeionizedwateruntilthecalibrationmark.Iftoo

muchwaterhasbeenadded,preparethesolutioninthisflaskagain.16. Capthevolumetricflask,ensurethatthecapissecure,andthoroughlymixthe

contentsoftheflaskbyinverting.17. Carefullytransfer0.50mLoftheabovesolutionintoa10-mLvolumetricflask

labeledas“sample”.Useamicroburetforthemeasurement.18. Tothe10-mLvolumetricflaskcontainingthesamplealsoadd(useelectronic

pipets):

a. 100µLammoniumacetateb. 100µLhydroxylaminehydrochloridec. 100µLO-phenanthroline

19. Fillthevolumetricflaskwithdeionizedwateruntilthecalibrationmark.Iftoo

muchwaterhasbeenadded,preparethesolutioninthisflaskagain.20. Capthevolumetricflask,ensurethatthecapissecure,andthoroughlymixthe

contentsoftheflaskbyinverting.Thiswillbethe“Sample”.MeasurementofAbsorbance21. Setthewavelengthofthespectrophotometerto510nm

13

22. Inalargetesttubepreparea“Blank”solutionbyaddingthefollowing,followedbythoroughmixing:

a. 100µLammoniumacetateb. 100µLhydroxylaminehydrochloridec. 100µLO-phenanthrolined. 10mLofdeionizedwater

23. Measuretheabsorbanceofthe“Sample”(fromStep20)accordingtomethods

describedinSteps7-9.Usethe“Sample”insteadofthe“Standards”forthemeasurement.

14

PART5:ANALYSISOFPERCENTHYDRATEINGREENCRYSTAL1. Obtainamicrocruciblefromthestockroom.2. Heatanemptymicrocrucibleandbringittoaconstantmass(±0.0010g).In

ordertodothis,recordthemassoftheemptycrucible.Thenheatthecruciblefor3-4minutes.Oncethecrucibleiscool,recorditsmassagain.Repeattheheating-cooling-weighingprocessuntilthemassrecordediswithin1mgofthepreviousmeasurement.

3. AddsomeGreenCrystaltothemicro-crucible(scoopasmallamountwitha

spatula,approximately0.1000grams).Measurethemassofthemicro-cruciblewiththesolid.

4. Heatthemicro-crucibleoveraBunsenburner(useayellowflame).Continuethe

heatingprocessforaboutfiveminutes.Makesurethatthesaltdoesnotturnblackincolor(whichisanindicationofdegradationoftheproduct).

5. Coolthemicro-crucibletoroomtemperatureandmeasurethemassofthe

micro-cruciblewiththeanhydrouscompound.6. Inordertoensurethatallthewaterofhydrationhasbeenevaporatedfromthe

solid,themicro-cruciblecontainingtheanhydroussolidshouldbeheatedovertheflameonceagain.

7. Onceagain,coolthemicro-crucibleandmeasurethemassofthemicro-crucible

containingtheanhydrouscompound.8. Theheating-cooling-weighingofthemicro-cruciblewiththeanhydrous

compoundmustberepeateduntilthemassofthemicro-cruciblecontainingtheanhydrouscompoundiswithin1mgofapreviousmeasurement.

9. Discardthecontentsofthemicro-crucibleintheappropriatewastedisposal

container.

15

DataTablePART1:SYNTHESISOFGREENCRYSTALMassofIron(III)chloridehexahydrate,grams

Massofpotassiumoxalatemonohydrate,grams

PART2:PURIFICATIONOFTHEGREENCRYSTALMassofpureGreenCrystalsynthesized,grams

PART3:ANALYSISOFTHEPERCENTOXALATEINTHEGREENCRYSTALMolarityofstandardizedKMnO4

Trial1 Trial2 Trial3

InitialburetreadingofKMnO4(mL)

FinalburetreadingofKMnO4(mL)

MassofpureGreenCrystals(grams)

16

PART4:ANALYSISOFPERCENTIRONINGREENCRYSTALMassofGreenCrystal(grams)

Concentrationofstockironsolution

Absorbance Absorbance

Standard1

Standard2

Standard3

Standard4

Standard5

Sample

PART5:ANALYSISOFPERCENTHYDRATEINGREENCRYSTAL Trial1 Trial2 Trial3

Constantmassofemptymicro-crucible(grams)

Massofmicro-crucible+GreenCrystal(grams)

Massofmicro-crucible+anhydrousGreenCrystal(followingfirstheating)(grams)

Massofmicro-crucible+GreenCrystal(followingsecondheating)(grams)

Massofmicro-crucible+GreenCrystal(followingthirdheating)(grams)

Massofmicro-crucible+GreenCrystal(followingfourthheating)(grams)

17

DataAnalysisPART3:ANALYSISOFTHEPERCENTOXALATEINTHEGREENCRYSTALMolarityofstandardizedKMnO4

Trial1 Trial2 Trial3

InitialburetreadingofKMnO4(mL)

FinalburetreadingofKMnO4(mL)

VolumeofKMnO4(ml)

VolumeofKMnO4(L)

MolesofKMnO4(Molarity×Volume)

Molesofoxalate(usestoichiometry)

MolarMassofoxalate(grams/mole)

Massofoxalate(grams)

MassofpureGreenCrystals(grams)

Masspercentofoxalate

Averagemasspercentofoxalate

18

PART4:ANALYSISOFPERCENTIRONINGREENCRYSTAL1. CalculatetheconcentrationofironineachoftheStandardsamples1through5.

Concentrationofstockironsolution=NOTE:Eachsamplewasdilutedtoafinalvolumeof10.0mL.Forinstance,Standard1waspreparedbydiluting100µLor0.10mLofstocksolutiontoafinalvolumeof10.0mL

ConcentrationofIron

AverageAbsorbance

Standard1

Standard2

Standard3

Standard4

Standard5

Sample

Unknown

2. PlottheStandardCurve(Plotofabsorbance(y-axis)vs.concentration(x-axis))

andobtaintheequationofthebest-fitline.

Equationofbest-fitline:

19

3. Calculatetheconcentrationofironinthesample.4. Theabovenumberistheconcentrationoftheironinthe10-mLvolumetricflask

samplepreparedinStep13oftheprocedure.Thissamplewaspreparedbydiluting0.5mLoftheoriginal25.0mLsampletoafinalvolumeof10.0mL.UsingtheconcentrationcalculatedinStep3above,calculatetheconcentrationofironinthe25.0mLsample.

5. Calculatethegramsofironinthesample.NOTE:Thevolumeofthesampleis

25.0mLandtheconcentrationofironisthenumbercalculatedinStep4above.6. CalculatethepercentageofironintheGreenCrystal.NOTE:Themassofthe

GreenCrystalisinthedatatable.

% Fe = Mass of Iron (g)

Mass of Green Crystal×100

20

PART5:ANALYSISOFPERCENTHYDRATEINGREENCRYSTAL

Trial1Trial2

Trial3

Massofemptymicro-crucible(grams)

Massofmicro-crucible+GreenCrystal(grams)

MassofGreenCrystal(grams)

Constantmassofmicro-crucible+anhydrousGreenCrystal(followingfinalheating)(grams)

MassofanhydrousGreenCrystal(grams)

PercentageofwaterinGreenCrystal(grams)

AveragepercentageofwaterinGreenCrystal

21

PART6:ANALYSISOFPERCENTPOTASSIUMINGREENCRYSTAL

Percentoxalate

Percentiron

Percenthydrate

Thereforepercentpotassium

22

PART7:DETERMINETHEEMPIRICALFORMULAOFTHEGREENCRYSTALAssumethereare100gramsoftheGreenCrystal:

Grams

MolarMass(grams/mol)

Moles

RelativeMoles

Oxalate(C2O42-)

Iron

Hydrate(H2O)

Potassium

EmpiricalFormulaofGreenCrystal:

23

PART8:DETERMINATIONOFPERCENTYIELDOFTHEREACTION1. ObtainthecorrectformulaoftheGreenCrystalfromtheinstructor.

FORMULA:2. WriteacompletebalancedchemicalequationforthesynthesisoftheGreen

Crystal.3. Basedontheexactmassesofthetwostartingmaterialsusedforthesynthesis

(DataTable:Part1),calculatethetheoreticalyieldoftheGreenCrystal.Besuretoconsiderthelimitingreagent.

4. BasedonthemassofthepureGreenCrystalobtained(DataTable:Part2),

calculatethepercentyieldofthereaction.

% Yield = Experimental Yield

Theoritical Yield×100