krylov subspace methods for eigenvalue problems · krylov subspace methods for eigenvalue problems...

161
Krylov subspace methods for eigenvalue problems David S. Watkins [email protected] Department of Mathematics Washington State University October 16, 2008 – p.

Upload: others

Post on 05-Feb-2020

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Krylov subspace methods foreigenvalue problems

David S. Watkins

[email protected]

Department of Mathematics

Washington State University

October 16, 2008 – p.

Page 2: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Problem: Linear Elasticity

October 16, 2008 – p.

Page 3: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Problem: Linear ElasticityElastic Deformation(3D, anisotropic, composite materials)

October 16, 2008 – p.

Page 4: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Problem: Linear ElasticityElastic Deformation(3D, anisotropic, composite materials)

Singularities at cracks, interfaces

October 16, 2008 – p.

Page 5: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Problem: Linear ElasticityElastic Deformation(3D, anisotropic, composite materials)

Singularities at cracks, interfaces

Lamé Equations (spherical coordinates)

October 16, 2008 – p.

Page 6: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Problem: Linear ElasticityElastic Deformation(3D, anisotropic, composite materials)

Singularities at cracks, interfaces

Lamé Equations (spherical coordinates)

Separate radial variable.

October 16, 2008 – p.

Page 7: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Problem: Linear ElasticityElastic Deformation(3D, anisotropic, composite materials)

Singularities at cracks, interfaces

Lamé Equations (spherical coordinates)

Separate radial variable.

Get quadratic eigenvalue problem.

(λ2M + λG+K)v = 0

M∗ = M > 0 G∗ = −G K∗ = K < 0

October 16, 2008 – p.

Page 8: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Linear Elasticity, ContinuedDiscretize θ and ϕ variables.

October 16, 2008 – p.

Page 9: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Linear Elasticity, ContinuedDiscretize θ and ϕ variables.(finite element method)

October 16, 2008 – p.

Page 10: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Linear Elasticity, ContinuedDiscretize θ and ϕ variables.(finite element method)

(λ2M + λG+K)v = 0

MT = M > 0 GT = −G KT = K < 0

matrix quadratic eigenvalue problem(large, sparse)

October 16, 2008 – p.

Page 11: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Linear Elasticity, ContinuedDiscretize θ and ϕ variables.(finite element method)

(λ2M + λG+K)v = 0

MT = M > 0 GT = −G KT = K < 0

matrix quadratic eigenvalue problem(large, sparse)

Find few smallest eigenvalues (and correspondingeigenvectors).

October 16, 2008 – p.

Page 12: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Linear Elasticity, ContinuedDiscretize θ and ϕ variables.(finite element method)

(λ2M + λG+K)v = 0

MT = M > 0 GT = −G KT = K < 0

matrix quadratic eigenvalue problem(large, sparse)

Find few smallest eigenvalues (and correspondingeigenvectors).

Respect the structure. (symmetric/skew-symmetric)

October 16, 2008 – p.

Page 13: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Hamiltonian Structure

October 16, 2008 – p.

Page 14: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Hamiltonian Structure

October 16, 2008 – p.

Page 15: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Reduction to First Order

October 16, 2008 – p.

Page 16: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Reduction to First Orderλ2Mv + λGv +Kv = 0

October 16, 2008 – p.

Page 17: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Reduction to First Orderλ2Mv + λGv +Kv = 0

w = λv,

October 16, 2008 – p.

Page 18: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Reduction to First Orderλ2Mv + λGv +Kv = 0

w = λv, Mw = λMv

October 16, 2008 – p.

Page 19: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Reduction to First Orderλ2Mv + λGv +Kv = 0

w = λv, Mw = λMv[

−K 0

0 −M

][

v

w

]

− λ

[

G M

−M 0

][

v

w

]

= 0

October 16, 2008 – p.

Page 20: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Reduction to First Orderλ2Mv + λGv +Kv = 0

w = λv, Mw = λMv[

−K 0

0 −M

][

v

w

]

− λ

[

G M

−M 0

][

v

w

]

= 0

Ax− λBx = 0

October 16, 2008 – p.

Page 21: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Reduction to First Orderλ2Mv + λGv +Kv = 0

w = λv, Mw = λMv[

−K 0

0 −M

][

v

w

]

− λ

[

G M

−M 0

][

v

w

]

= 0

Ax− λBx = 0

symmetric/skew-symmetric

October 16, 2008 – p.

Page 22: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Reduction to Hamiltonian Matrix

October 16, 2008 – p.

Page 23: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Reduction to Hamiltonian MatrixA− λB (symmetric/skew-symmetric)

October 16, 2008 – p.

Page 24: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Reduction to Hamiltonian MatrixA− λB (symmetric/skew-symmetric)

B = RTJR

(

J =

[

0 I

−I 0

])

sometimes easy, always possible

October 16, 2008 – p.

Page 25: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Reduction to Hamiltonian MatrixA− λB (symmetric/skew-symmetric)

B = RTJR

(

J =

[

0 I

−I 0

])

sometimes easy, always possible

A− λRTJR

October 16, 2008 – p.

Page 26: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Reduction to Hamiltonian MatrixA− λB (symmetric/skew-symmetric)

B = RTJR

(

J =

[

0 I

−I 0

])

sometimes easy, always possible

A− λRTJR

R−TAR−1 − λJ

October 16, 2008 – p.

Page 27: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Reduction to Hamiltonian MatrixA− λB (symmetric/skew-symmetric)

B = RTJR

(

J =

[

0 I

−I 0

])

sometimes easy, always possible

A− λRTJR

R−TAR−1 − λJ

JTR−TAR−1 − λI

October 16, 2008 – p.

Page 28: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Reduction to Hamiltonian MatrixA− λB (symmetric/skew-symmetric)

B = RTJR

(

J =

[

0 I

−I 0

])

sometimes easy, always possible

A− λRTJR

R−TAR−1 − λJ

JTR−TAR−1 − λI

H = JTR−TAR−1 is Hamiltonian.

October 16, 2008 – p.

Page 29: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

in our case . . .

October 16, 2008 – p.

Page 30: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

in our case . . .B =

[

G M

−M 0

]

October 16, 2008 – p.

Page 31: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

in our case . . .B =

[

G M

−M 0

]

B = RTJR =

[

I −1

2G

0 M

][

0 I

−I 0

][

I 01

2G M

]

October 16, 2008 – p.

Page 32: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

in our case . . .B =

[

G M

−M 0

]

B = RTJR =

[

I −1

2G

0 M

][

0 I

−I 0

][

I 01

2G M

]

H =

[

I 0

−1

2G I

][

0 M−1

−K 0

][

I 0

−1

2G I

]

October 16, 2008 – p.

Page 33: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

in our case . . .B =

[

G M

−M 0

]

B = RTJR =

[

I −1

2G

0 M

][

0 I

−I 0

][

I 01

2G M

]

H =

[

I 0

−1

2G I

][

0 M−1

−K 0

][

I 0

−1

2G I

]

Do not compute H explicitly.

October 16, 2008 – p.

Page 34: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

in our case . . .B =

[

G M

−M 0

]

B = RTJR =

[

I −1

2G

0 M

][

0 I

−I 0

][

I 01

2G M

]

H =

[

I 0

−1

2G I

][

0 M−1

−K 0

][

I 0

−1

2G I

]

Do not compute H explicitly. (nor M−1)

October 16, 2008 – p.

Page 35: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Working with H

October 16, 2008 – p.

Page 36: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Working with HKrylov subspace methods

October 16, 2008 – p.

Page 37: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Working with HKrylov subspace methods

just need to apply the operator:

October 16, 2008 – p.

Page 38: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Working with HKrylov subspace methods

just need to apply the operator: x 7→ Hx

October 16, 2008 – p.

Page 39: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Working with HKrylov subspace methods

just need to apply the operator: x 7→ Hx

H =

[

I 0

−1

2G I

][

0 M−1

−K 0

][

I 0

−1

2G I

]

October 16, 2008 – p.

Page 40: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Working with HKrylov subspace methods

just need to apply the operator: x 7→ Hx

H =

[

I 0

−1

2G I

][

0 M−1

−K 0

][

I 0

−1

2G I

]

October 16, 2008 – p.

Page 41: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Working with HKrylov subspace methods

just need to apply the operator: x 7→ Hx

H =

[

I 0

−1

2G I

][

0 M−1

−K 0

][

I 0

−1

2G I

]

H−1 =

[

I 01

2G I

][

0 (−K)−1

M 0

][

I 01

2G I

]

October 16, 2008 – p.

Page 42: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Working with H−1

October 16, 2008 – p.

Page 43: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Working with H−1

H−1 =

[

I 01

2G I

][

0 (−K)−1

M 0

][

I 01

2G I

]

October 16, 2008 – p.

Page 44: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Working with H−1

H−1 =

[

I 01

2G I

][

0 (−K)−1

M 0

][

I 01

2G I

]

x 7→ H−1x

October 16, 2008 – p.

Page 45: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Working with H−1

H−1 =

[

I 01

2G I

][

0 (−K)−1

M 0

][

I 01

2G I

]

x 7→ H−1x

Do not compute (−K)−1

October 16, 2008 – p.

Page 46: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Working with H−1

H−1 =

[

I 01

2G I

][

0 (−K)−1

M 0

][

I 01

2G I

]

x 7→ H−1x

Do not compute (−K)−1

Cholesky decomposition:

October 16, 2008 – p.

Page 47: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Working with H−1

H−1 =

[

I 01

2G I

][

0 (−K)−1

M 0

][

I 01

2G I

]

x 7→ H−1x

Do not compute (−K)−1

Cholesky decomposition: (−K) = RTR

To compute w = −K−1v,

October 16, 2008 – p.

Page 48: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Working with H−1

H−1 =

[

I 01

2G I

][

0 (−K)−1

M 0

][

I 01

2G I

]

x 7→ H−1x

Do not compute (−K)−1

Cholesky decomposition: (−K) = RTR

To compute w = −K−1v, Solve (−K)w = v.

October 16, 2008 – p.

Page 49: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Working with H−1

H−1 =

[

I 01

2G I

][

0 (−K)−1

M 0

][

I 01

2G I

]

x 7→ H−1x

Do not compute (−K)−1

Cholesky decomposition: (−K) = RTR

To compute w = −K−1v, Solve (−K)w = v.

RTRw = v Backsolve!

October 16, 2008 – p.

Page 50: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

K =

October 16, 2008 – p. 10

Page 51: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

K =

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

nz = 670

October 16, 2008 – p. 10

Page 52: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

R =

October 16, 2008 – p. 11

Page 53: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

R =

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

nz = 896

October 16, 2008 – p. 11

Page 54: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

K−1=

October 16, 2008 – p. 12

Page 55: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

K−1=

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

nz = 21316

October 16, 2008 – p. 12

Page 56: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Second Application

October 16, 2008 – p. 13

Page 57: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Second ApplicationNonlinear Optics

October 16, 2008 – p. 13

Page 58: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Second ApplicationNonlinear Optics

Schrödinger eigenvalue problem

October 16, 2008 – p. 13

Page 59: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Second ApplicationNonlinear Optics

Schrödinger eigenvalue problem

−~2

2m∇2ψ + V ψ = λψ

October 16, 2008 – p. 13

Page 60: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Second ApplicationNonlinear Optics

Schrödinger eigenvalue problem

−~2

2m∇2ψ + V ψ = λψ

Solve numerically (finite elements)

October 16, 2008 – p. 13

Page 61: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Second ApplicationNonlinear Optics

Schrödinger eigenvalue problem

−~2

2m∇2ψ + V ψ = λψ

Solve numerically (finite elements)

Kv = λMv K = KT > 0, M = MT > 0

October 16, 2008 – p. 13

Page 62: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Second ApplicationNonlinear Optics

Schrödinger eigenvalue problem

−~2

2m∇2ψ + V ψ = λψ

Solve numerically (finite elements)

Kv = λMv K = KT > 0, M = MT > 0

Matrices are large and sparse.

October 16, 2008 – p. 13

Page 63: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Kv = λMv

October 16, 2008 – p. 14

Page 64: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Kv = λMv

Want few smallest eigenvaluesand associated eigenvectors.

October 16, 2008 – p. 14

Page 65: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Kv = λMv

Want few smallest eigenvaluesand associated eigenvectors.

Invert the problem.

October 16, 2008 – p. 14

Page 66: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Kv = λMv

Want few smallest eigenvaluesand associated eigenvectors.

Invert the problem.

K = RTR

October 16, 2008 – p. 14

Page 67: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Kv = λMv

Want few smallest eigenvaluesand associated eigenvectors.

Invert the problem.

K = RTR RTRv = λMv

October 16, 2008 – p. 14

Page 68: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Kv = λMv

Want few smallest eigenvaluesand associated eigenvectors.

Invert the problem.

K = RTR RTRv = λMv

R−TMR−1(Rv) = λ−1(Rv)

October 16, 2008 – p. 14

Page 69: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Kv = λMv

Want few smallest eigenvaluesand associated eigenvectors.

Invert the problem.

K = RTR RTRv = λMv

R−TMR−1(Rv) = λ−1(Rv)

A = R−TMR−1, AT = A > 0

October 16, 2008 – p. 14

Page 70: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Kv = λMv

Want few smallest eigenvaluesand associated eigenvectors.

Invert the problem.

K = RTR RTRv = λMv

R−TMR−1(Rv) = λ−1(Rv)

A = R−TMR−1, AT = A > 0

x 7→ Ax

October 16, 2008 – p. 14

Page 71: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Kv = λMv

Want few smallest eigenvaluesand associated eigenvectors.

Invert the problem.

K = RTR RTRv = λMv

R−TMR−1(Rv) = λ−1(Rv)

A = R−TMR−1, AT = A > 0

x 7→ Ax backsolve

October 16, 2008 – p. 14

Page 72: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Kv = λMv

Want few smallest eigenvaluesand associated eigenvectors.

Invert the problem.

K = RTR RTRv = λMv

R−TMR−1(Rv) = λ−1(Rv)

A = R−TMR−1, AT = A > 0

x 7→ Ax backsolve

Do not form A explicitly.

October 16, 2008 – p. 14

Page 73: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

What our applications have incommon

October 16, 2008 – p. 15

Page 74: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

What our applications have incommon

large, sparse matrices

October 16, 2008 – p. 15

Page 75: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

What our applications have incommon

large, sparse matrices

use of matrix factorization (Cholesky decomposition)

October 16, 2008 – p. 15

Page 76: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

What our applications have incommon

large, sparse matrices

use of matrix factorization (Cholesky decomposition)

some kind of structure

October 16, 2008 – p. 15

Page 77: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

What our applications have incommon

large, sparse matrices

use of matrix factorization (Cholesky decomposition)

some kind of structure

. . . not enough time to discuss this

October 16, 2008 – p. 15

Page 78: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Classificationof Eigenvalue Problems

October 16, 2008 – p. 16

Page 79: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Classificationof Eigenvalue Problems

small

October 16, 2008 – p. 16

Page 80: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Classificationof Eigenvalue Problems

small

medium

October 16, 2008 – p. 16

Page 81: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Classificationof Eigenvalue Problems

small

medium

large

October 16, 2008 – p. 16

Page 82: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Small Matrices

October 16, 2008 – p. 17

Page 83: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Small Matricesstore conventionally

October 16, 2008 – p. 17

Page 84: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Small Matricesstore conventionally

similarity transformations

October 16, 2008 – p. 17

Page 85: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Small Matricesstore conventionally

similarity transformations

QR algorithm

October 16, 2008 – p. 17

Page 86: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Small Matricesstore conventionally

similarity transformations

QR algorithm

get all eigenvalues/vectors

October 16, 2008 – p. 17

Page 87: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Small Matricesstore conventionally

similarity transformations

QR algorithm

get all eigenvalues/vectors

n ≈ 103

October 16, 2008 – p. 17

Page 88: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Medium Matrices

October 16, 2008 – p. 18

Page 89: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Medium Matricesstore as sparse matrix

October 16, 2008 – p. 18

Page 90: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Medium Matricesstore as sparse matrix

no similarity transformations

October 16, 2008 – p. 18

Page 91: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Medium Matricesstore as sparse matrix

no similarity transformations

matrix factorization okay

October 16, 2008 – p. 18

Page 92: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Medium Matricesstore as sparse matrix

no similarity transformations

matrix factorization okay

shift and invert

October 16, 2008 – p. 18

Page 93: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

nz = 670

October 16, 2008 – p. 19

Page 94: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

nz = 1815

October 16, 2008 – p. 20

Page 95: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Medium Matrices, Continued

October 16, 2008 – p. 21

Page 96: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Medium Matrices, Continuedstore matrix factor as sparse matrix

October 16, 2008 – p. 21

Page 97: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Medium Matrices, Continuedstore matrix factor as sparse matrix

n ≈ 105

October 16, 2008 – p. 21

Page 98: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Medium Matrices, Continuedstore matrix factor as sparse matrix

n ≈ 105

get selected eigenvalues/vectors

October 16, 2008 – p. 21

Page 99: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Medium Matrices, Continuedstore matrix factor as sparse matrix

n ≈ 105

get selected eigenvalues/vectors

Krylov subspace methods

October 16, 2008 – p. 21

Page 100: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Medium Matrices, Continuedstore matrix factor as sparse matrix

n ≈ 105

get selected eigenvalues/vectors

Krylov subspace methods

Jacobi-Davidson methods

October 16, 2008 – p. 21

Page 101: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Large Matrices

October 16, 2008 – p. 22

Page 102: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Large Matricesstore as sparse matrix

October 16, 2008 – p. 22

Page 103: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Large Matricesstore as sparse matrix

no similarity transformations

October 16, 2008 – p. 22

Page 104: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Large Matricesstore as sparse matrix

no similarity transformations

no shift-and-invert

October 16, 2008 – p. 22

Page 105: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Large Matricesstore as sparse matrix

no similarity transformations

no shift-and-invert

n ≈ 107

October 16, 2008 – p. 22

Page 106: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Large Matricesstore as sparse matrix

no similarity transformations

no shift-and-invert

n ≈ 107

get selected eigenvalues/vectors

October 16, 2008 – p. 22

Page 107: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Large Matricesstore as sparse matrix

no similarity transformations

no shift-and-invert

n ≈ 107

get selected eigenvalues/vectors

Krylov subspace methods

October 16, 2008 – p. 22

Page 108: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Large Matricesstore as sparse matrix

no similarity transformations

no shift-and-invert

n ≈ 107

get selected eigenvalues/vectors

Krylov subspace methods

Jacobi-Davidson methods

October 16, 2008 – p. 22

Page 109: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Krylov Subspace Methods

October 16, 2008 – p. 23

Page 110: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Krylov Subspace Methodsx 7→ Ax

October 16, 2008 – p. 23

Page 111: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Krylov Subspace Methodsx 7→ Ax

Example: A = R−TMR−1

October 16, 2008 – p. 23

Page 112: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Krylov Subspace Methodsx 7→ Ax

Example: A = R−TMR−1

Pick a vector v

October 16, 2008 – p. 23

Page 113: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Krylov Subspace Methodsx 7→ Ax

Example: A = R−TMR−1

Pick a vector v

v, Av, A2v, A3v, . . .

October 16, 2008 – p. 23

Page 114: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Krylov Subspace Methodsx 7→ Ax

Example: A = R−TMR−1

Pick a vector v

v, Av, A2v, A3v, . . .

Krylov subspace:

Kj(A, v) = span{

v,Av,A2v, . . . , Aj−1v}

October 16, 2008 – p. 23

Page 115: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Krylov Subspace Methodsx 7→ Ax

Example: A = R−TMR−1

Pick a vector v

v, Av, A2v, A3v, . . .

Krylov subspace:

Kj(A, v) = span{

v,Av,A2v, . . . , Aj−1v}

Look in here for approximate eigenvectors.

October 16, 2008 – p. 23

Page 116: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Krylov Subspace Methodsx 7→ Ax

Example: A = R−TMR−1

Pick a vector v

v, Av, A2v, A3v, . . .

Krylov subspace:

Kj(A, v) = span{

v,Av,A2v, . . . , Aj−1v}

Look in here for approximate eigenvectors.

. . . but need better basis

October 16, 2008 – p. 23

Page 117: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Arnoldi Process

October 16, 2008 – p. 24

Page 118: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Arnoldi Processbuild orthonormal basis v1, v2, v3, . . .

October 16, 2008 – p. 24

Page 119: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Arnoldi Processbuild orthonormal basis v1, v2, v3, . . .

jth step: v̂j+1 = Avj −∑j

i=1vihij

October 16, 2008 – p. 24

Page 120: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Arnoldi Processbuild orthonormal basis v1, v2, v3, . . .

jth step: v̂j+1 = Avj −∑j

i=1vihij

hij = 〈Avj , vi〉 (Gram-Schmidt)

October 16, 2008 – p. 24

Page 121: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Arnoldi Processbuild orthonormal basis v1, v2, v3, . . .

jth step: v̂j+1 = Avj −∑j

i=1vihij

hij = 〈Avj , vi〉 (Gram-Schmidt)

Normalization: hj+1,j = ‖ v̂j+1 ‖, vj+1 = v̂j+1/hj+1,j

October 16, 2008 – p. 24

Page 122: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Arnoldi Processbuild orthonormal basis v1, v2, v3, . . .

jth step: v̂j+1 = Avj −∑j

i=1vihij

hij = 〈Avj , vi〉 (Gram-Schmidt)

Normalization: hj+1,j = ‖ v̂j+1 ‖, vj+1 = v̂j+1/hj+1,j

Collect coefficients hij

October 16, 2008 – p. 24

Page 123: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Arnoldi Processbuild orthonormal basis v1, v2, v3, . . .

jth step: v̂j+1 = Avj −∑j

i=1vihij

hij = 〈Avj , vi〉 (Gram-Schmidt)

Normalization: hj+1,j = ‖ v̂j+1 ‖, vj+1 = v̂j+1/hj+1,j

Collect coefficients hij

H4 =

h11 h12 h13 h14

h21 h22 h23 h24

h32 h33 h34

h43 h44

October 16, 2008 – p. 24

Page 124: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Arnoldi Processbuild orthonormal basis v1, v2, v3, . . .

jth step: v̂j+1 = Avj −∑j

i=1vihij

hij = 〈Avj , vi〉 (Gram-Schmidt)

Normalization: hj+1,j = ‖ v̂j+1 ‖, vj+1 = v̂j+1/hj+1,j

Collect coefficients hij

H4 =

h11 h12 h13 h14

h21 h22 h23 h24

h32 h33 h34

h43 h44

eigenvalues are Ritz values

October 16, 2008 – p. 24

Page 125: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Example: 479 × 479 matrix

−150 −100 −50 0 50 100 150−2000

−1500

−1000

−500

0

500

1000

1500

2000

October 16, 2008 – p. 25

Page 126: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Example: 479 × 479 matrix

−150 −100 −50 0 50 100 150−2000

−1500

−1000

−500

0

500

1000

1500

2000

October 16, 2008 – p. 26

Page 127: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Example: 479 × 479 matrix

−150 −100 −50 0 50 100 150−2000

−1500

−1000

−500

0

500

1000

1500

2000

October 16, 2008 – p. 27

Page 128: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Example: 479 × 479 matrix

−150 −100 −50 0 50 100 150−2000

−1500

−1000

−500

0

500

1000

1500

2000

October 16, 2008 – p. 28

Page 129: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

For better accuracy . . .

October 16, 2008 – p. 29

Page 130: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

For better accuracy . . .

. . . take more steps.

October 16, 2008 – p. 29

Page 131: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

For better accuracy . . .

. . . take more steps.

but,

October 16, 2008 – p. 29

Page 132: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

For better accuracy . . .

. . . take more steps.

but, vectors take up space.

October 16, 2008 – p. 29

Page 133: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

For better accuracy . . .

. . . take more steps.

but, vectors take up space.

Alternate plan:

October 16, 2008 – p. 29

Page 134: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

For better accuracy . . .

. . . take more steps.

but, vectors take up space.

Alternate plan:

Start over with a better vector.

October 16, 2008 – p. 29

Page 135: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Implicit Restarts

October 16, 2008 – p. 30

Page 136: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Implicit RestartsTake, say, 30 steps.

October 16, 2008 – p. 30

Page 137: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Implicit RestartsTake, say, 30 steps.

Get 30 Ritz values.

October 16, 2008 – p. 30

Page 138: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Implicit RestartsTake, say, 30 steps.

Get 30 Ritz values.

Keep the best ones (e.g. 10) . . .

October 16, 2008 – p. 30

Page 139: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Implicit RestartsTake, say, 30 steps.

Get 30 Ritz values.

Keep the best ones (e.g. 10) . . .

. . . and associated invariant subspace.

October 16, 2008 – p. 30

Page 140: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Implicit RestartsTake, say, 30 steps.

Get 30 Ritz values.

Keep the best ones (e.g. 10) . . .

. . . and associated invariant subspace.

Restart at step 11.

October 16, 2008 – p. 30

Page 141: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Implicit RestartsTake, say, 30 steps.

Get 30 Ritz values.

Keep the best ones (e.g. 10) . . .

. . . and associated invariant subspace.

Restart at step 11.

(neat details omitted)

October 16, 2008 – p. 30

Page 142: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Implicit RestartsTake, say, 30 steps.

Get 30 Ritz values.

Keep the best ones (e.g. 10) . . .

. . . and associated invariant subspace.

Restart at step 11.

(neat details omitted)

Build back up to 30 and then restart again.

October 16, 2008 – p. 30

Page 143: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Example

October 16, 2008 – p. 31

Page 144: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Example460 × 460 Hamiltonian matrix (toy problem)

October 16, 2008 – p. 31

Page 145: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Example460 × 460 Hamiltonian matrix (toy problem)

asking for 24 eigenpairs

October 16, 2008 – p. 31

Page 146: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Example460 × 460 Hamiltonian matrix (toy problem)

asking for 24 eigenpairs

building to dimension 84

October 16, 2008 – p. 31

Page 147: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Example460 × 460 Hamiltonian matrix (toy problem)

asking for 24 eigenpairs

building to dimension 84

restarting with 28

October 16, 2008 – p. 31

Page 148: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Example460 × 460 Hamiltonian matrix (toy problem)

asking for 24 eigenpairs

building to dimension 84

restarting with 28

Hamiltonian Lanczos process

October 16, 2008 – p. 31

Page 149: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

October 16, 2008 – p. 32

Page 150: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

October 16, 2008 – p. 33

Page 151: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

October 16, 2008 – p. 34

Page 152: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

October 16, 2008 – p. 35

Page 153: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

October 16, 2008 – p. 36

Page 154: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

October 16, 2008 – p. 37

Page 155: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

October 16, 2008 – p. 38

Page 156: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

October 16, 2008 – p. 39

Page 157: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

October 16, 2008 – p. 40

Page 158: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Concluding Remarks

October 16, 2008 – p. 41

Page 159: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Concluding RemarksI used these methods to solve my “medium” sizedeigenvalue problems.

October 16, 2008 – p. 41

Page 160: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Concluding RemarksI used these methods to solve my “medium” sizedeigenvalue problems.

Simple ideas lead to powerful methods.

October 16, 2008 – p. 41

Page 161: Krylov subspace methods for eigenvalue problems · Krylov subspace methods for eigenvalue problems David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State

Concluding RemarksI used these methods to solve my “medium” sizedeigenvalue problems.

Simple ideas lead to powerful methods.

Thank you for your attention.

October 16, 2008 – p. 41