lccal * : a calorimeter prototype for future linear colliders

21
2003 10 06 P. Checchia Como 8th IC ATPP 1 LCcal * : a Calorimeter prototype for future Linear Colliders Design principles Prototype description Construction details Test Beam results Conclusions and Future plans * Contributors (Como, ITE-Warsaw, LNF, Padova, Trieste): M. Alemi, A.Anashkin, M. Anelli, M.Bettini, S.Bertolucci, E. Borsato, M. Caccia, P.C, C. Fanin, J.Marczewski, S. Miscetti, B.Nadalut, M. Nicoletto, M. Prest, R. Peghin, L. Ramina, F. Simonetto, E. Vallazza …. TALK SUMMARY

Upload: dante

Post on 25-Feb-2016

44 views

Category:

Documents


0 download

DESCRIPTION

LCcal * : a Calorimeter prototype for future Linear Colliders. TALK SUMMARY. Design principles Prototype description Construction details Test Beam results Conclusions and Future plans. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: LCcal * : a  Calorimeter prototype for future Linear Colliders

2003 10 06 P. Checchia Como 8th ICATPP 1

LCcal*: a Calorimeter prototype for future Linear

Colliders

•Design principles

•Prototype description

•Construction details

• Test Beam results

•Conclusions and Future plans

* Contributors (Como, ITE-Warsaw, LNF, Padova, Trieste): M. Alemi, A.Anashkin, M. Anelli, M.Bettini, S.Bertolucci, E. Borsato, M. Caccia, P.C, C. Fanin, J.Marczewski, S. Miscetti, B.Nadalut, M. Nicoletto, M. Prest, R. Peghin, L. Ramina, F. Simonetto, E. Vallazza ….

TALK SUMMARY

Page 2: LCcal * : a  Calorimeter prototype for future Linear Colliders

2003 10 06 P. Checchia Como 8th ICATPP 2

Design principlesFrom the LC Physics requirements:

Tesla TDR solutions:

•Si W

• Shashlik (thanks to CALEIDO)

Proposed solution:Keep SiW advantages (flat geometry, high granularity)

Erec. not from Si but from Scintillator-WLS fibers

Reduce (factor >10) the number of channels

Alternatives:• Cristals

•Fully compensating Ecal+Hcal

Page 3: LCcal * : a  Calorimeter prototype for future Linear Colliders

2003 10 06 P. Checchia Como 8th ICATPP 3

Prototype descriptionPb/Sc + Si

Scintillation light transported with WLS σ tail fibers:

Cell separation with grooves in Sc. plates with Tyvec strips inside

Coupled with clear fibers (to PM)

•45 layers

•25 × 25 × 0.3 cm3 Pb

•25 × 25 × 0.3 cm3 Scint.: 25 cells 5 × 5 cm2

•3 planes:

• 252 .9 × .9 cm2 Si Pads

•at: 2, 6, 12 X0

Page 4: LCcal * : a  Calorimeter prototype for future Linear Colliders

2003 10 06 P. Checchia Como 8th ICATPP 4

Prototype (cntd)3 Si planes

Actual design:- Detector: 6x7 pads

- Plane: 3x2 detectors

Goal: shower-shower separation, position measurement, e/h identification:

•Pad dimension< shower dimension: .9x.9 cm2

•Longitudinal sampling:3 planes

•Analogic ROVA hdr9c from IDEas

• See A. Bulgheroni’s talk for details

Pad diode

ac(old)-dc(new) coupled

pcb contact with conductive

glue

Page 5: LCcal * : a  Calorimeter prototype for future Linear Colliders

2003 10 06 P. Checchia Como 8th ICATPP 5

Construction details:Scintillator

• 3 mm Kuraray SCSN-61 (25x25 cm2)• 3 mm Bicron BC-408 (25x25 cm2)

Machined with vacuum plate as holder

Whole Production (>50 tiles) done in september 2002

Page 6: LCcal * : a  Calorimeter prototype for future Linear Colliders

2003 10 06 P. Checchia Como 8th ICATPP 6

To make the 2.4 cm radius curvature : middle temperature(500-700) oven

Splicing with optical glue

and a supporting tube :

stable in >30 day time

Fibers: Kuraray 1mm d. Y11 300 ppm multicladdingFace polished and aluminized by sputtering

Page 7: LCcal * : a  Calorimeter prototype for future Linear Colliders

2003 10 06 P. Checchia Como 8th ICATPP 7

Detector Assembling:45 Layers calorimeter prototype completely built in 2002 Fibres grouped into 25x4 bundles making a 4-fold longitudinal segmentation.

Slots for the insertion of the 3 Si pad planes (Motherboard). Mechanical support for

Photomultipliers

in the 3x3 central cells

Page 8: LCcal * : a  Calorimeter prototype for future Linear Colliders

2003 10 06

Test beam activity

after a 2002 pre test with the 1st layer only (2.1 X0) at CERN

• two runs at Frascati Beam Test Facility (n × 50 – 750 MeV)detector

tunable W target:1.7, 2.0, 2.3 X0

450 magnetW slits

LINAC Beam 1-500 mA

it is possible to tune the multeplicity.....

• run at CERN SPS H6 beam line (e/ 5 – 150 GeV) All tests: two beam position monitors (telescope) put in front of the calorimeter. - Each detector consisting of 400400 x–y Si strips with a pitch of 240 m - They cover the central area of the prototype (9.5 9.5 cm2)

LCcal

beam

trigger

Page 9: LCcal * : a  Calorimeter prototype for future Linear Colliders

2003 10 06 P. Checchia Como 8th ICATPP 9

Test beam activity : detector calibrationdefine ‘cell’ as the calibrated sum of the 4 longitudinal layers on the same lateral position: Ci=bij=1,4ajLi

j (4-1+9-1+16 parameters)

process in two steps:

• equalise the layer response at the same incoming energy Li

j=bk/bi Lkj

• minimise the Energy spread on the sum of 9 cells

(iterative process)aj | min. width Ecal=n=1,9Cn

L1

L2

L3

L4

Ci

Si L1

Si L2

Si L3

Page 10: LCcal * : a  Calorimeter prototype for future Linear Colliders

2003 10 06 P. Checchia Como 8th ICATPP 10

Good linearity vs molteplicity

3 e- 2 e- 1 e- E

E

Ebeam (MeV)

11.5%E

Nphe>5.1 /layer →Cal(45 layers) ~ 250 MeV/Mip ~ 800Npe/GeV OK also @ BTF (E ~500 MeV)

Cern TB 2002

1. Photoelectron statistics negligble2. Stocastic Term 11.5% as in MC

3. Light disuniformity <<10% Effects on resolution to be measured at SPS

(August 2003)

BTF test

Test beam results: Linearity and Energy Resolution

Page 11: LCcal * : a  Calorimeter prototype for future Linear Colliders

2003 10 06 P. Checchia Como 8th ICATPP 11

EE

Cern TB 2003

Ebeam (GeV)

11.1%EEca

l (G

eV)

e-

pm saturatesconfirmed at high energy !!!

Ebeam (GeV)

Test beam results: Linearity and Energy Resolution

Ecal (GeV) Ecal (GeV)

15 GeV e-

75 GeV

Page 12: LCcal * : a  Calorimeter prototype for future Linear Colliders

2003 10 06 P. Checchia Como 8th ICATPP 12

Si L1+L2

30 GeV electrons

Test beam results: Si pad detector (Position Meas.)

e-

=2.16 mm

=2.45 mm

=3.27 mm =1.76 mm

y pad –y telescope (cm)

y telescope (cm)

y pa

d Si

L2

(cm

)

Cern TB 2003

Si L1Si L2

Si L3

Page 13: LCcal * : a  Calorimeter prototype for future Linear Colliders

2003 10 06 P. Checchia Como 8th ICATPP 13

10 GeV electrons

Test beam results: Si pad detector (Position Meas.)

10 GeV simulated electrons

Position resolution 2.5mm not far from Monte Carlo

=2.5 mm

PRELIMINARY analysis: pad noise subtraction not optimised

Page 14: LCcal * : a  Calorimeter prototype for future Linear Colliders

14

Cern TB 2003

Eca

l (G

eV)

x (cm)

Test beam results: uniformity in (light) Energy response

Ecal (GeV)

30 GeV e-

y(cm

)

± 2%

x telescope

x pad

x telescope

x pad

x (cm)

disuniformity < 2%

correction from pad reconstruction can be applied!

PRELIMINARY: cell border effects dominated by residual miscalibration

± 2%Cj

Cj-1

Page 15: LCcal * : a  Calorimeter prototype for future Linear Colliders

2003 10 06 15

75 GeV30 GeV e-

Test beam results: ( e/ rejection)

50 GeV e-

30 GeV

iii

ii EEr 2

shower variance:

the redundancy of the information on the linear/lateral shower development makes the rejection very easy (difficult to quantify below 10-3 due to beam contamination)

30 GeV 30 GeV

30 GeV e-

30 GeV e-

E Si pad Layer 1

Cern TB 2003

E cal Layer 1

Si pad Layer 2

Page 16: LCcal * : a  Calorimeter prototype for future Linear Colliders

2003 10 06 P. Checchia Como 8th ICATPP 16

BTF test

Test beam results: Si Pad two particle separation

Two electrons with energy 750 MeV

Y silicon chambers

X silicon chambers

exhaustive analysis not fully accomplished

NB: not fully equipped+ problematic channels

First layer

Second layer

Third layer

Page 17: LCcal * : a  Calorimeter prototype for future Linear Colliders

2003 10 06 P. Checchia Como 8th ICATPP 17

Conclusions and Future plans• A calorimeter prototype with the proposed technique has been built

and fully tested. All the results are preliminary.• Energy and position resolution as expected: E/E ~11.-11.5%

/E, pos ~2 mm (@ 30 GeV)• Light uniformity acceptable.• e/ rejection very good ( <10-3).• Two particle separation results coming soon. • Next steps: include a calorimeter made following this technique into

the general LC simulation and Pattern recognition.• Combined test with Hcal (?)

Page 18: LCcal * : a  Calorimeter prototype for future Linear Colliders

2003 10 06 P. Checchia Como 8th ICATPP 18

backup

Page 19: LCcal * : a  Calorimeter prototype for future Linear Colliders

2003 10 06 P. Checchia Como 8th ICATPP 19

Detector Assembling:

Page 20: LCcal * : a  Calorimeter prototype for future Linear Colliders

2003 10 06 P. Checchia Como 8th ICATPP 20

PM’s

Scintill.Piani Si

Fibres with PM support structure

LCCAL in test @ BTF (Frascati)

Fibres faced to PMs

Page 21: LCcal * : a  Calorimeter prototype for future Linear Colliders

2003 10 06 P. Checchia Como 8th ICATPP 21

Test beam results CALORIMETER (2.1 X0)4 layers

m.i.p.→check light output and uniformity in Light collection:

Ratio signal/sigma →lower limit for photoelectrons

Nphe>5.1 /layer

→ cal(45layers):>220 phe/m.i.p.good uniformity:

Simulated Light collection disunifority(20%)