last time, unsteady state heat transfer

44
Lecture 7 4/24/2019 1 Ā© Faith A. Morrison, Michigan Tech U. 1 Last time, Unsteady State Heat Transfer ā€20 ā€10 0 10 20 30 40 ā€2 0 2 4 6 8 10 0.1 hours 0.2 0.5 1 2 5 10 20 50 100 200 500 8 increasing time, t 32 , , Ā© Faith A. Morrison, Michigan Tech U. 2 Solution Summary: Answer: ąµŒ 509 ā„Ž ąµŽ 21

Upload: others

Post on 18-Dec-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

1

Ā© Faith A. Morrison, Michigan Tech U.1

Last time, Unsteady State Heat Transfer

ā€20

ā€10

0

10

20

30

40

ā€2 0 2 4 6 8 10

x, ft

0.1 hours

0.2

0.5

1

2

5

10

20

50

100

200

500

8š‘“š‘”

increasing time, t

32 š¹

š‘‡ š‘„, š‘”

š‘œ š¹

š‘„, š‘“š‘”

Ā© Faith A. Morrison, Michigan Tech U.2

Solution Summary:

Answer:š‘” 509 ā„Žš‘œš‘¢š‘Ÿš‘  21 š‘‘š‘Žš‘¦š‘ 

Page 2: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

2

non-dimensional variables:

position: temperature:

Ā© Faith A. Morrison, Michigan Tech U.

Non-dimensionalize (eqns, BCs)

Dimensional Analysis, Unsteady State Convection

3

š‘”āˆ— ā‰”š›¼š‘”š·

time:

š‘„āˆ— ā‰”š‘„š·

š‘Œ ā‰”š‘‡ š‘‡š‘‡ š‘‡

This dimensionless time is called Fourier number Fo.

x

y

oTTt 0

oTTt 0

1

0TT

t 0

( , )

t

T T x t

x

y

Fo Fourier Numberš›¼š‘”š·

šœ•š‘‡šœ•š‘”

š›¼šœ• š‘‡šœ•š‘„

š‘ž š‘˜šœ•š‘‡šœ•š‘„

ā„Žš“ š‘‡ š‘‡

Ā© Faith A. Morrison, Michigan Tech U.4

In dimensionless form, we see that this problem reduces to

š‘Œ š‘Œš‘„š·

, Fo, Bi

Dimensionless quantities:

š‘Œ

š‘”āˆ— Fo

š‘„āˆ—

Bi

Biot number (pronounced BEEā€OH)Ratio of heat transfer at the boundary to heat transfer within the solid.  This is a transport issue.

Fourier number (dimensionless time)

Y (dimensionless temperature interval)

Initial condition:

Boundary  conditions:

Unsteady State Heat Conduction in a Semiā€Infinite Slab x

y

oTTt 0

oTTt 0

1

0TT

t 0

( , )

t

T T x t

x

y1D Heat Transfer:  Unsteady State

temperature:

š‘”āˆ— 0 š‘Œ 1 āˆ€ š‘„āˆ—

š‘„āˆ— āˆž š‘Œ 1 āˆ€ š‘”āˆ—

š‘„āˆ— 0šœ•š‘Œšœ•š‘„āˆ— Bi š‘Œ š‘”āˆ— 0

Page 3: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

3

Ā© Faith A. Morrison, Michigan Tech U.5

High Bi:low š‘˜, high ā„Ž

Low Bi:high š‘˜, low ā„Ž

At high Bi, the surface temperature equals the bulk temperature; heat transfer is limited by conduction in the body.

At low Bi, the temperature is uniform in a finite body; heat transfer is limited by rate of heat transfer to the surface (ā„Ž).

At moderate Bi, heat transfer is affected by both conduction in the body and the rate of heat transfer to the surface.

Moderate Bi:nether process dominates

Bi Biot NumberQuantifies the tradeoffs between the rate of internal heat flux (by conduction, š‘˜) and the rate of heat delivery to the boundary (by convection, ā„Ž)

Ā© Faith A. Morrison, Michigan Tech U.6

High Bi:low š‘˜, high ā„Ž

Low Bi:high š‘˜, low ā„Ž

At high Bi, the surface temperature equals the bulk temperature; heat transfer is limited by conduction in the body.

At low Bi, the temperature is uniform in a finite body; heat transfer is limited by rate of heat transfer to the surface (ā„Ž).

At moderate Bi, heat transfer is affected by both conduction in the body and the rate of heat transfer to the surface.

Moderate Bi:nether process dominates

Bi Biot NumberQuantifies the tradeoffs between the rate of internal heat flux (by conduction, š‘˜) and the rate of heat delivery to the boundary (by convection, ā„Ž)

When the temperature is uniform in the body, we can do a macroscopic energy 

balance to solve many problems of interest.  This is called a ā€œlumped parameter analysis.ā€

Page 4: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

4

Ā© Faith A. Morrison, Michigan Tech U.7

High Bi:low š‘˜, high ā„Ž

Low Bi:high š‘˜, low ā„Ž

At high Bi, the surface temperature equals the bulk temperature; heat transfer is limited by conduction in the body.

At low Bi, the temperature is uniform in a finite body; heat transfer is limited by rate of heat transfer to the surface (ā„Ž).

At moderate Bi, heat transfer is affected by both conduction in the body and the rate of heat transfer to the surface.

Moderate Bi:nether process dominates

Bi Biot NumberQuantifies the tradeoffs between the rate of internal heat flux (by conduction, š‘˜) and the rate of heat delivery to the boundary (by convection, ā„Ž)

When the wall temperature and the bulk temperature are equal, the microscopic energy balance is easier to carry out (temperature boundary conditions).  

Ā© Faith A. Morrison, Michigan Tech U.8

High Bi:low š‘˜, high ā„Ž

Low Bi:high š‘˜, low ā„Ž

At high Bi, the surface temperature equals the bulk temperature; heat transfer is limited by conduction in the body.

At low Bi, the temperature is uniform in a finite body; heat transfer is limited by rate of heat transfer to the surface (ā„Ž).

At moderate Bi, heat transfer is affected by both conduction in the body and the rate of heat transfer to the surface.

Moderate Bi:nether process dominates

Bi Biot NumberQuantifies the tradeoffs between the rate of internal heat flux (by conduction, š‘˜) and the rate of heat delivery to the boundary (by convection, ā„Ž)

When both processes affect the outcomes, the full solution may be necessary.  For uniform starting 

temperatures, the solutions are published.

Page 5: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

5

Ā© Faith A. Morrison, Michigan Tech U.9

High Bi:low š‘˜, high ā„Ž

Low Bi:high š‘˜, low ā„Ž

At high Bi, the surface temperature equals the bulk temperature; heat transfer is limited by conduction in the body.

At low Bi, the temperature is uniform in a finite body; heat transfer is limited by rate of heat transfer to the surface (ā„Ž).

At moderate Bi, heat transfer is affected by both conduction in the body and the rate of heat transfer to the surface.

Moderate Bi:nether process dominates

Bi Biot NumberQuantifies the tradeoffs between the rate of internal heat flux (by conduction, š‘˜) and the rate of heat delivery to the boundary (by convection, ā„Ž)

When the temperature is uniform in the body, we can do a macroscopic energy 

balance to solve many problems of interest.   This is called a ā€œlumped parameter analysis.ā€

1. Lumped parameter analysis

š· ā‰”volume

areaš‘‰

š“

Low Bi:high š‘˜, low ā„Ž

At low Bi, the temperature is uniform in a finite body; heat 

transfer is limited by rate of heat transfer to the surface (ā„Ž).

This is always the š· we use for the lumped parameter analysis.  We use 

different š· in other cases, however.

Ā© Faith A. Morrison, Michigan Tech U.10

This topic is part of a more general subject:

Page 6: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

6

Example: Quench cooling of a manufactured part.

If a piece of steel with š‘‡ š‘‡ is dropped into a large, well stirred reservoir of fluid at bulk temperature š‘‡ , what is the temperature of the steel as a function of time?

ā€¢ š‘˜ large, which means that there is no internal resistance to heat transfer in the part

ā€¢ Therefore, we are NOT calculating a temperature profile (internal š‘‡ is uniform)

ā€¢ ā‡’ Use Unsteady, Macroscopic Energy Balance

Ā© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer:  Low Biot Number

Fluid temperature š‘‡

š‘‡ š‘‡ š‘”

š‘˜, šœŒ, š¶

11

Unsteady Macroscopic Energy Balance

see Felder and Rousseau or Himmelblau

tW ons ,

tQin

tgzv

Hmin

in

2Ė†

2

tgzv

Hmout

out

2Ė†

2

amount of energy that enters with the flow between tand š‘” Ī”š‘”

amount of energy that exits with the flow between t and š‘” Ī”š‘”

balance over time interval Ī”š‘”

Ā© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer:  Low Biot Number

. .

Macroscopic control volume

12

Page 7: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

7

Unsteady Macroscopic Energy Balance

Ā© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer:  Low Biot Number

š‘‘š‘‘š‘”

š‘ˆ šø , šø , Ī”š» Ī”šø Ī”šø š‘„ š‘Š ,

accumulation  input  output

13

Background:  pages.mtu.edu/~fmorriso/cm310/IFMWebAppendixDMicroEBalanceMorrison.pdf

Unsteady Macroscopic Energy Balance

Ā© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer:  Low Biot Number

š‘‘š‘‘š‘”

š‘ˆ šø , šø , Ī”š» Ī”šø Ī”šø š‘„ š‘Š ,

accumulation  input  output

14

How do we apply this balance to our current problem?

Page 8: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

8

Unsteady Macroscopic Energy Balance

Ā© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer:  Low Biot Number

š‘‘š‘‘š‘”

š‘ˆ šø , šø , Ī”š» Ī”šø Ī”šø š‘„ š‘Š ,

accumulation  input  output

15

You try.

Unsteady Macroscopic Energy Balance

For negligible changes in šø and šø , no flow, no phase change, no chemical rxn, and no shafts:

Ā© Faith A. Morrison, Michigan Tech U.

no shafts

š‘‘š‘ˆš‘‘š‘”

š‘„

šœŒš‘‰ š¶š‘‘š‘‡

š‘‘š‘”Q

Unsteady State Heat Transfer:  Low Biot Number

š‘‘š‘‘š‘”

š‘ˆ šø , šø , Ī”š» Ī”šø Ī”šø š‘„ š‘Š ,

š¶ š¶ for liquids, solids

no flownegligible

accumulation  input  output

16

Page 9: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

9

Unsteady Macroscopic Energy Balance

For negligible changes in šø and šø , no flow, no phase change, no chemical rxn, and no shafts:

Ā© Faith A. Morrison, Michigan Tech U.

no shafts

š‘‘š‘ˆš‘‘š‘”

š‘„

šœŒš‘‰ š¶š‘‘š‘‡

š‘‘š‘”Q

Unsteady State Heat Transfer:  Low Biot Number

š‘‘š‘‘š‘”

š‘ˆ šø , šø , Ī”š» Ī”šø Ī”šø š‘„ š‘Š ,

š¶ š¶ for liquids, solids

no flownegligible

17

How do we quantify the heat in š‘„ ?

Unsteady Macroscopic Energy Balance

Ā© F

aith

A. M

orris

on, M

ichi

gan

Tech

U.

š‘‘š‘‘š‘”

š‘ˆ šø , šø , Ī”š» Ī”šø Ī”šø š‘„ š‘Š ,

pages.mtu.edu/~fmorriso/cm310/IFMWebAppendixDMicroEBalanceMorrison.pdfIncropera and DeWitt, 6th edition p18

š‘„ āˆ‘ š‘ž , comes from a variety of sources:

ā€¢ Thermal conduction:  š‘ž š‘˜š“

ā€¢ Convection heat xfer:  š‘ž ā„Žš“ š‘‡ š‘‡

ā€¢ Radiation:  š‘ž šœ€šœŽš“ š‘‡ š‘‡

ā€¢ Electric current:  š‘ž š¼ š‘… šæ

ā€¢ Chemical Reaction:  š‘ž š‘† š‘‰

š‘†energy

time volume

š‘„ Heat into the chosen macroscopic control volume

accumulation input  output 

18

Page 10: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

10

Unsteady Macroscopic Energy Balance

Ā© F

aith

A. M

orris

on, M

ichi

gan

Tech

U.

š‘‘š‘‘š‘”

š‘ˆ šø , šø , Ī”š» Ī”šø Ī”šø š‘„ š‘Š ,

pages.mtu.edu/~fmorriso/cm310/IFMWebAppendixDMicroEBalanceMorrison.pdfIncropera and DeWitt, 6th edition p18

š‘„ āˆ‘ š‘ž , comes from a variety of sources:

ā€¢ Thermal conduction:  š‘ž š‘˜š“

ā€¢ Convection heat xfer:  š‘ž ā„Žš“ š‘‡ š‘‡

ā€¢ Radiation:  š‘ž šœ€šœŽš“ š‘‡ š‘‡

ā€¢ Electric current:  š‘ž š¼ š‘… šæ

ā€¢ Chemical Reaction:  š‘ž š‘† š‘‰

š‘†energy

time volume

š‘„ Heat into the chosen macroscopic control volume

accumulation input  output 

19

Signs must match transfer from outside (bulk fluid) to inside (metal)

Unsteady Macroscopic Energy Balance

Ā© Faith A. Morrison, Michigan Tech U.

ā€¢ Thermal conduction:  š’’š’Šš’ š’Œš‘Ø š’…š‘»

š’…š’™

ā€¢ Convection heat xfer:  š’’š’Šš’ š’‰š‘Ø š‘»š’ƒ š‘»

ā€¢ Radiation:  š’’š’Šš’ šœŗšˆš‘Ø š‘»š’”š’–š’“š’“š’š’–š’š’…š’Šš’š’ˆš’”šŸ’ š‘»š’”š’–š’“š’‡š’‚š’„š’†

šŸ’

ā€¢ Electric current:  š’’š’Šš’ š‘°šŸš‘¹š’†š’š’†š’„š‘³

ā€¢ Chemical Reaction:  š’’š’Šš’ š‘ŗš’“š’™š’š‘½š’”š’šš’”

20

e.g. device held by bracket; a solid phase that extends through boundaries of control volume

e.g. device dropped in stirred liquid; forced air stream flows past, natural convection occurs outside system; phase change at boundary

e.g. device at high temp. exposed to a gas/vacuum; hot enough to produce nat. conv. possibly hot enough for radiation

e.g. if electric current is flowing within the device/control volume/ system

e.g. if a homogeneous reaction is taking place throughout the device/ control volume/system

š‘øš’Šš’ āˆ‘ š’’š’Šš’,š’Šš’Š comes from a variety of sources:

š’…š’…š’•

š‘¼š’”š’šš’” š‘¬š’Œ,š’”š’šš’” š‘¬š’‘,š’”š’šš’”

šš«š‘Æ šš«š‘¬š’Œ šš«š‘¬š’‘ š‘øš’Šš’ š‘¾š’”,š’š’

Sā€B constant:  šœŽ 5.67610

Page 11: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

11

Unsteady Macroscopic Energy Balance

Ā© F

aith

A. M

orris

on, M

ichi

gan

Tech

U.

š‘‘š‘‘š‘”

š‘ˆ šø , šø , Ī”š» Ī”šø Ī”šø š‘„ š‘Š ,

accumulation  input  output 

pages.mtu.edu/~fmorriso/cm310/IFMWebAppendixDMicroEBalanceMorrison.pdfIncropera and DeWitt, 6th edition p18

š‘„ āˆ‘ š‘ž , comes from a variety of sources:

ā€¢ Thermal conduction:  š‘ž š‘˜š“

ā€¢ Convection heat xfer:  š‘ž ā„Žš“ š‘‡ š‘‡

ā€¢ Radiation:  š‘ž šœ€šœŽš“ š‘‡ š‘‡

ā€¢ Electric current:  š‘ž š¼ š‘… šæ

ā€¢ Chemical Reaction:  š‘ž š‘† š‘‰

š‘†energy

time volume

x

xxx

š‘„ Heat into the chosen macroscopic control volume

accumulation input  output 

21

Unsteady Macroscopic Energy Balance Applied to cooling steel part:

Ā© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer:  Low Biot Number

The heat loss depends on the heat-transfer

coefficient from the part to the environment

The temperature changes in the part are due to the heat

loss

šœŒš‘‰ š¶š‘‘š‘‡

š‘‘š‘”Q

Q š“ā„Ž š‘‡ š‘‡

š¶ š¶ for liquids, solids 22

Page 12: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

12

Unsteady Macroscopic Energy Balance Applied to cooling steel part:

Ā© Faith A. Morrison, Michigan Tech U.

The temperature changes in the part are due to the heat

loss

Unsteady State Heat Transfer:  Low Biot Number

You solve.

šœŒš‘‰ š¶š‘‘š‘‡

š‘‘š‘”Q

23

The heat loss depends on the heat-transfer

coefficient from the part to the environment

Q š“ā„Ž š‘‡ š‘‡

Ā© Faith A. Morrison, Michigan Tech U.

š‘‡ š‘‡š‘‡ š‘‡

š‘’

lnš‘‡ š‘‡š‘‡ š‘‡

ā„Žš“

šœŒš¶ š‘‰ š‘”

Unsteady Macroscopic Energy Balance Applied to cooling steel part:

Unsteady State Heat Transfer:  Low Biot Number

š‘‰ š‘‰

24

Page 13: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

13

Ā© Faith A. Morrison, Michigan Tech U.

š‘‡ š‘‡š‘‡ š‘‡

š‘’

lnš‘‡ š‘‡š‘‡ š‘‡

ā„Žš“

šœŒš¶ š‘‰ š‘”

Unsteady Macroscopic Energy Balance Applied to cooling steel part:

Unsteady State Heat Transfer:  Low Biot Number

š‘‰ š‘‰

25

In dimensionless form?

Ā© Faith A. Morrison, Michigan Tech U.

š‘‡ š‘‡š‘‡ š‘‡

š‘’

Unsteady Macroscopic Energy Balance Applied to cooling steel part:

Unsteady State Heat Transfer:  Low Biot Number

ā„Žš“š‘”

šœŒš¶ š‘‰

ā„Žš‘˜

š‘˜

šœŒš¶

š“š‘‰

š‘”Bi

š·š›¼

š‘”š·

Bi Fo

thermal diffusivity

š›¼ ā‰”š‘˜

šœŒš¶Bi Biot Number

Fo Fourier Number 26

š· ā‰”volume

areaš‘‰š“

Page 14: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

14

Lumped parameter analysis

Ā© Faith A. Morrison, Michigan Tech U.

š‘Œš‘‡ š‘‡š‘‡ š‘‡

š‘’ Bi Fo

Unsteady Macroscopic Energy Balance Applied to cooling steel part:

Unsteady State Heat Transfer:  Low Biot Number

WRF p279

thermal diffusivity

š›¼ ā‰”š‘˜

šœŒš¶

š· ā‰”volume

areaš‘‰š“

https://en.wikipedia.org/wiki/Lumped_element_model

27

Bi Biot Number

Fo Fourier Number

Lumped parameter analysis:

Ā© Faith A. Morrison, Michigan Tech U.28

Summary

Unsteady State Heat Transfer

High Bi:low š‘˜, high ā„Ž

Low Bi:high š‘˜, low ā„Ž

At high Bi, the surface temperature equals the bulk temperature; heat transfer is limited by conduction in the body.

At low Bi, the temperature is uniform in a finite body; heat transfer is limited by rate of heat transfer to the surface (ā„Ž).

At moderate Bi, heat transfer is affected by both conduction in the body and the rate of heat transfer to the surface.

Moderate Bi:nether process dominates

Bi Biot NumberQuantifies the tradeoffs between the rate of internal heat flux (by conduction, š‘˜) and the rate of heat delivery to the boundary (by convection, ā„Ž)

When the temperature is uniform in the body, we can do a macroscopic energy 

balance to solve many problems of interest.   This is called a ā€œlumped parameter analysis.ā€

Low Bi:  no internal temperature variation ā‡’ Lumped parameter analysis (macroscopic energy balance, unsteady); Bi ā„Žš‘‰/š‘˜š“ 0.1

Page 15: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

15

High Bi:low š‘˜, high ā„Ž

High Bi:low š‘˜, high ā„Ž

Low Bi:high š‘˜, low ā„Ž

At high Bi, the surface temperature equals the bulk temperature; heat transfer is limited by conduction in the body.

At low Bi, the temperature is uniform in a finite body; heat transfer is limited by rate of heat transfer to the surface (ā„Ž).

At moderate Bi, heat transfer is affected by both conduction in the body and the rate of heat transfer to the surface.

Moderate Bi:nether process dominates

Bi Biot NumberQuantifies the tradeoffs between the rate of internal heat flux (by conduction, š‘˜) and the rate of heat delivery to the boundary (by convection, ā„Ž)

When the wall temperature and the bulk temperature are equal, the microscopic energy balance is easier to carry out (temperature boundary conditions).   

Ā© Faith A. Morrison, Michigan Tech U.29

2. Negligible Surface Resistance 

At high Bi, the surface temperature equals the bulk temperature; heat transfer is limited by conduction in 

the body.

High Bi:low š‘˜, high ā„Ž

High Bi:low š‘˜, high ā„Ž

Low Bi:high š‘˜, low ā„Ž

At high Bi, the surface temperature equals the bulk temperature; heat transfer is limited by conduction in the body.

At low Bi, the temperature is uniform in a finite body; heat transfer is limited by rate of heat transfer to the surface (ā„Ž).

At moderate Bi, heat transfer is affected by both conduction in the body and the rate of heat transfer to the surface.

Moderate Bi:nether process dominates

Bi Biot NumberQuantifies the tradeoffs between the rate of internal heat flux (by conduction, š‘˜) and the rate of heat delivery to the boundary (by convection, ā„Ž)

When the wall temperature and the bulk temperature are equal, the microscopic energy balance is easier to carry out (temperature boundary conditions).   

Ā© Faith A. Morrison, Michigan Tech U.30

Negligible Surface Resistance 

At high Bi, the surface temperature equals the bulk temperature; heat transfer is limited by conduction in 

the body.

We have done many examples with 

constant temperature boundary conditions.lim

ā†’š‘‡ š‘‡ 0

ā‡’ š‘‡ š‘‡

Page 16: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

16

Ā© Faith A. Morrison, Michigan Tech U.31

Summary

Unsteady State Heat Transfer

High Bi:low š‘˜, high ā„Ž

Low Bi:high š‘˜, low ā„Ž

At high Bi, the surface temperature equals the bulk temperature; heat transfer is limited by conduction in the body.

At low Bi, the temperature is uniform in a finite body; heat transfer is limited by rate of heat transfer to the surface (ā„Ž).

At moderate Bi, heat transfer is affected by both conduction in the body and the rate of heat transfer to the surface.

Moderate Bi:nether process dominates

Bi Biot NumberQuantifies the tradeoffs between the rate of internal heat flux (by conduction, š‘˜) and the rate of heat delivery to the boundary (by convection, ā„Ž)

When the wall temperature and the bulk temperature are equal, the microscopic energy balance is easier to carry out (temperature boundary conditions).   

Low Bi:  no internal temperature variation ā‡’ Lumped parameter analysis (macroscopic energy balance, unsteady); Bi ā„Žš‘‰/š‘˜š“ 0.1

High Bi:  dominated by  internal temperature variation ā‡’ solve with temperature boundary conditions; Bi ā„Žš· /š‘˜(š· varies with the problem)

At moderate Bi, heat transfer is affected by both conduction in the body and the rate of heat transfer to 

the surface.

Moderate Bi:nether process dominates

High Bi:low š‘˜, high ā„Ž

Low Bi:high š‘˜, low ā„Ž

At high Bi, the surface temperature equals the bulk temperature; heat transfer is limited by conduction in the body.

At low Bi, the temperature is uniform in a finite body; heat transfer is limited by rate of heat transfer to the surface (ā„Ž).

At moderate Bi, heat transfer is affected by both conduction in the body and the rate of heat transfer to the surface.

Moderate Bi:nether process dominates

Bi Biot NumberQuantifies the tradeoffs between the rate of internal heat flux (by conduction, š‘˜) and the rate of heat delivery to the boundary (by convection, ā„Ž)

When both processes  affect the outcomes, the full solution may be necessary; for uniform starting temperatures there are charts.

Ā© Faith A. Morrison, Michigan Tech U.32

3. No Mechanism Dominates

Page 17: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

17

At moderate Bi, heat transfer is affected by both conduction in the body and the rate of heat transfer to 

the surface.

Moderate Bi:nether process dominates

High Bi:low š‘˜, high ā„Ž

Low Bi:high š‘˜, low ā„Ž

At high Bi, the surface temperature equals the bulk temperature; heat transfer is limited by conduction in the body.

At low Bi, the temperature is uniform in a finite body; heat transfer is limited by rate of heat transfer to the surface (ā„Ž).

At moderate Bi, heat transfer is affected by both conduction in the body and the rate of heat transfer to the surface.

Moderate Bi:nether process dominates

Bi Biot NumberQuantifies the tradeoffs between the rate of internal heat flux (by conduction, š‘˜) and the rate of heat delivery to the boundary (by convection, ā„Ž)

When both processes  affect the outcomes, the full solution may be necessary; for uniform starting temperatures there are charts.

Ā© Faith A. Morrison, Michigan Tech U.33

This is the most complicated set of 

cases.

3. No Mechanism Dominates

Example: Measure the convective heat-transfer coefficient for heat being transferred between a fluid and a sphere.

Ā© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer:  Intermediate Biot Number

Fluid bulk temperature š‘‡

š‘‡ š‘‡ š‘Ÿ, š‘”ā€¢ We need to devise an experiment

ā€¢ Both internal š‘˜ and external ā„Žresistances are important

ā€¢ We need to match measurablequantities with calculablequantities

ā€¢ ā‡’ Microscopic Energy Balance

ā€¢ ā‡’Uncertainty considerations

š‘˜, šœŒ, š¶

No Mechanism Dominates

34

Page 18: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

18

?

Example: Measure the convective heat-transfer coefficient for heat being transferred between a fluid and a sphere.

Ā© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer:  Intermediate Biot Number

Fluid bulk temperature š‘‡

š‘‡ š‘‡ š‘Ÿ, š‘”ā€¢ We need to devise an experiment

ā€¢ Both internal š‘˜ and external ā„Žresistances are important

ā€¢ We need to match measurablequantities with calculablequantities

ā€¢ ā‡’ Microscopic Energy Balance

ā€¢ ā‡’Uncertainty considerations

š‘˜, šœŒ, š¶

No Mechanism Dominates

35

Ā© Faith A. Morrison, Michigan Tech U.36

ā€¢ Create an unsteady state heat transfer situationā€¦

ā€¢ Measure . . .? ā€¢ Compare . . .? ā€¢ Consider uncertainty in measurements . . . ?

Thinking

Page 19: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

19

Tā€couple measures T(t) at the center of the sphere

š‘” š‘”š‘‡ š‘‡

Ā© Faith A. Morrison, Michigan Tech U.

Experiment:  Measure š‘‡ š‘” at the center of a sphere  š‘Ÿ 0 :

37

Initially: Suddenly:

š‘” š‘”š‘‡ š‘‡ š‘Ÿ, š‘” š‘‡ 0, š‘”

Unsteady state heat transfer takes place.

Unsteady State Heat Transfer:  Intermediate Biot Number

Tā€couple measures T(t) at the center of the sphere

š‘” š‘”š‘‡ š‘‡

Ā© Faith A. Morrison, Michigan Tech U.

Experiment:  Measure š‘‡ š‘” at the center of a sphere  š‘Ÿ 0 :

38

Initially: Suddenly:

š‘” š‘”š‘‡ š‘‡ š‘Ÿ, š‘” š‘‡ 0, š‘”

Unsteady state heat transfer takes place.

š‘” š‘  š‘‡ š‘œš¶9.50Eā€02 7.46E+002.11Eā€01 7.44E+003.09Eā€01 7.44E+004.09Eā€01 7.57E+005.24Eā€01 7.46E+006.23Eā€01 7.49E+007.39Eā€01 7.53E+008.37Eā€01 7.46E+009.54Eā€01 7.59E+001.05E+00 7.53E+001.15E+00 7.58E+001.27E+00 7.48E+001.37E+00 7.57E+00ā€¦ ā€¦

Excel:

Unsteady State Heat Transfer:  Intermediate Biot Number

Page 20: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

20

Ā© Faith A. Morrison, Michigan Tech U.39

Unsteady State Heat Transfer:  Intermediate Biot Number

ModelingWhat are the modeling equations?

?

Ā© Faith A. Morrison, Michigan Tech U.40

To determine š’‰:ā€¢ Measure centerā€point temperature as a function of time ā€¢ Compare with model predictions, accounting for uncertainty in measurements

ā€¢ Deduce ā„Ž

Can we meet our objective?

Page 21: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

21

Ā© Faith A. Morrison, Michigan Tech U.41

Unsteady State Heat Transfer:  Intermediate Biot Number

ModelingWhat are the modeling equations?

Ā© Faith A. Morrison, Michigan Tech U.

www.chem.mtu.edu/~fmorriso/cm310/energy2013.pdf

42

Microscopic Energy Balance

Unsteady State Heat Transfer:  Intermediate Biot Number

Page 22: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

22

Ā© Faith A. M

orrison, M

ichigan

 Tech U.

Unsteady State Heat Transfer to a Sphere

šœ•š‘‡šœ•š‘”

š‘˜

šœŒš¶

1š‘Ÿ

šœ•šœ•š‘Ÿ

š‘Ÿšœ•š‘‡šœ•š‘Ÿ

Boundary conditions:

š‘žš“

š‘˜šœ•š‘‡šœ•š‘Ÿ

ā„Ž š‘‡ š‘Ÿ š‘‡š‘Ÿ š‘…,

š‘žš“

0š‘Ÿ 0,

Microscopic energy balance in the sphere:

Initial condition:

43

š‘‡ š‘‡š‘” 0, āˆ€š‘Ÿ

āˆ€š‘”

š‘” 0

ā€¢ Unsteady

ā€¢ Solid  š‘£ 0

ā€¢ šœƒ, šœ™ symmetry

ā€¢ No current, no rxn

ā‰” š›¼

Ā© Faith A. M

orrison, M

ichigan

 Tech U.

Unsteady State Heat Transfer to a Sphere

šœ•š‘‡šœ•š‘”

š‘˜

šœŒš¶

1š‘Ÿ

šœ•šœ•š‘Ÿ

š‘Ÿšœ•š‘‡šœ•š‘Ÿ

Boundary conditions:

š‘žš“

š‘˜šœ•š‘‡šœ•š‘Ÿ

ā„Ž š‘‡ š‘Ÿ š‘‡š‘Ÿ š‘…,

š‘žš“

0š‘Ÿ 0,

Microscopic energy balance in the sphere:

Initial condition:

44

š‘‡ š‘‡š‘” 0, āˆ€š‘Ÿ

āˆ€š‘”

š‘” 0

(ā€œāˆ€ā€ means ā€œfor allā€)

ā€¢ Unsteady

ā€¢ Solid  š‘£ 0

ā€¢ šœƒ, šœ™ symmetry

ā€¢ No current, no rxn

ā‰” š›¼

Page 23: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

23

Ā© Faith A. M

orrison, M

ichigan

 Tech U.

Unsteady State Heat Transfer to a Sphere

šœ•š‘‡šœ•š‘”

š‘˜

šœŒš¶

1š‘Ÿ

šœ•šœ•š‘Ÿ

š‘Ÿšœ•š‘‡šœ•š‘Ÿ

Boundary conditions:

š‘žš“

š‘˜šœ•š‘‡šœ•š‘Ÿ

ā„Ž š‘‡ š‘Ÿ š‘‡š‘Ÿ š‘…,

š‘žš“

0š‘Ÿ 0,

Microscopic energy balance in the sphere:

Initial condition:

45

š‘‡ š‘‡š‘” 0, āˆ€š‘Ÿ

āˆ€š‘”

š‘” 0

(ā€œāˆ€ā€ means ā€œfor allā€)

ā€¢ Unsteady

ā€¢ Solid  š‘£ 0

ā€¢ šœƒ, šœ™ symmetry

ā€¢ No current, no rxn

ā‰” š›¼

Now, Solve

Ā© Faith A. M

orrison, M

ichigan

 Tech U.

Unsteady State Heat Transfer to a Sphere

šœ•š‘‡šœ•š‘”

š‘˜

šœŒš¶

1š‘Ÿ

šœ•šœ•š‘Ÿ

š‘Ÿšœ•š‘‡šœ•š‘Ÿ

ā‰” š›¼

Boundary conditions:

š‘žš“

š‘˜šœ•š‘‡šœ•š‘Ÿ

ā„Ž š‘‡ š‘Ÿ š‘‡š‘Ÿ š‘…,

š‘žš“

0š‘Ÿ 0,

Microscopic energy balance in the sphere:

Initial condition:

46

š‘‡ š‘‡š‘” 0, āˆ€š‘Ÿ

āˆ€š‘”

š‘” 0

ā€¢ Unsteady

ā€¢ Solid  š‘£ 0

ā€¢ šœƒ, šœ™ symmetry

ā€¢ No current, no rxn

1959

Page 24: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

24

š‘“ š‘…šœ†š‘…šœ†

tan š‘…šœ†Bi 1 0

where the eigenvalues šœ† satisfy this equation:

Solution:

Ā© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer to a Sphere

(Carslaw and Yeager, 1959, eqn 10, p238)Incropera and DeWitt, 7th ed, eqn 5.51a, p303 

šœ‰ š‘Ÿ, š‘” ā‰”š‘‡ š‘Ÿ, š‘” š‘‡š‘‡ š‘‡

šœ‰š‘‡ š‘‡š‘‡ š‘‡

2Bi š‘’sin š‘Ÿšœ†

š‘Ÿšœ†sin š‘…šœ†

š‘…šœ†š‘…šœ† Bi 1š‘…šœ† Bi Bi 1

Fo ā‰”š›¼š‘”š‘…

47

Characteristic Equation

Bi ā‰”ā„Žš‘…š‘˜

Bi Biot number; Fo Fourier number

šœ‰š‘‡ š‘‡š‘‡ š‘‡

2Bi š‘’sin š‘Ÿšœ†

š‘Ÿšœ†sin š‘…šœ†

š‘…šœ†š‘…šœ† Bi 1š‘…šœ† Bi Bi 1

Depends on material (š›¼

š‘˜/šœŒš¶ , and heat transfer processes at 

surface ā„Ž

Ā© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer to a Sphere

Solution: šœ‰ š‘Ÿ, š‘” ā‰”š‘‡ š‘Ÿ, š‘” š‘‡š‘‡ š‘‡

Bi ā‰”ā„Žš‘…š‘˜

Fo ā‰”š›¼š‘”š‘…

48

Bi Biot number; Fo Fourier number

where the eigenvalues šœ† satisfy this equation:

Characteristic Equation

Weā€™re interested in š‘‡ š‘Ÿ, š‘” at the center of the sphere, š‘Ÿ 0.

(Carslaw and Yeager, 1959, eqn 10, p238)Incropera and DeWitt, 7th ed, eqn 5.51a, p303 

š‘“ š‘…šœ†š‘…šœ†

tan š‘…šœ†Bi 1 0

Page 25: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

25

Letā€™s plot it to find out. Ā© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer to a Sphere

Solution: šœ‰ ā‰”š‘‡ š‘‡

š‘‡ š‘‡

Bi ā‰”ā„Žš‘…š‘˜

šœ‰ 0, Foš‘‡ š‘‡š‘‡ š‘‡

2Bi š‘’sin š‘…šœ†

š‘…šœ†š‘…šœ† Bi 1š‘…šœ† Bi Bi 1

Fo ā‰”š›¼š‘”š‘…

49

where the eigenvalues šœ† satisfy this equation:

What does thislook like?

Characteristic Equation

(Excel)

š‘“ š‘…šœ†š‘…šœ†

tan š‘…šœ†Bi 1 0

ā€30

ā€20

ā€10

0

10

20

30

0 5 10 15

Biot number= 1.0000

Unsteady State Heat Transfer to a Sphere

50

Bi ā‰”ā„Žš‘…š‘˜

Ā© Faith A. Morrison, Michigan Tech U.

ā€¢ The šœ† are the roots (zero crossings) of the characteristic equation

ā€¢ They depend on Biotnumber Bi

Characteristic Equation:

š‘“ š‘…šœ†š‘…šœ†

tan š‘…šœ†Bi 1

š‘…šœ†

š‘“š‘…

šœ†š‘…

šœ†ta

nš‘…

šœ†B

i1

Bi 1.00

Eigenvalues are the roots of the characteristic equation

Page 26: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

26

ā€30

ā€20

ā€10

0

10

20

30

0 5 10 15

Biot number= 1.0000

Unsteady State Heat Transfer to a Sphere

51

Bi ā‰”ā„Žš‘…š‘˜

Ā© Faith A. Morrison, Michigan Tech U.

ā€¢ The šœ† are the roots (zero crossings) of the characteristic equation

ā€¢ They depend on Biotnumber Bi

Characteristic Equation:

š‘“ š‘…šœ†š‘…šœ†

tan š‘…šœ†Bi 1

š‘…šœ†

š‘“š‘…

šœ†š‘…

šœ†ta

nš‘…

šœ†B

i1

Bi 1.00

Eigenvalues are the roots of the characteristic equation

Ā© Faith A. Morrison, Michigan Tech U.

Solution:

šœ‰ 0, Foš‘‡ š‘‡š‘‡ š‘‡

2Bi š‘’sin š‘…šœ†

š‘…šœ†š‘…šœ† Bi 1š‘…šœ† Bi Bi 1

52

šœ‰ 0, Foš‘‡ š‘‡š‘‡ š‘‡

2Bi š‘’bunch of terms

that vary with Bi and šœ† Bi

š‘…šœ†tan š‘…šœ†

Bi 1 0

Characteristic Equation

šœ† Bi varies only with Bi and š‘›:If we choose a fixed Bi,

then šœ‰ only varies with Fo

Exponential decay with Fo (scaled time)

Letā€™s plot it to find out:  what are the variables?

Bi ā‰”ā„Žš‘…š‘˜

Fo ā‰”š›¼š‘”š‘…

Page 27: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

27

Ā© Faith A. Morrison, Michigan Tech U.

Bi ā‰”ā„Žš‘…š‘˜

Fo ā‰”š›¼š‘”š‘…

53

šœ‰ 0, Foš‘‡ š‘‡š‘‡ š‘‡

2Bi š‘’sin š‘…šœ†

š‘…šœ†š‘…šœ† Bi 1š‘…šœ† Bi Bi 1

šœ‰ 0, Foš‘‡ š‘‡š‘‡ š‘‡

2Bi š‘’bunch of terms

that vary with Bi and šœ† Bi

Exponential decay with Fo (scaled time)

An infinite sum of decaying exponentialsā€¢ whose argument is Fourier number scaled by 

something that depends on Biot number and š‘›ā€¢ with a prefactor that also depends on Biot number 

and š‘›

For a fixed Bi:

If we choose a fixed Bi,then šœ‰ only varies with Fo

Ā© Faith A. Morrison, Michigan Tech U.

Bi ā‰”ā„Žš‘…š‘˜

Fo ā‰”š›¼š‘”š‘…

54

If we choose a fixed Bi,then šœ‰ only varies with Fo

šœ‰ 0, Fo š¶ š‘’

An infinite sum of decaying exponentials

For a fixed Bi:

ā€¢ š¶ depends on š‘› through šœ†ā€¢ šœ† are calculated (numerically) 

from the roots of this equation:

š‘“ š‘…šœ†š‘…šœ†

tan š‘…šœ†Bi 1 0

Letā€™s plot šœ‰ 0, Fo

Page 28: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

28

Unsteady State Heat Transfer to a Sphere

0.001

0.01

0.1

1

10

0.0 0.2 0.4 0.6 0.8 1.0

Scaled Temperature

Fourier number

nineterms

firstterm

Ā© Faith A. Morrison, Michigan Tech U.55

Fo ā‰”š›¼š‘”š‘…

šœ‰0,

Foā‰”

š‘‡0,

š‘”š‘‡

š‘‡š‘‡

sum of 9 terms

first term only Fo 0.2

Solution:

Unsteady State Heat Transfer to a Sphere

Ā© Faith A. Morrison, Michigan Tech U.56

0.001

0.01

0.1

1

10

0.0 0.2 0.4 0.6 0.8 1.0

Scaled Temperature

Fourier number

nineterms

firstterm

Fo ā‰”š›¼š‘”š‘…

sum of 9 terms

first term only

ā€¢ Plotted logā€linear, the solution is linear for Fo 0.2

ā€¢ The slope exhibited at high Fo depends only on Biot number

Bi ā‰”

Bi

Fo 0.2

Solution:

šœ‰0,

Foā‰”

š‘‡0,

š‘”š‘‡

š‘‡š‘‡

Page 29: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

29

Unsteady State Heat Transfer to a Sphere

Ā© Faith A. Morrison, Michigan Tech U.57

0.001

0.01

0.1

1

10

0.0 0.2 0.4 0.6 0.8 1.0

Scaled Temperature

Fourier number

nineterms

firstterm

Fo ā‰”š›¼š‘”š‘…

Above Fo 0.2, there is no difference between using just one term š‘› 1 and all the terms of the infinite sum!

sum of 9 terms

first term only

ā€¢ Plotted logā€linear, the solution is linear for Fo 0.2

ā€¢ The slope exhibited at high Fo depends only on Biot number

Bi ā‰”

Bi

Fo 0.2

Solution:

šœ‰0,

Foā‰”

š‘‡0,

š‘”š‘‡

š‘‡š‘‡

ā€0.6

ā€0.4

ā€0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4

Biot number= 1.0000

first term

second term

third term

fourth term

fifth term

sixth term

seventh term

eighth term

ninth term

58

Ā© Faith A. M

orrison, M

ichigan

 Tech U.

(sum of 9 terms)

term n=1

term n=2

term n=3

Unsteady State Heat Transfer to a Sphere

Fo ā‰”š›¼š‘”š‘…

fixed  Bi

ā‡’ fixed ā„Ž, R, š‘˜

Fo 0.2

What are all those higher order terms contributing to the solution?

šœ‰0,

Foā‰”

š‘‡0,

š‘”š‘‡

š‘‡š‘‡

Page 30: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

30

ā€0.6

ā€0.4

ā€0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4

Biot number= 1.0000

first term

second term

third term

fourth term

fifth term

sixth term

seventh term

eighth term

ninth term

Ā© Faith A. Morrison, Michigan Tech U.59

result (9 terms)

Fo ā‰”š›¼š‘”š‘…

Unsteady State Heat Transfer to a Sphere

Fo 0.2

Fo 0.2

For š¹š‘œ 0.2, the higherā€order terms make no contribution to 

the solution

šœ‰0,

Foā‰”

š‘‡0,

š‘”š‘‡

š‘‡š‘‡

ā€0.6

ā€0.4

ā€0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4

Biot number= 1.0000

first term

second term

third term

fourth term

fifth term

sixth term

seventh term

eighth term

ninth term

Ā© Faith A. Morrison, Michigan Tech U.60

result (9 terms)

The  higherā€order terms are working to get the solution right for shorter and shorter times 

(low Fo)

Unsteady State Heat Transfer to a Sphere

Fo 0.2

Fo 0.2

For š¹š‘œ 0.2, the higherā€order terms make no contribution to 

the solution

šœ‰0,

Foā‰”

š‘‡0,

š‘”š‘‡

š‘‡š‘‡

Page 31: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

31

ā€0.6

ā€0.4

ā€0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4

Biot number= 1.0000

first term

second term

third term

fourth term

fifth term

sixth term

seventh term

eighth term

ninth term

Ā© Faith A. Morrison, Michigan Tech U.61

result (9 terms)

The  higherā€order terms are working to get the solution right for shorter and shorter times 

(low Fo)

Unsteady State Heat Transfer to a Sphere

Fo 0.2

Fo 0.2

For š¹š‘œ 0.2, the higherā€order terms make no contribution to 

the solution

šœ‰0,

Foā‰”

š‘‡0,

š‘”š‘‡

š‘‡š‘‡

We already know the shortā€time behavior, T is constant at the initial temp; we thus concentrate on long times to fit the data (and therefore need only one term of the 

summation)

ā€30

ā€20

ā€10

0

10

20

30

0 5 10 15

Biot number= 1.0000

Unsteady State Heat Transfer to a Sphere

62

Bi ā‰”ā„Žš‘…š‘˜

Ā© Faith A. Morrison, Michigan Tech U.

ā€¢ The šœ† eigenvalue is the one that dominates at long time

ā€¢ The value of šœ†depends on Biotnumber Bi

Characteristic Equation:

š‘“ š‘…šœ†š‘…šœ†

tan š‘…šœ†Bi 1

š‘…šœ†

š‘“š‘…

šœ†š‘…

šœ†ta

nš‘…

šœ†B

i1

Bi 1.00

Eigenvalues are the roots of the characteristic equation

Page 32: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

32

Unsteady State Heat Transfer to a Sphere

0.001

0.01

0.1

1

10

0.0 0.2 0.4 0.6 0.8 1.0

Scaled Temperature

Fourier number

nineterms

firstterm

Ā© Faith A. Morrison, Michigan Tech U.63

Fo ā‰”š›¼š‘”š‘…

sum of 9 terms

first term only Fo 0.2

ā€¢ Plotted logā€linear, the solution is linear for Fo 0.2

ā€¢ The slope exhibited at high Fo depends only on Biot number

Bi ā‰”

Bi

šœ‰0,

Foā‰”

š‘‡0,

š‘”š‘‡

š‘‡š‘‡

64

ā€¢For a fixed Bi the results are only a function of Fo.

ā€¢Solution is an infinite sum of terms.

ā€¢Each term corresponds to one eigenvalue, šœ†

ā€¢The first term š‘› 1 šœ† is the dominant term

ā€¢The š‘› 1 terms alternate in sign (positive and negative)

ā€¢Higher terms are ā€œfixingā€ the short time behavior

ā€¢At fixed Biot number, the timeā€dependence is an exponential decay (for Fo 0.2 ; this is linear on a logā€linear plot versus Fo

Bi ā‰”ā„Žš‘…š‘˜

Ā© Faith A. M

orrison, M

ichigan

 Tech U.

Fo ā‰”š›¼š‘”š‘…Summary

Question:  How do various values of Biotnumber affect the heat transfer that occurs?

So, actually, it turns out all we need are those slopes as a 

function of Biotnumber.

Unsteady State Heat Transfer to a Sphere

No Mechanism Dominates

Page 33: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

33

Unsteady State Heat Transfer to a Sphere

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0.001 0.01 0.1 1 10 100 1000Biot Number

šœ†

šœ†

šœ†

šœ†

š‘…šœ†

65

Bi ā‰”ā„Žš‘…š‘˜

Ā© Faith A. Morrison, Michigan Tech U.

ā€¢ The šœ† are the roots of the characteristic equation

ā€¢ They depend on Biotnumber Bi

ā€¢ At low  Bi 0.1 and high Bi Bi 10 the solution becomes independent of Bi

low Bi is high š‘˜, low ā„Ž

high Bi islow š‘˜, high ā„Ž

ā€30

ā€20

ā€10

0

10

20

30

0 5 10 15

Biot number= 1.0000

ā€¢ The šœ† eigenvalue is the one that dominates at long time

ā€¢ The value of šœ†depends on Biotnumber Bi

Characteristic Equation:

š‘“ š‘…šœ†š‘…šœ†

tan š‘…šœ†Bi 1

š‘…šœ†

š‘“š‘…

šœ†š‘…

šœ†ta

nš‘…

šœ†B

i1

Bi 1.00

Eigenvalues are the roots of the characteristic equation

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0.001 0.01 0.1 1 10 100 1000Biot Number

šœ†

šœ†

šœ†

šœ†

š‘…šœ†

Unsteady State Heat Transfer to a Sphere

high Bi islow k, high h

Bi ā‰”ā„Žš‘…š‘˜

66

low Bi is high š‘˜, low ā„Ž

high Bi islow k, high h

Ā© Faith A. Morrison, Michigan Tech U.

Low Bi:high š‘˜, low ā„ŽBi ā‰”

ā„Žš‘…š‘˜

ā€¢ The šœ† are the roots of the characteristic equation

ā€¢ They depend on Biotnumber Bi

ā€¢ At low  Bi 0.1 and high Bi Bi 10 the solution becomes independent of Bi

Characteristic Equation:

š‘…šœ†tan š‘…šœ†

Bi 1 0

At low Bi, the temperature is uniform in the sphere; heat 

transfer is limited by rate of heat transfer to the surface (ā„Ž). 

Page 34: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

34

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0.001 0.01 0.1 1 10 100 1000Biot Number

šœ†

šœ†

šœ†

šœ†

š‘…šœ†

Unsteady State Heat Transfer to a Sphere

Ā© Faith A. Morrison, Michigan Tech U.67

low Bi is high š‘˜, low ā„Ž

At high Bi, the surface temperature equals the bulk temperature; heat transfer is limited by conduction in the 

sphere. 

high Bi islow š‘˜, high ā„Ž

High Bi:low š‘˜, high ā„Ž

ā€¢ The šœ† are the roots of the characteristic equation

ā€¢ They depend on Biotnumber Bi

ā€¢ At low  Bi 0.1 and high Bi Bi 10 the solution becomes independent of Bi

Characteristic Equation:

š‘…šœ†tan š‘…šœ†

Bi 1 0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0.001 0.01 0.1 1 10 100 1000Biot Number

šœ†

šœ†

šœ†

šœ†

š‘…šœ†

Unsteady State Heat Transfer to a Sphere

Ā© Faith A. Morrison, Michigan Tech U.68

low Bi is high š‘˜, low ā„Ž

Moderate Bi:nether process dominates

high Bi islow š‘˜, high ā„Ž

ā€¢ The šœ† are the roots of the characteristic equation

ā€¢ They depend on Biotnumber Bi

ā€¢ At low  Bi 0.1 and high Bi Bi 10 the solution becomes independent of Bi

Characteristic Equation:

š‘…šœ†tan š‘…šœ†

Bi 1 0

At moderate Bi, heat transfer is affected by both conduction in the sphere and the rate of 

heat transfer to the surface. 

Page 35: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

35

Ā© Faith A. Morrison, Michigan Tech U.69

What were we trying to do?

?

Example: Measure the convective heat-transfer coefficient for heat being transferred between a fluid and a sphere.

Unsteady State Heat Transfer:  Intermediate Biot Number

Fluid bulk temperature š‘‡

š‘‡ š‘‡ š‘Ÿ, š‘”ā€¢ We need to devise an experiment

ā€¢ Both internal š‘˜ and external ā„Žresistances are important

ā€¢ We need to match measurablequantities with calculablequantities

ā€¢ ā‡’ Microscopic Energy Balance

ā€¢ ā‡’Uncertainty considerations

š‘˜, šœŒ, š¶

To determine š’‰:ā€¢ Measure centerā€point temperature as a function of time ā€¢ Compare with model predictions, accounting for uncertainty in measurements

ā€¢ Deduce ā„Ž

Can we meet our objective?

š‘” š‘”š‘‡ š‘‡

Initially: Suddenly:

š‘” š‘”š‘‡ š‘‡ š‘”

Example: Measure the convective heat-transfer coefficient for heat being transferred between a fluid and a sphere.

Where are we in the process?

We have the model

ā€¢ We need the measured centerā€point temperature as a function of time

ā€¢ We need to compare the two to deduce ā„Ž.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0.001 0.01 0.1 1 10 100 1000Biot Number

šœ†

šœ†

šœ†

šœ†

š‘…šœ†

Ā© Faith A. Morrison, Michigan Tech U.

Bi ā‰”ā„Žš‘…š‘˜

Fo ā‰”š›¼š‘”š‘…

70

šœ‰ 0, Fo š¶ š‘’

For a fixed Bi, Fo šŸŽ. šŸ:

šœ‰ 0, Fo š¶ š‘’

ln šœ‰ 0, Fo ln C šœ† š‘… Fo

ln šœ‰ lnš‘‡ š‘‡š‘‡ š‘‡Plot: vs Fo

=> slope šœ† š‘…

The solution of the model:

Bi ā‰”ā„Žš‘…š‘˜

Once we know Bi, we can calculate š’‰ from Bi

From experimentsā€¦ 

From the model solutionā€¦ 

Characteristic Equation:š‘…šœ†

tan š‘…šœ†Bi 1 0

Use to interpret data.

Page 36: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

36

71Ā© Faith A. Morrison, Michigan Tech U.

0.0001

0.001

0.01

0.1

1

0 5 10 15

data

limit of detection

fit

š‘‡0,

š‘”š‘‡

š‘‡š‘‡

Fo ā‰”š›¼š‘”š‘…

Experimental Data

ln šœ‰ lnš‘‡ š‘‡š‘‡ š‘‡Plot: vs Fo

=> slope šœ† š‘…

From experimentsā€¦ 

Slope 0.74656

šœ† š‘… 0. 74656 0.864039

ā‡’ Bi 0.2621919, ā„Ž 2300

š‘˜ 109

š‘… 0.0127 š‘š

š‘…šœ†tan š‘…šœ†

Bi 1 0

Characteristic Equation:

Ā© Faith A. Morrison, Michigan Tech U.72

Recap:

?

Example: Measure the convective heat-transfer coefficient for heat being transferred between a fluid and a sphere.

Unsteady State Heat Transfer:  Intermediate Biot Number

Fluid bulk temperature š‘‡

š‘‡ š‘‡ š‘Ÿ, š‘”ā€¢ We need to devise an experiment

ā€¢ Both internal š‘˜ and external ā„Žresistances are important

ā€¢ We need to match measurablequantities with calculablequantities

ā€¢ ā‡’ Microscopic Energy Balance

ā€¢ ā‡’Uncertainty considerations

š‘˜, šœŒ, š¶

To determine š’‰:ā€¢ Measure centerā€point temperature as a function of time ā€¢ Compare with model predictions, accounting for uncertainty in measurements

ā€¢ Deduce ā„Ž

Can we meet our objective?

š‘” š‘”š‘‡ š‘‡

Initially: Suddenly:

š‘” š‘”š‘‡ š‘‡ š‘”

Measure convective heat-transfer coefficient ā„Ž for heat being transferred between a fluid and a sphere.What was the 

process?

1.Create the scenario and the model of the scenario

2. Take data of centerā€point š‘‡ š‘”

3.Plot the data in a way that we can match it to the model to deduce Bi

0.0001

0.001

0.01

0.1

1

0 5 10 15

data

limit of detection

fit

š‘‡0,

š‘”š‘‡

š‘‡š‘‡

Fo ā‰”š›¼š‘”š‘…

Characteristic Equation:

š‘…šœ†tan š‘…šœ†

Bi 1 0

slope šœ† š‘…

Bi ā‰”ā„Žš‘…š‘˜ ā„Ž

4. Calculate ā„Ž.

Page 37: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

37

Ā© Faith A. Morrison, Michigan Tech U.73

High Bi:low š‘˜, high ā„Ž

Low Bi:high š‘˜, low ā„Ž

At high Bi, the surface temperature equals the bulk temperature; heat transfer is limited by conduction in the body.

At low Bi, the temperature is uniform in a finite body; heat transfer is limited by rate of heat transfer to the surface (ā„Ž).

At moderate Bi, heat transfer is affected by both conduction in the body and the rate of heat transfer to the surface.

Moderate Bi:nether process dominates

Bi Biot NumberQuantifies the tradeoffs between the rate of internal heat flux (by conduction, š‘˜) and the rate of heat delivery to the boundary (by convection, ā„Ž)

Summary

Unsteady State Heat Transfer

Low Bi:  no internal temperature variation ā‡’ Lumped parameter analysis (macroscopic energy balance, unsteady); Bi ā„Žš‘‰/š‘˜š“ 0.1

High Bi:  dominated by  internal temperature variation ā‡’ solve with temperature boundary conditions; Bi ā„Žš· /š‘˜(š· varies with the problem)

Moderate Bi:  The limits for ā€œmoderateā€ are 0.1 Bi10. When Bi is in this range, a more complete solution may be necessary; Bi ā„Žš· /š‘˜. (š· varies with the problem)

Ā© Faith A. Morrison, Michigan Tech U.74

High Bi:low š‘˜, high ā„Ž

Low Bi:high š‘˜, low ā„Ž

At high Bi, the surface temperature equals the bulk temperature; heat transfer is limited by conduction in the body.

At low Bi, the temperature is uniform in a finite body; heat transfer is limited by rate of heat transfer to the surface (ā„Ž).

At moderate Bi, heat transfer is affected by both conduction in the body and the rate of heat transfer to the surface.

Moderate Bi:nether process dominates

Bi Biot NumberQuantifies the tradeoffs between the rate of internal heat flux (by conduction, š‘˜) and the rate of heat delivery to the boundary (by convection, ā„Ž)

Summary

Unsteady State Heat Transfer

Low Bi:  no internal temperature variation ā‡’ Lumped parameter analysis (macroscopic energy balance, unsteady); Bi ā„Žš‘‰/š‘˜š“ 0.1

High Bi:  dominated by  internal temperature variation ā‡’ solve with temperature boundary conditions; Bi ā„Žš· /š‘˜(š· varies with the problem)

Moderate Bi:  The limits for ā€œmoderateā€ are 0.1 Bi10. When Bi is in this range, a more complete solution may be necessary; Bi ā„Žš· /š‘˜. (š· varies with the problem)

We use š· š‘‰/š“ only for the lumped parameter analysis.  We use different š· in other cases.

š· =characteristic lengthscale

Page 38: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

38

0.01

0.1

1

10

0.001 0.01 0.1 1 10 100 1000

First Eigenvalue, Heat Transfer to Sphere

Incropera and DeWitt

FAM calculation

model fit

Ā© Faith A. M

orrison, M

ichigan

 Tech U.

75

Unsteady State Heat Transfer to a Sphere

Fit by Faith A. Morrison 31 Jan 2019 2013AnalyticalSolutionSphereLab_calc eigenvectors 2019

š‘…šœ†

Bi

Negligible external resistance 

ā„Ž ā†’ āˆžNeither 

mechanism dominates Bi 10

0.1 Bi 10

Bi 0.1

First Eigenvalue, Heat Transfer to Sphere Bi ā‰”ā„Žš‘…

š‘˜

Dominated by external resistance 

š‘˜ ā†’ āˆž

76

If we know š‘…šœ† and weā€™re determining Bi (i.e. ā„Ž), we use the characteristic equation directly.

If we know ā„Ž (and hence, Bi) we need to find šœ† š‘… from an iterative solution of the characteristic equation.

Or use a table or correlation for the calculated roots.

Characteristic Equation:

š‘…šœ†tan š‘…šœ†

Bi 1 0

Unsteady State Heat Transfer to a Sphere

Ā© Faith A. Morrison, Michigan Tech U.

0.01

0.1

1

10

0.001 0.01 0.1 1 10 100 1000

First Eigenvalue, Heat Transfer to Sphere

Incropera and DeWitt

FAM calculation

model fit

Unsteady State Heat Transfer to a Sphere

š‘…šœ†

Negligible external resistance 

ā„Ž ā†’ āˆž

š‘” š‘”š‘‡ š‘‡

Initially: Suddenly:

š‘” š‘”š‘‡ š‘‡ š‘”

Neither mechanism dominates Bi 10

0.1 Bi 10

Bi 0.1

First Eigenvalue, Heat Transfer to Sphere Bi ā‰”ā„Žš‘…

š‘˜

Dominated by external resistance 

š‘˜ ā†’ āˆž

Page 39: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

39

0.01

0.1

1

10

0.001 0.01 0.1 1 10 100 1000

First Eigenvalue, Heat Transfer to Sphere

Incropera and DeWitt

FAM calculation

model fit

77

Unsteady State Heat Transfer to a Sphere

Fit by Faith A. Morrison 1/31/2019 2013AnalyticalSolutionSphereLab_calc eigenvectors 2019

š‘…šœ†š‘” š›¼ Bi

1 š›¼ Biš‘” š›¼ Bi

1 š›¼ Bi

1 2š‘” 1.131 2.066š›¼ 3.684 0.684š‘ 0.539 1.035

š‘…šœ†

Bi

First Eigenvalue, Heat Transfer to Sphere

Ā© Faith A. Morrison, Michigan Tech U.

(matches true within 1.2%)

78

Unsteady State Heat Transfer to a Sphere

1 2š‘” 1.131 2.066š›¼ 3.684 0.684š‘ 0.539 1.035

Ā© Faith A. M

orrison, M

ichigan

 Tech U.0.01

0.1

1

10

0.001 0.01 0.1 1 10 100 1000

First Eigenvalue, Heat Transfer to Sphere

Incropera and DeWitt

FAM calculation

model fitš‘…šœ†

Bi

First Eigenvalue, Heat Transfer to Sphere

For a fixed Bi, Fo šŸŽ. šŸ:

šœ‰ 0, Fo š¶ š‘’

2Bi š‘…šœ† Bi 1š‘…šœ† Bi Bi 1

sin š‘…šœ†š‘…šœ†

š¶4 sin šœ† š‘… šœ† š‘… cos šœ† š‘…

2šœ† š‘… sin 2šœ† š‘…

The two expressions may be shown to be equivalent by substituting the characteristic equation; see FAM notebook v.53 2019; the second version is more robust due to avoiding multiplying by zero when  š‘…šœ† ā†’ šœ‹.

(matches true within 1.2%)

š‘…šœ†š‘” š›¼ Bi

1 š›¼ Biš‘” š›¼ Bi

1 š›¼ Bi

Fit by Faith A. Morrison 1/31/2019 2013AnalyticalSolutionSphereLab_calc eigenvectors 2019

Page 40: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

40

Unsteady State Heat Transfer to a Sphere

From Geankpolis, 4th edition, page 374 Ā© F

aith

A.

Mor

rison

, M

ichi

gan

Tech

U.

79

Heisler chartsSee:

Geankoplis

Wikipedia

Welty, Rorrer, and Foster (appendix F)

Reasonable estimates of the sphere (slab, cylinder) solutions may also be obtained from the ā€œHeisler Chartsā€

For the Heisler chart for spheres, we use š· š‘…. Note this is not the same as what is used in lumped parameter analysis

š· =characteristic lengthscale

Biā„Žš·

š‘˜

š· š‘„ š‘… (sphere)š‘… (cylinder)šµ (slab of thickness 2šµ

From Geankpolis, 4th edition, page 374

Ā© F

aith

A.

Mor

rison

, M

ichi

gan

Tech

U.

80

Heisler charts (Geankoplis; see also Wikipedia)

Literature solutions to Unsteady State Heat Transfer to a Sphere

Page 41: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

41

From Geankpolis, 4th edition, page 374

Ā© F

aith

A.

Mor

rison

, M

ichi

gan

Tech

U.

81

The Heisler Chart is a catalog of all the Y šœ‰ š‘” long-time

shapes for various values of

Biot number Bi .

Heisler charts (Geankoplis; see also Wikipedia)

Literature solutions to Unsteady State Heat Transfer to a Sphere

From Geankpolis, 4th edition, page 374

Ā© F

aith

A.

Mor

rison

, M

ichi

gan

Tech

U.

Also, x1 is the sphere radius

Note: the parameter m from the Geankoplis Heisler chart is NOT the

slope of the line! It is a label of Bi.

82

š‘˜ā„Žš‘„

1Bi

Heisler charts (Geankoplis; see also Wikipedia)

Literature solutions to Unsteady State Heat Transfer to a Sphere

Page 42: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

42

From Geankpolis, 4th edition, page 374 Ā© Faith A. Morrison, Michigan Tech U.

83

Heisler charts (Geankoplis; see also Wikipedia) Note also: think of it as 4 separate graphs

10

84Ā© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer

Summary

ā€¢ Unsteady state heat transfer is very common in the chemical process industries

ā€¢ Temperature distributions depend strongly on what initiates the heat transfer (usually something at the boundary)

ā€¢ Internal resistance  1/š‘˜ can be limiting, irrelevant, or one among many resistances 

ā€¢ External resistance  1/ā„Ž can be limiting irrelevant, or one among many resistances

ā€¢ Dimensional analysis, once again, organizes the impacts of various influences  Bi, Fo

B š‘„

š‘‡

.

.š‘‡

š‘‡

š‘‡

decreases with time

also decreases with time

Page 43: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

43

85Ā© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer

Summary (continued)

ā€¢ In transport phenomena, we have dimensionless numbers that represent three important aspects of situations that interest us:

1. The relative importance of individual terms in the equations of change

2. The relative magnitudes of the diffusive transport coefficients šœˆ, š›¼, š·

3. Scaled values of quantities of interest, e.g. wall forces, heat transfer coefficients, and mass transfer coefficients (data correlations) 

Dimensionless Numbers

Re Reynolds

Fr Froude

Pe PĆ©clet RePr

Pe PĆ©clet ReSc

Pr Prandtl

Sc Schmidt LePr

Le Lewis

š‘“ Friction Factorā„±

Nu Nusselt

Sh Sherwood

momentumenergymass

These numbers from the governing equations tell us about the relative

importance of the terms they precede in the microscopic balances

(scenario properties).

These numbers are defined to help us build transport data correlations

based on the fewest number of grouped (dimensionless) variables

(scenario properties).

These numbers compare the magnitudes of the diffusive

transport coefficients šœˆ, š›¼, š·(material properties).

Summary

86Ā© Faith A. Morrison, Michigan Tech U.

Unsteady State Heat Transfer

Summary (continued)

ā€¢ If we can develop a model situation for questions of interest, the solutions of the models are often in the literature

Dimensionless Numbers

Re Reynolds

Fr Froude

Pe PĆ©clet RePr

Pe PĆ©clet ReSc

Pr Prandtl

Sc Schmidt LePr

Le Lewis

š‘“ Friction Factorā„±

Nu Nusselt

Sh Sherwood

momentumenergymass

These numbers from the governing equations tell us about the relative

importance of the terms they precede in the microscopic balances

(scenario properties).

These numbers are defined to help us build transport data correlations

based on the fewest number of grouped (dimensionless) variables

(scenario properties).

These numbers compare the magnitudes of the diffusive

transport coefficients šœˆ, š›¼, š·(material properties).

Summary

ā€¢ Our responsibility in 21st

century:  Learn to develop models that will allow us to estimate or determine answers to the questions that interest us

Page 44: Last time, Unsteady State Heat Transfer

Lecture 7 4/24/2019

44

Ā© Faith A. Morrison, Michigan Tech U.87