l16: power dissipation in digital...

23
L16: 6.111 Spring 2004 1 Introductory Digital Systems Laboratory L16: Power Dissipation in Digital Systems L16: Power Dissipation in Digital Systems

Upload: others

Post on 10-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 1Introductory Digital Systems Laboratory

L16: Power Dissipation in Digital SystemsL16: Power Dissipation in Digital Systems

Page 2: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 3Introductory Digital Systems Laboratory

Problem #2: Energy ConsumptionProblem #2: Energy Consumption

(from Jon Eager, Gates Inc. , S. Watanabe, Sony Inc.)

No Moore’s law for batteries…Today: Understand where power goes

and ways to manage it

Page 3: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 4Introductory Digital Systems Laboratory

Dynamic Energy DissipationDynamic Energy Dissipation

VDD

CL

E0→1 = CLVDD2

Ecap = 1/2CLVDD2iDD

Ediss, RP = 1/2CLVDD2

VDD

CL

IN =1Ediss,RN =1/2CLVDD

2

Charging Discharging

IN =0

P = CL VDD2 fclk

RN

RP

RN

RP

Page 4: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 5Introductory Digital Systems Laboratory

Transition Activity Factor Transition Activity Factor αα00−−>>11

Current Input

Next Input

Output Transition

00 00 1 −> 100 01 1 −> 100 10 1 −> 100 11 1 −> 001 00 1 −> 101 01 1 −> 101 10 1 −> 101 11 1 −> 010 00 1 −> 110 01 1 −> 110 10 1 −> 110 11 1 −> 011 00 0 −> 111 01 0 −> 111 10 0 −> 111 11 0 −> 0

ZAB

Assume inputs (A,B) arrive at f and are uniformly distributedWhat is the average power dissipation?

α0−>1 = 3/16

P = α0−>1 CL VDD2 f

Page 5: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 6Introductory Digital Systems Laboratory

Junction (Silicon) TemperatureJunction (Silicon) Temperature

Simple Scenario Realistic Scenario

Tj-Ta= RθJA PD

SiliconSinkCase

SiliconTJ

TC

TS

TATJRθJA is the thermal resistance between silicon and Ambient

RθJCPDTJ

RθJA

TC

RθCSPDTS

Tj= Ta + RθJA PD

TA RθSA

TA

RθCA = RθCS + RθSA Make this as low as possibleis minimized by facilitating heat transfer

(bolt case to extended metal surface – heat sink)

Page 6: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 8Introductory Digital Systems Laboratory

Intel Pentium 4 Thermal GuidelinesIntel Pentium 4 Thermal Guidelines

Pentium 4 @ 3.06 GHz dissipates 81.8W!Maximum TC = 69 °CRCA < 0.23 °C/W for 50 C ambientTypical chips dissipate 0.5-1W (cheap packages without forced air cooling)

Page 7: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 9Introductory Digital Systems Laboratory

Power Reduction StrategiesPower Reduction Strategies

P = α0−>1 CL VDD2 f

Reduce Transition Activity or Switching EventsReduce Capacitance (e.g., keep wires short)Reduce Power Supply VoltageFrequency is typically fixed by the application, though this can be adjusted to control power

Optimize at all levels of design hierarchyOptimize at all levels of design hierarchy

New Text

Page 8: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 10Introductory Digital Systems Laboratory

Clock Gating is a Good Idea!Clock Gating is a Good Idea!

+

X

Global Clock Adder Clock

Multiplier Clock

Clock gating reduces activityand is the most common low-power

technique used today

Adder Off

Enable_Adder

Multiplier On

Enable_Multiplier

Clock Gating Reduces Energy, does it reduce Power?Clock Gating Reduces Energy, does it reduce Power?

Page 9: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 11Introductory Digital Systems Laboratory

Use of Thermal FeedbackUse of Thermal Feedback

Processor

ThermalSensor

ChipActivity Control

Note that there is a difference between average and peak power

On-chip thermal sensor (diode based), measures the silicon temperature

If the silicon junction gets too hot, then the activity is reduced (e.g., reduce clock rate)

Page 10: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 12Introductory Digital Systems Laboratory

Power Supply Power Supply ParasiticsParasitics

Lboard Lpackage Rgrid

Switchingcurrents

Board decap

On-diedecap

Courtesy of Motorola.Used with permission.Courtesy of Motorola.Courtesy of Motorola.Used with permission.Used with permission.

200MhzDesign

Page 11: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 14Introductory Digital Systems Laboratory

Number Representation:Number Representation:Two’s Complement vs. Sign MagnitudeTwo’s Complement vs. Sign Magnitude

Two’s complement Sign-Magnitude

0000

0111

0011

1011

11111110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0+1

+2

+3

+4

+5

+6

+7-8

-7

-6

-5

-4

-3

-2

-1

0000

0111

0011

1011

11111110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0+1

+2

+3

+4

+5

+6

+7-0

-1

-2

-3

-4

-5

-6

-7

Consider a 16 bit bus where inputs togglesbetween +1 and –1 (i.e., a small noise input)Which representation is more energy efficient?

Page 12: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 15Introductory Digital Systems Laboratory

Bus Coding to Reduce ActivityBus Coding to Reduce Activity

MajorityFunction

invert

D Q

Input

Data Bus

Extra bit to indicated if thebus is inverted

Output

N

[Stan94]

Page 13: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 16Introductory Digital Systems Laboratory

Time SharingTime Sharing

2

Time Sharing Increases Switching ActivityTime Sharing Increases Switching Activity

Page 14: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 17Introductory Digital Systems Laboratory

Not just a 6Not just a 6--1 Issue: “Cool” Software ???1 Issue: “Cool” Software ???

MEMORY address

CPU

0111111100000000

0111111100000001

0111111100000010

0111111100000011

1000000000000000

1000000000000001

1000000000000010

1000000000000011

a[0]a[1]a[2]a[3]

b[0]b[1]b[2]b[3]

float a [256], b[256];float pi= 3.14;

for (i = 0; i < 255; i++) {a[i] = sin(pi * i /256);}for (i = 0; i < 255; i++) {b[i] = cos(pi * i /256);}

float a [256], b[256];float pi= 3.14;

for (i = 0; i < 255; i++) {a[i] = sin(pi * i /256);b[i] = cos(pi * i /256);

}

address

16

2(8)+2(2+4+8+16+32+64+128+256)= 1030 transitions

512(8)+2+4+8+16+32+64+128+256= 4607 bit transitions

Page 15: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 18Introductory Digital Systems Laboratory

PrePre--ComputationComputation

Page 16: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 19Introductory Digital Systems Laboratory

GlitchingGlitching TransitionsTransitions

Balancing paths reduces glitching transitionsFor 4 inputs, 50% less transitions using a tree approachStructures such as multipliers have lot of glitching transitionsKeeping logic depths short (e.g., pipelining) reduces glitching

++

+

A B C D

(A+B) + (C+D)+

+

+

A B

C

D

Chain Topology Tree Topology

(((A+B) + C)+D)

Page 17: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 20Introductory Digital Systems Laboratory

Reduce Supply Voltage : But is it Free?Reduce Supply Voltage : But is it Free?

t =0+

IN OUT

VDD

+

-

VS D

CL

GVDD

2)(2 T

VDDV

K−

S

DDV

DDTDD

DD

VVVV

TV

DDV

k

DDV

LC

Di

VLC

Delay1

)( 22)(

2

2 ≈−

=

∆⋅

=

VDD from 2V to 1V, energy ↓ by x4, delay ↑ x2

Page 18: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 21Introductory Digital Systems Laboratory

Voltage Scaling Using ParallelismVoltage Scaling Using Parallelism

OUT

IN

X

Pserial = Cmult 22 f P

f =1GHzVDD=2V

parallel = (2Cmult 12 f /2) = Pserial/4

X X

INf = 500MhzVDD=1V

f = 500MhzVDD=1V

IN

SELECT

Trade Area for Low PowerTrade Area for Low Power

OUT

Page 19: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 22Introductory Digital Systems Laboratory

Algorithmic WorkloadAlgorithmic Workload

Exploit Time Varying Algorithmic WorkloadExploit Time Varying Algorithmic WorkloadTo Vary the Power Supply Voltage To Vary the Power Supply Voltage

Page 20: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 23Introductory Digital Systems Laboratory

Dynamic Voltage ScalingDynamic Voltage Scaling

Variable Power SupplyACTIVE IDLE

Fixed Power SupplyACTIVE

EFIXED = ½ C VDD2 EVARIABLE = ½ C (VDD/2)2 = EFIXED / 4

0.2 0.4 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Normalized Workload

Nor

mal

ized

Ene

rgy

Fixed Supply

VariableSupply

00 0.6

[Gutnik97]

Page 21: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 24Introductory Digital Systems Laboratory

DVS on a ProcessorDVS on a Processor

Digitally adjustable DC-DC converter powers SA-1110 core

µOS selects appropriate clock frequency based on workload and latency constraints

SA-1110

Control

µOS

VoutController

3.6V

5

Page 22: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 25Introductory Digital Systems Laboratory

Software Voltage Demo

User adjusts number of filter taps

Frequency/Voltage adjusted appropriately (via eCOS based µOS)

Frequency /Voltage

Workload (filter taps)

Page 23: L16: Power Dissipation in Digital Systemsdspace.mit.edu/bitstream/handle/1721.1/49431/6-111Spring2004/NR/rdonlyres/Electrical...Case Silicon T J T C T S T A R ... If the silicon junction

L16: 6.111 Spring 2004 26Introductory Digital Systems Laboratory

Energy ScavengingEnergy Scavenging

MEMS Generator Power Harvesting Shoes

Joe Paradiso(Media Lab)

After 3-6 steps, it provides 3 mAfor 0.5 sec

~10mW

Vibration-to-Electric Conversion

~ 10µW

(Image removed due to copyright considerations.)

(Courtesy of Joseph Paradiso. Used with permission.)