l.besombes y.leger h. boukari d.ferrand h.mariette j. fernandez-rossier

42
L.Besombes Y.Leger H. Boukari D.Ferrand H.Mariette J. Fernandez- Rossier CEA-CNRS team « Nanophysique et Semi-conducteurs » Institut Néel, CNRS Grenoble, FRANCE Department of applied physics, University of Alicante, SPAIN Optical control of an individual spin

Upload: vince

Post on 21-Mar-2016

35 views

Category:

Documents


0 download

DESCRIPTION

Optical control of an individual spin. L.Besombes Y.Leger H. Boukari D.Ferrand H.Mariette J. Fernandez-Rossier. CEA-CNRS team « Nanophysique et Semi-conducteurs » Institut Néel, CNRS Grenoble, FRANCE. Department of applied physics, University of Alicante, SPAIN. Introduction. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

L.BesombesY.Leger H. Boukari D.FerrandH.Mariette

J. Fernandez-Rossier

CEA-CNRS team « Nanophysique et Semi-conducteurs »

Institut Néel, CNRS Grenoble, FRANCE

Department of applied physics, University of Alicante, SPAIN

Optical control of an individual spin

Page 2: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Introduction

Ultimate semiconductor spintronic device: Single magnetic ion / individual carriers

-Control of the interaction between a single magnetic atom and an individual carrier.(spin injection, spin transfer)

-Manipulation of an individual spin (memory, quantum computing)

II-VI Semi-Magnetic semiconductor QDs

Localized carriers

Magnetic doping (Mn: S=5/2)

…Towards a single spin memory.

Page 3: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Theoretical proposals

Transport: A single QD containing a Mn atom could be use as a spin filter

Nano-magnetism : electrical control of the magnetism.

Hawrylak et al. Phys. Rev. Lett. 95, 217206 (2005)

Qu et al. Phys. Rev. B74, 25308 (2006)

Memories : writing and reading of the spin state of a single Mn atom.

A.O. Govorov et al., Phys. Rev. B 71, 035338 (2005)

Page 4: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

1. Probing the spin state of a single Magnetic atom - II-VI magnetic self assembled QDs - Carriers-Mn exchange interaction - Importance of QD structural parameters on the spin detection (Shape anisotropy, valence band mixing)

2. Carrier controlled Mn spin splitting - Anisotropy of the hole-Mn interaction - Charge tunable Mn-doped QDs

3. Carriers and Mn spin dynamics

Outline

Page 5: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

UHV-AFM image of CdTe QDs on ZnTe.UHV-AFM image of CdTe QDs on ZnTe.

QDs density: 5.109 cm-2

Size: d=15nm, h=3nm(Lz<<Lx,Ly)

TEM image of CdTe QDs on ZnTe.TEM image of CdTe QDs on ZnTe.

Individual CdTe/ZnTe QDs

1950 2000 2050 2100

d 0,25 m

d 0,5 m

d 20 m

6,5 MLs

PL In

tens

ity (a

rb. u

nits

)

Energy (meV)

meV50

eV50

100 m

Micro-spectroscopy.Micro-spectroscopy.

Page 6: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Jz=+1

Jz= -1

Jz= - 2

Jz= +2

G.S.

B=0 B=0

eh

eh

- +

meV10

e: spin 1/2h: anisotropic (Jz=3/2)

Jz= -3/2

Jz= -1/2

Jz= +3/2

Jz= +1/2

Sz= +1/2Sz= -1/2

+ -

e

hh

lh

Optical selection rules:

z

Optical transitions in an individual QD

Page 7: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Electrical control of the charge.

Transfer of holes from the surface states: p type doping of the QDs.

V

p-ZnTeCdTe

Gated charged quantum dots

Page 8: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Te

Cd

Mn

•Mn remplace Cd: Mn2+

•Mn2+ S=5/2, 2S+1=6

Cd: 3d10 4s2

Mn: 3d5 4s2

Exchange interaction:

•Mn - electron

•Mn - hole

)x (SMJ IeI

Ie

I

IhIh )x(SMJ

Mn doped II-VI QDs

Electron: σ = 1/2

Hole: jZ = ±3/2

Mn atom: S = 5/2

nm

nm

h

Page 9: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

The presence of a single magnetic atom completely control the emission structure.

Measurement of the exchange interaction energy of the electron, hole, Mn

Phys Rev Lett. 93, 207403 (2004)

Emission of Mn-doped individual QDs

Page 10: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

2zJ

1zJ

X X+Mn2+

Sz = ±5/2, ±3/2, ±1/2

Mn2+

-5/2Jz = -1eh Jz = +1

eh

-3/2

-1/2

+1/2+3/2

+5/2Jz = -1eh

+5/2

+3/2

+1/2

-1/2-3/2

-5/2

Exchange constant: s-d, >0p-d, <0

Jz = +1eh

Heavy holeexciton

))S.jS.j(2/1S.j(I))S.S.(2/1S.(I

zzMnh

zzMne

Mn2+

Heavy-hole exciton / Mn exchange coupling

Page 11: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

2zJ

1zJ

X X+Mn2+

Heavy holeexciton

))S.jS.j(2/1S.j(I))S.S.(2/1S.(I

zzMnh

zzMne

Mn2+

-

-5/2

+5/2

+

+5/2

-5/2

1 photon (energy, polar) = 1 Mn spin projection

Overall splitting controlled by Ie-Mn and Ih-Mn .

Heavy-hole exciton / Mn exchange coupling

Page 12: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Magnetic field dependent PL intensity distribution.

NMn=0 NMn=1

Mn-doped individual QDs under magnetic field

Page 13: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

eh Mn2+

eh

Mn2+

eh Mn2+

Mn2+

B

eh Mn2+

+-

B

Jz = -1 Jz = +1

gMn=2

Mn spin conservation

Mn spin polarization

Boltzmann distribution of the Mn-Exciton system:

latticeeff TT

K5TLatt

Teff=12K

Polarization of the Mn spin distribution

Page 14: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Resonant excitation

Complex excited states fine structure

Selection of Mn spin distributionand

spin conservation during the lifetime of the exciton.

Statistic Mn spin distribution

B=0T

Page 15: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

S.I Mne

j.I he

zzBhzzBe BjμgBσμg

2B

zzMnh .Sj I

zzBMn BSμg

-1 0 1 2Energy (meV)

Th.Exp. Effective spin Hamiltonian:

Carriers-Mn exchange coupling

- X-Mn Overlap- QD shape- Strain distribution

Page 16: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Ie-Mn in a flat parabolic potential:

26nmd 3nmLz

Exchange integrals controlled by the overlap with the Mn atom.

Decrease ofX-Mn overlap

1.3 meV

Detection condition: Exciton-Mn overlap

Page 17: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Influence of the QD shape

Phys Rev Lett. 95, 047403 (2005)

Influence of the valenceband mixing

Jz=+ - 3/2

Jz=+ - 1/2

Sz= +- 1/2 e

hhlh

Phys Rev B. 72, 241309(R) (2005)

QD3QD1 QD2

Heavy-hole + Mn

Detection condition: Structural parameters

Page 18: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Inhomogeneous relaxation of strain in a strained induced QD (Bir & Pikus Hamiltonian):

0.. SjSjI Mnh

|3/2> |1/2> |-1/2> |-3/2>

|3/2> = c1 |3/2>+ c2 |-1/2> c1>>c2

|-3/2> = c3 |-3/2>+ c4 |1/2> c3>>c4

~

~

<3/2| j - |-3/2> = 0~ ~ via cross components because

123,

23

1310

32

21,

23

k

E

Valence band mixing in strained induced QDs

Page 19: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Allows simultaneous hole-Mn spin flip

Possibility to flipfrom jz= +3/2 to -/3/2 via light holes

Effective h-Mn interaction term in the Heavy hole Subspace

eh

eh

lh : Heavy-light hole mixing efficiency

))..(.( SjSjSjI lhzzMnh

2zJ

1zJ

X X+Mn2+

~~

Influence of valence band mixing

Page 20: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Allows simultaneous hole-Mn spin flip

Effective h-Mn interaction term in the Heavy hole Subspace

eh

eh

lh : Heavy-light hole mixing efficiency

))..(.( SjSjSjI lhzzMnh Exp.

Th.

Emission of “non-radiative” exciton states

Possibility to flipfrom jz= +3/2 to -/3/2 via light holes

~~

Phys Rev B. 72, 241309(R) (2005)

Influence of valence band mixing

Page 21: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

X-Mn in transverse B field«0»

B//

Faraday

B┴

Voigt

Voigt: Complex fine structure…Suppression of the hole Mn exchange interaction

Faraday:Zero field structure is conserved

001

001

«+1 »«-1 »

Phys Rev B. 72, 241309(R) (2005)

Page 22: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

1. Probing the spin state of a single Magnetic atom - II-VI magnetic self assembled QDs - Carriers-Mn exchange interaction - Importance of QD structural parameters on the spin detection (Shape anisotropy, valence band mixing)

2. Carrier controlled Mn spin splitting - Anisotropy of the hole-Mn interaction - Charge tunable Mn-doped QDs

3. Carriers and Mn spin dynamics

Page 23: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Increase of the excitation density

Increase of the number of carriers in the QD.

Formation of the biexciton(binding energy 11meV)

Similar fine structure for the exciton and the biexciton

.

.

.

ehX

X2eh

Biexciton in a Mn-doped QD

Page 24: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Optical control of the magnetization:

- One exciton splits the Mn spin levels- With two excitons, the exchange interaction vanishes…

X2 (J=0)

X, J=±1

G.S.

σ +

σ -

Phys Rev B. 71, 161307(R) (2005)

Carrier controlled Mn spin splitting

Page 25: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Charge tunable sungle Mn-doped QDs allow us to probe independantly the interactions between electron and Mn or hole and Mn

eh

eh

Phys Rev Lett. 97, 107401 (2006)

Gated charged Mn-doped quantum dots

Page 26: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Ie-Mn = 40 μeV

Ih-Mn(X+) = 95 μeVIh-Mn(X) = 150 μeVIh-Mn(X-) = 170 μeV

♦ The hole confinement is influenced by the Coulomb attraction

X+, Mn X, Mn X-, Mn

Mn

h

e

Increasing the hole-Mn overlap by injecting electrons in the QD

X+, Mn hardly resolved

eh

eh

Variation of hole-Mn exchange interaction

Page 27: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

J=3

J=2Final state:1 e + 1 Mn

•Isotropic e-Mn interaction•Anisotropic h-Mn interaction

Initial state:1 h + 1 Mn

eh

)S.j(I zzMnh

eh

25

25

25

25

Negatively charged exciton in a Mn doped QD

Page 28: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

J=3J=2

25

♦ Optical transitions between:

hzeeMnz jSi

eMnzSf

Proportional to the overlap:

,SJ,J zz

Eigenstates of He-Mn

Jz=-1

Optical recombination of the charged exciton

Page 29: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

256

613,3

256

613,3

J=3

235

251

612,3

214

232

611,3

251

235

612,3

232

214

611,3

213

213

610,3

J=2

25

25

Energy

Prob

abili

ty

1

Optical recombination of the charged exciton

Page 30: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

J=3J=2

25

25

231

255

612,2

212

234

611,2

255

231

612,2

23

421

26

112,

213

213

610,2

Energy

Prob

abili

ty

1

25

25

Optical recombination of the charged exciton

Page 31: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

J=3J=2

25

25

Energy

Prob

abili

ty

1

e-Mn: isotropich-Mn: anisotropic

25

25

Optical recombination of the charged exciton

Page 32: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

J=3

J=2Final state:1 e + 1 Mn

Initial state:1 h + 1 Mn

eh

))..(.( SjSjSjI lhzzMnh

(+3/2,-1/2)(-3/2,+1/2)

Phys Rev Lett. 97, 107401 (2006)

Charged exciton in a single QD: Influence of VBM

Page 33: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

J=3

J=2Final state:1 e + 1 Mn

Initial state:1 h + 1 Mn

eh

))..(.( SjSjSjI lhzzMnh

(+3/2,-1/2)(-3/2,+1/2)

Charged exciton in a single QD: Influence of VBM

Page 34: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

♦ X-, Mn ♦ X+, Mn

e, Mn

h, Mn

h, Mn

e, Mn

♦ Reversed initial and final states

J=3J=2

Negatively / Positively charged Mn-doped QDs

Page 35: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Heisenberg

ST

Q=-1 Q=0 Q=+1

Free

hh

Ising

Mz

Mn+1h= Nano-Magnet

Ene

rgy

Gated controlled magnetic anisotropy

Page 36: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

1. Probing the spin state of a single Magnetic atom - II-VI magnetic self assembled QDs - Carriers-Mn exchange interaction - Importance of QD structural parameters on the spin detection (Shape anisotropy, valence band mixing)

2. Carrier controlled Mn spin splitting - Anisotropy of the hole-Mn interaction - Charge tunable Mn-doped QDs

3. Carriers and Mn spin dynamics

Page 37: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Spin dynamics vs photon statistics

1 photon (σ, E) 1 Mn spin state

1 Mn atom Sz

If Sz(t=0) = -5/2

t0

1

~1/6

-5/2

?

P (Sz = -5/2)

-

-5/2

+5/2

+

+5/2

-5/2

Photon statistics ?

Page 38: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Correlation measurement on single QDs

Use of a SIL to increase the signal

Select a QD witha large splittingto spectrally isolate a Mn spin state

PL in

t (ar

b. u

nits

)

20402039203820372036 Energy (meV)

Single emitter statistics :

Antibunching: The QDs cannot emit two photons with a given energy at the same time

Whole PL autocorrelation

Page 39: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Single Mn spin dynamicsPL

int (

arb.

uni

ts)

20402039203820372036 Energy (meV)

Auto Correlation on one linein one polarization

One Mn spin projection

2zJ

1zJ

X X+Mn2+

E

τX-Mn

Photon bunching at short delay

8 ns

t

+, -5/2)

Page 40: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

PL in

t (ar

b. u

nits

)

20402039203820372036 Energy (meV)

Auto Correlation on one linein one polarization

σ +

One Mn spin projection

2zJ

1zJ

X X+Mn2+

E

τX-Mn

Single Mn spin dynamics

Mixing between Mn spin relaxation time and X-Mn spin relaxation time

2 x P0

P0

3 x P0

Power dependence

Page 41: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Single Mn spin dynamics

-

-5/2

+5/2

+

+5/2

-5/2

Direct evidence ofthe spin transfer

PL in

t (ar

b. u

nits

)

20402039203820372036 Energy (meV)

Polarization Cross-Correlation

σ +

One Mn spin projection

σ -

Influence of magnetic field?...To be continued…

Page 42: L.Besombes Y.Leger  H. Boukari  D.Ferrand H.Mariette J. Fernandez-Rossier

Optical probing of a single carrier/single magnetic atom interaction.

- The exchange coupling is controlled by the carrier / Mn overlap.

- BUT, real self assembled QDs: - Shape anisotropy- Valence band mixing

…. Store information on a single spin?

Hole-Mn complex is highly anisotropic but non-negligeable effects of heavy-light hole mixing

Charged single Mn-doped QDs: Change the magnetic properties of the Mn with a single carrier.

Summary

Photon statistics reveals a complex spin dynamics.