kuliah 7_jacket bracing systems

Upload: vikryc

Post on 07-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    1/33

    Dr. Eng. Rudi W. Prastianto

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    2/33

    Outline

    1. Jacket Bracing Configurations

    2. Jacket Brace Size Selection3. Calculation Example

    4. Faktor Sekunder dalam Frame Jacket 

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    3/33

    1. Jacket Bracing Configurations

    • There is a wide variation of platform bracing

    patterns, each with its advantages and some

    shortcomings.

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    4/33

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    5/33

    Type 2 and 5, V brace Patterns: 

    • Fewer brace connections at a joint,

    • Lack of redundancy and symmetry.

    • Lack continuity of load flow from one bracing level to the

    other, resulting in larger horizontal brace dimensions.• These patterns are seldom used and are not recommended.

    Type of Bracing Pattern

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    6/33

    Type 3, N-bracing Pattern:• Fever braces connecting to joints.

    • Lacks symmetry and redundancy.

    • All diagonal braces would be under compression or tension load

    depending on the horizontal load direction.

    Type of Bracing Pattern

    • Due to lack of tensile brace backup,

    buckling under compressive loading

    of one highly loaded diagonal brace

    can rapidly propagate to other bracescausing platform collapse.

    • Type 3 bracing pattern is seldom

    used and is not recommended.

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    7/33

    Type 4, V plus X braced Pattern: 

    In common use in most offshore locations.• Braces run along the shortest diagonals of their bays with reduced buckling

    lengths.

    • Adequate symmetry, redundancy and ductility are available.

    • Disadvantage higher number of brace connections at joints and the V braces at

    the transverse directions framing into horizontal braces.

    Type of Bracing Pattern

    • V braces in vertical plane carry high

    loads and would have larger diameters

    than the horizontal braces. Such a joint

    intersection would either require

    enlarged joint cans or larger thannecessary horizontal brace dimensions.

    • Replacing the V braces in the

    transverse direction by X braces

    (similar to the transverse direction of

    Type 6) results in higher ductility and

    better seismic resistance.

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    8/33

    Type 6, Fully X-braced Pattern:

    • Provides high horizontal stiffness, ductility, and redundancy.

    • The joints are crowded and high volume of welding is present.

    • This bracing pattern is popular in deepwater jackets where

    stiffness is needed to reduce sway periods and in seismically

    active regions where ductile behavior is important.

    Type of Bracing Pattern

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    9/33

    2. Jacket Brace Size Selection 

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    10/33

    2.1 Petunjuk Menentukan Ukuran Brace

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    11/33

    Lanjutan 2.1 … 

    c) For diameter sizes (OD)

     18 in.  use the wall thickness for seamless

    standard pipe as a starter.

    For sizes   29 in.  would most likely be rolled from plate and seam and

    butt-welded try 1 in.

    For sizes 30 36 in.  start with 5/6 in.

    For sizes > 36 in.  start with a wall thickness that satisfies D/t > 31 

    requirement.

    If the brace is at the splash zone  after selecting the brace size that satisfies

    all structural strength requirements consider adding 1/8 in.  1/4 in. to

    the wall thickness as corrosion allowance.

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    12/33

    Lanjutan 2.1 … 

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    13/33

    2.2. Geometry and Stiffness Parameters

    of a Single X-braced Jacket Bay 

       P   a   r   a   m   e

       t   e   r  -   p   a   r   a

       m   e   t   e   r

       S   i   s   t   e   m    B

       r   a   c   i   n   g

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    14/33

    2.2.1. The Horizontal Stiffness Parameters 

    • The horizontal stiffness (k L) is represented bythe force required to cause an average unitdeflection at its top two joints.

    • The most prominent parameters that control thisstiffness (Kumar et al., 1985):

    Ratio of the cross-sectional areas of the diagonalbraces (A3) and the jacket leg area (pile plus leg

    area, if grouted), A1  ( = A3/A1 ) The aspect ratio, = (a + b)/2h,

    Batter, S, and

    Height, h.

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    15/33

    • Low A3/A1 values the system stiffness

    would be low and high horizontal deflections

    would be experienced.

    • Higher A3/A1 values the diagonal braces

    would become highly effective in transferring

    the shear forces from one jacket leg to theother.

    2.2.1. The Horizontal Stiffness Parameters 

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    16/33

    2.2.2. A limiting (A3/A1)0 Ratio [Kumar, et al., 1985]

    • Similar behavior

    with variation of S 

    value.

    • At commonly

     jacket aspect

    ratio ( ) 0.1  

    A3/A1 < 0.2 

    assure rigid truss

    behavior.

    • A3/A1 > 0.2 :

    Structural strength acceptable

    Inefficient steel

    use.

    Note:  K-braced Trusses A3/A1 = 0.2 –

     0.4

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    17/33

    2.2.3. The Horizontal Stiffness Parameter (k L) vs.

    the Aspect Ratio ( ) [Karsan, 1986]

    • X-braced Truss, A3/A1 =

    0.2 , S = 12:

      = 2 (k L) max,

    correspond to 

     = 36o

    1 < < 2 (k L) values

     stationary

      = other ranges (k L)

    values rapidly decreased• Other common S values

     similar behavior.

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    18/33

    Note on A Full Jacket Structure

    • A full jacket structure a stacked assembly

    of the truss modules similar conclusions

    apply to the full jacket structure.• Jacket horizontal stiffness becomes

    increasingly important for Dynamic Response

    reasons  as the water depth increases.

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    19/33

    3. Example 1

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    20/33

    3. Example 1

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    21/33

    3. Example 2

    Tentukan

    dimensi awal

    dari brace

    untuk

    konfigurasi

    bracing X

    seperti

    nampak

    padagambar.

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    22/33

    3. Example 2

    Diketahui:

    • a = h = 45 ft, S = 12; diameter luar kaki jacket

    (OD) = 54 in. dgn tebal dinding (T) = 1,0 in.

    • Diameter luar pile (OD) = 48 in. dgn tebal

    dindingnya = 1,25 in. Bagian pile di dalam kaki

     jacket adalah ungrouted .

    • Diasumsikan brace paling bawah berada pada

    level 80 ft di bawah MWL (Mean Water Level).

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    23/33

    3. Example 2

    Solusi:

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    24/33

    3. Example 2

    Untuk konfigurasi bracing X:

    • Dalam kondisi terkena beban horizontal paling

    kritis satu bagian brace X mendapat beban

    tekan, sedang satu lainnya beban tarik.

    • Panjang buckling = L2- L (dimana: L= faktor

    reduksi panjang brace, karena 

    kenyataannya brace disambungkan pada

    dinding kaki jacket-nya.

    • Diasumsikan koefisien buckling k  = 0,8.

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    25/33

    3. Example 2

    Jari-jari girasi pipa dinding-tipis r  

     0,35.OD.• Sehingga OD brace dapat ditentukan:

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    26/33

    3. Example 2

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    27/33

    3. Example 2

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    28/33

    3. Example 2

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    29/33

    4. FAKTOR SEKUNDER DALAM

    FRAME JACKET

    • Beberapa faktor yang harus dipertimbangkan

    dalam penentuan elemen struktur sekunder  

    dari jacket adalah:1. Selama proses analisis tegangan struktur jacket

    perlu mensimulasikan kekakuan dan besar beban

    dari elemen sekunder. Perancang perlumemastikan kekuatan dan stabilitasnya dalam

    perhitungannya.

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    30/33

    FAKTOR SEKUNDER DALAM

    FRAME JACKET

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    31/33

    FAKTOR SEKUNDER DALAM

    FRAME JACKET

    AK O S KUN ALA

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    32/33

    FAKTOR SEKUNDER DALAM

    FRAME JACKET

  • 8/18/2019 Kuliah 7_Jacket Bracing Systems

    33/33

    Refferences

    • Karsan, D. I. (1986). “Design of jackets indeepwater Gulf of Mexico waters”, ASCEJournal of Waterway, Port, Coastal and Ocean

    Engineering, Vol. 112, No. 3, pp. 421-446,May.

    • Kumar, A., Nair, V. V. D., and Karsan, D. I.(1985). Stiffness properties of fixed and guyed

    platforms, ASCE Journal of StructuralEngineering, Vol. 111, No. 2, p. 239, February.