kloster et al. 2013_cnr1

Upload: robert-dinu

Post on 03-Jun-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Kloster Et Al. 2013_CNR1

    1/4

    Experimental research

    CNR1 variation is associated with the age at onset in Huntington

    disease

    Eugen Kloster a,b, Carsten Saft c, Jrg T. Epplen a,b, Larissa Arning a,*

    a Department of Human Genetics, Ruhr-University Bochum, Germanyb International Graduate School of Neuroscience, Ruhr-University Bochum, Germanyc Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Germany

    a r t i c l e i n f o

    Article history:

    Received 27 February 2013

    Accepted 27 May 2013

    Available online 7 June 2013

    Keywords:

    Huntington disease

    Modier genes

    Age at onset

    CNR1

    miRNAs

    a b s t r a c t

    Huntington disease (HD) is caused by the expansion of a CAG repeat within exon 1 of the HTT gene.

    Although the variation in age at onset (AO) is partly explained by the length of the expanded repeat

    blocks, the unexplained variation in AO is highly heritable, emphasizing the role of modi er genes on

    disease expression. Since down-regulation of type 1 cannabinoid (CB1) receptors is a key pathogenic

    event in HD, it has been suggested that activation of these receptors in patients may attenuate disease

    progression. In order to evaluate whether variations in the cannabinoid receptor 1 ( CNR1) gene encoding

    the CB1 receptor protein have modifying effects on the AO of HD, we performed an association study

    between CNR1 polymorphisms and AO in HD patients. A (AAT)n repeat and a total of nine single

    nucleotide polymorphisms (SNPs) in the CNR1 gene were selected for genotyping in a cohort of 473

    German HD patients recruited in the Huntington Center NRW in Bochum. The AO was signicantly

    associated with the longest alleles (17 AAT) of the (AAT)n repeat polymorphism downstream of the

    CNR1gene (p 0.007) as well as with one SNP in the 30UTR ofCNR1(rs4707436,p 0.05). Interestingly,

    the allelic variation of rs4707436 affects different microRNA (miRNA) binding sites which could alter

    gene regulation and consequently inuence protein expression. These ndings support the idea that

    CNR1variation may have modifying effects on the AO in HD. 2013 Elsevier Masson SAS. All rights reserved.

    1. Introduction

    Huntington disease (HD) is an autosomal dominantly inherited,

    neurodegenerative disorder characterized by adult-onset of motor

    dysfunctions, psychiatric changes and cognitive decline. The caus-

    ative mutation is an expansion of an unstable CAG repeat in therst

    exon of the HTTgene that results in an elongated polyglutamine

    tract in the huntingtin protein (htt [1],). The neuropathological

    signs are most evident within the striatum, a structure of the basal

    ganglia involved in motor behavior. The pathological hallmark ofthe disease is a predominant and selective loss of striatal projection

    neurons [2] that leads to various motor symptoms, including

    choreiform movements, rigidity and abnormal posture[3].

    Age at onset (AO) in HD is determined mainly by the size of the

    expanded CAG repeat allele,i.e.the longer the repeat is the earlier

    the onset of symptoms. This correlation explains about 70% of the

    variability in AO, the remaining unexplained variation is highly

    heritable, emphasizing the role of modier genes on disease

    expression[4]. Up to now, a wide range of HD modier genes have

    been examined related to different biochemical pathways like

    dysregulation in energy metabolism, altered neurotransmitter re-

    ceptor function, htt protein interactions and regulation of gene

    expression [5].

    Since cannabinoid receptors are highly abundant in the basal

    ganglia and play a pivotal role in the control of motorbehavior, theyrepresent candidates as HD modiers. This assumption is further

    supported by a range of studies: signicant down-regulation of

    type 1 cannabinoid receptor (CB1) binding and messenger RNA

    levels has been documented in the basal ganglia of HD patients and

    animal models [6]. Interestingly, this down-regulation seems to

    occur in advance of other receptor changes at early stages of the

    disease and prior to the appearance of overt clinical symptoms

    following neurodegeneration [6e8]. The precise pathophysiolog-

    ical impact of this loss of receptors in HD is as yet unknown;

    however, recent results showed that the mutant htt-dependent

    down-regulation of the CB1 receptors involves the control of the

    * Corresponding author. Ruhr-University Bochum, Universittsstr, 150, MA5/39,

    44801 Bochum, Germany. Tel.: 49 (0) 234 32 23831; fax: 49 (0) 234 32 14196.

    E-mail address:[email protected](L. Arning).

    Contents lists available at SciVerse ScienceDirect

    European Journal of Medical Genetics

    j o u r n a l h o m e p a g e : h t t p : / / w w w . e l s e vi e r . c o m / l o c a t e / e j m g

    1769-7212/$e see front matter 2013 Elsevier Masson SAS. All rights reserved.

    http://dx.doi.org/10.1016/j.ejmg.2013.05.007

    European Journal of Medical Genetics 56 (2013) 416e419

    mailto:[email protected]://www.sciencedirect.com/science/journal/17697212http://www.elsevier.com/locate/ejmghttp://dx.doi.org/10.1016/j.ejmg.2013.05.007http://dx.doi.org/10.1016/j.ejmg.2013.05.007http://dx.doi.org/10.1016/j.ejmg.2013.05.007http://dx.doi.org/10.1016/j.ejmg.2013.05.007http://dx.doi.org/10.1016/j.ejmg.2013.05.007http://dx.doi.org/10.1016/j.ejmg.2013.05.007http://www.elsevier.com/locate/ejmghttp://www.sciencedirect.com/science/journal/17697212http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ejmg.2013.05.007&domain=pdfmailto:[email protected]
  • 8/12/2019 Kloster Et Al. 2013_CNR1

    2/4

    CNR1 promoter by repressor element 1 silencing transcription

    factor (REST), a transcriptional repressor of neuronal genes [9].

    Under normal condition wild-type htt sequesters REST in the

    cytoplasm, resulting in gene-silencing prevention, whereas the HTT

    mutation is associated with a loss-of-function in its ability to

    regulate the REST [9,10]. Here we sought to determine whether

    variation inCNR1, encoding CB1, is associated with AO in HD.

    2. Materials and methods

    2.1. Study population

    We analyzed HD patients with known AO of overt motor

    symptoms. The major part of the study population has been

    described before [11]. Since extreme CAG lengths could have a

    disproportionate impact on the results[12], we restricted our main

    analyses on individuals with repeats range of the 40 e 54 CAGs

    (n 473). However, in order to provide an additional impression on

    the inuence of the potential modier variations on extreme CAG

    lengths, the calculations have also been performed on a larger

    cohort including CAGs up to 73. The study was performed in a

    manner that fully complies with the Code of Ethics of the World

    Medical Association (Declaration of Helsinki) and was approved bythe ethics review board of the Ruhr-University Bochum (Germany).

    2.2. Genotyping

    Genotyping was performed by PCR-RFLP techniques. For frag-

    ment analysis of the (AAT)ntriplet repeat polymorphism we used

    uorescence 50FAM labeled, tailed oligonucleotide added to the 50-

    part of the sequence specic primer as described before [13]. All

    primers were designed with the Primer Express 2.0 Software

    (Applied Biosystems, Foster City, USA). All other details of the

    methodology and primer sequences are available upon request.

    2.3. Statistical analysis

    Variability in AO attributable to CAG repeat number was

    controlled by linear regression using the logarithmically trans-

    formed AO as the dependent variable and the genotypes as inde-

    pendent variables. All analyses were performed assuming a

    dominant or an additive effect for each polymorphism. In the

    dominant model, both, the heterozygous and the rarely observed

    homozygous variation were combined. In the additive model, both,

    rare homozygous and heterozygous variation effects were esti-

    mated using two dummy variables.

    The (AAT)ntriplet repeat was tested as a continuous trait, based

    upon the larger of the two alleles present in each patient. Addi-

    tionally, tests were performed for presence of each individual allele

    and at least one of the two longest alleles (17 or 18 AATs). SPSS

    Ver.21.0 (SPSS Inc.) was used for all statistical analyses with nom-inal signicance assigned when p 0.05. HardyeWeinberg equi-

    librium (HWE) was tested for each SNP. The D 0 values for each pair

    ofCNR1 markers were calculated and visualized through the pro-

    gram Haploview 3.0[14]. The Probability of Interaction by Target

    Accessibility (PITA) algorithm and miRNASNP analyses were used

    for miRNA target site prediction in the CNR130UTR[15,16].

    3. Results

    In the cohort of 473 unrelated German patients (233 men and

    240 women) the expanded CAG blocks ranged from 40 e 54 and

    accounted for nearly 68% of the variance in motor AO (R2 0.675,

    p < 0.0001). Potential modier effects were tested by determining

    whether adding the different CNR1 genotypes has a signi

    cant

    impact on a linear regression model relating the natural log-

    transformed AO to the CAG repeat length. In our cohort, the CNR1

    (AAT)nrepeat displayed 10 alleles, ranging from 9 to 18 AATs. Most

    frequently the (AAT)12allele was observed (30.9%), followed by the

    (AAT)16allele (27.6%), the (AAT)15 allele (16.9%) and the (AAT)14allele (16.4%). (AAT)17 repeats were relatively rarely (2.9%)

    encountered as well as those of other lengths (0.0001

    rs6454674 128/256/89 0.17

    rs806380 221/206/46 0.55

    rs1049353 238/184/51 0.59

    rs4707436_012 248/188/37 0.677 0.002 0.6 0.05

    rs4707436_011 248/ 225 0. 677 0.002 0.6 0.05

    rs12720071 389/80/4 0.68

    rs806368 238/216/19 0.44

    rs806366 127/230/116 0.14

    rs7766029 121/256/96 0.18

    rs806365 140/238/95 0.38

    CNR1(AAT)n 17 445/28 0.679 0.004 1.2 0.007

    The variability in motoric AO attributable to the CAG repeat length was assessed by

    linear regression using the logarithmically transformed onset age as the dependent

    variableand genotypes as independent variables. Delta (D)R2 quanties the relative

    improvement of the regression model when the genotypes are considered in

    addition to the CAG repeats.

    E. Kloster et al. / European Journal of Medical Genetics 56 (2013) 416e419 417

  • 8/12/2019 Kloster Et Al. 2013_CNR1

    3/4

    hand, CB1 receptor deletion in HD mouse models aggravates the

    symptoms of the disease[9,21].CNR1has therefore been chosen ascandidate gene in order to investigate the impact of naturally

    occurring variation in this gene on the AO. Numerous association

    studies were published, and variation in CNR1 has been associated

    with a wide range of phenotypes like alcohol and substance use

    disorders, schizophrenia, depression and Parkinson disease [22,23].

    Since there is no evidence that the (AAT)n repeat itself has any

    functional impact, this polymorphism may rather be in LD with

    other functional variations in CNR1 or in not yet identied brain-

    specic isoforms, like it is postulated for PPARGC1A[24].

    Further analyzing the most frequent SNPs in CNR1 revealed a

    weakerassociation with rs4707436 in the 30UTR. Since SNPs located

    in this region may affect miRNA binding sites, we analyzed

    rs4707436in silicofor its ability to modify miRNA binding sites and

    thus gene regulation via miRNAs. Rs4707436 G allele appears as a

    putative miRNA binding site for hsa-miR-652, thus suggesting a

    functional role for this variation in mRNA expression ofCNR1. The

    PITA algorithm, a thermodynamic model of miRNA binding, sup-

    ports allelic differences. PITA models miRNA targeting as a

    competition between the free energygained by miRNA binding and

    the energetic cost of displacing existing RNA secondary structure at

    the target site [15]. The predicted regulatory strength is thereby

    expressed in the form of an energy-based score termed DDG, where

    lower values indicate stronger miRNA binding. Analyzing the sur-

    rounding sequence of the rs4707436 G/A alleles with PITA revealed

    DDGvalues of13.48 and 8.72, thus suggesting reduced binding

    of hsa-miR-652 to CNR1 for the minor A-allele. Conversely, the A

    allele creates new target sites for hsa-miR-183 and hsa-miR-767-

    5p, which are absent in the more common G allele [16]. MiRNAs

    are potent regulators of gene expression and thus involved in abroad range of biological processes. SNPs within human miRNAs

    sequences have been shown to have impact on various phenotypes

    like the Parkinson disease, Friedreich ataxia, schizophrenia,

    aggressive human behaviors and various types of cancers [25e30].

    Thus, we submit that variation in CNR1 may be associated with

    altered miRNA binding heralding AO modifying effects in HD.

    However, the underlyingndings warrant independent replication

    and further investigations since HD modier studies, like all asso-

    ciation studies, are susceptible to various faults[12,31].

    Conict of interests

    The authors declare that they have no competing interests.

    References

    [1] A novel gene containing a trinucleotide repeat that is expanded and unstableon Huntingtons disease chromosomes. The Huntingtons Disease Collabora-tive Research Group, Cell 72 (1993) 971e983.

    [2] M.E. Ehrlich, Huntingtons disease and the striatal medium spiny neuron: cell-autonomous and non-cell-autonomous mechanisms of disease, Neuro-therapeutics 9 (2012) 270e284.

    [3] R.A. Roos, Huntingtons disease: a clinical review, Orphanet J. Rare Dis. 5(2010) 40.

    [4] N.S. Wexler, J. Lorimer, J. Porter, F. Gomez, C. Moskowitz, E. Shackell,K. Marder, G. Penchaszadeh, S.A. Roberts, J. Gayan, D. Brocklebank, S.S. Cherny,L.R. Cardon, J. Gray, S.R. Dlouhy, S. Wiktorski, M.E. Hodes, P.M. Conneally,

    J.B. Penney, J. Gusella, J.H. Cha, M. Irizarry, D. Rosas, S. Hersch,Z. Hollingsworth, M. MacDonald, A.B. Young, J.M. Andresen, D.E. Housman,M.M. De Young, E. Bonilla, T. Stillings, A. Negrette, S.R. Snodgrass,M.D. Martinez-Jaurrieta, M.A. Ramos-Arroyo, J. Bickham, J.S. Ramos,F. Marshall, I. Shoulson, G.J. Rey, A. Feigin, N. Arnheim, A. Acevedo-Cruz,L. Acosta, J. Alvir, K. Fischbeck, L.M. Thompson, A. Young, L. Dure, C.J. OBrien,

    J. Paulsen, A. Brickman, D. Krch, S. Peery, P. Hogarth, D.S. Higgins Jr.,

    B. Landwehrmeyer, Venezuelan kindreds reveal that genetic and environ-mental factors modulate Huntingtons disease age of onset, Proc. Natl. Acad.Sci. U. S. A. 101 (2004) 3498e3503.

    [5] L. Arning, J.T. Epplen, Genetic modiers of Huntingtons disease: beyond CAG,Future Neurol. 7 (2012) 93e109.

    [6] M.R. Pazos, O. Sagredo, J. Fernandez-Ruiz, The endocannabinoid system inHuntingtons disease, Curr. Pharm. Des. 14 (2008) 2317e2325.

    [7] M. Glass, M. Dragunow, R.L. Faull, The pattern of neurodegeneration in Hun-tingtons disease: a comparative study of cannabinoid, dopamine, adenosineand GABA(A) receptor alterations in the human basal ganglia in Huntington sdisease, Neuroscience 97 (2000) 505e519.

    [8] M. Maccarrone, N. Battista, D. Centonze, The endocannabinoid pathway inHuntingtons disease: a comparison with other neurodegenerative diseases,Prog. Neurobiol. 81 (2007) 349e379.

    [9] C. Blazquez, A. Chiarlone, O. Sagredo, T. Aguado, M.R. Pazos, E. Resel,J. Palazuelos, B. Julien, M. Salazar, C. Borner, C. Benito, C. Carrasco, M. Diez-Zaera, P. Paoletti, M. Diaz-Hernandez, C. Ruiz, M. Sendtner, J.J. Lucas, J.G. deYebenes, G. Marsicano, K. Monory, B. Lutz, J. Romero, J. Alberch, S. Gines,

    J. Kraus, J. Fernandez-Ruiz, I. Galve-Roperh, M. Guzman, Loss of striatal type 1

    cannabinoid receptors is a key pathogenic factor in Huntingtons disease,Brain 134 (2011) 119e136.

    [10] C. Zuccato, M. Tartari, A. Crotti, D. Goffredo, M. Valenza, L. Conti, T. Cataudella,B.R. Leavitt, M.R. Hayden, T. Timmusk, D. Rigamonti, E. Cattaneo, Huntingtininteracts with REST/NRSF to modulate the transcription of NRSE-controlledneuronal genes, Nat. Genet. 35 (2003) 76e83.

    [11] E. Taherzadeh-Fard, C. Saft, D.A. Akkad, S. Wieczorek, A. Haghikia, A. Chan,J.T. Epplen, L. Arning, PGC-1alpha downstream transcription factors NRF-1and TFAM are genetic modiers of Huntington disease, Mol. Neurodegener.6 (2011) 32.

    [12] J.M. Lee, E.M. Ramos, J.H. Lee, T. Gillis, J.S. Mysore, M.R. Hayden, S.C. Warby,P. Morrison, M. Nance, C.A. Ross, R.L. Margolis, F. Squitieri, S. Orobello, S. DiDonato, E. Gomez-Tortosa, C. Ayuso, O. Suchowersky, R.J. Trent, E. McCusker,A. Novelletto, M. Frontali, R. Jones, T. Ashizawa, S. Frank, M.H. Saint-Hilaire,S.M. Hersch, H.D. Rosas, D. Lucente, M.B. Harrison, A. Zanko, R.K. Abramson,K. Marder, J. Sequeiros, J.S. Paulsen, G.B. Landwehrmeyer, R.H. Myers,M.E. MacDonald, J.F. Gusella, CAG repeat expansion in Huntington diseasedetermines age at onset in a fully dominant fashion, Neurology 78 (2012)

    690e

    695.

    Fig. 1. Graphical representation of the CNR1 polymorphisms in relation to the exoneintron structure (top) and the Haploview pairwise linkage disequilibrium (LD) structure

    (bottom) of part of the gene. The Exon is indicated by solid black boxes, and the numbered vertical lines indicate positions of the variations analyzed inCNR1. The Haploview plot

    shows the pairwise LD (D0 values) for all 9 SNPs and the (AAT)nrepeatsn17 based on genotypes of 473 HD patients of the study. Each square plots the level of LD between a pair of

    SNPs, comparisons between neighboring SNPs are arranged along the rst line under the names of the SNPs. Dark red coloring indicates strong LD, medium red shading indicates

    less strong LD, light red indicates intermediate LD and white indicates weak LD.

    E. Kloster et al. / European Journal of Medical Genetics 56 (2013) 416e419418

    http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref2http://refhub.elsevier.com/S1769-7212(13)00125-0/sref2http://refhub.elsevier.com/S1769-7212(13)00125-0/sref2http://refhub.elsevier.com/S1769-7212(13)00125-0/sref2http://refhub.elsevier.com/S1769-7212(13)00125-0/sref2http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref3http://refhub.elsevier.com/S1769-7212(13)00125-0/sref3http://refhub.elsevier.com/S1769-7212(13)00125-0/sref3http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref5http://refhub.elsevier.com/S1769-7212(13)00125-0/sref5http://refhub.elsevier.com/S1769-7212(13)00125-0/sref5http://refhub.elsevier.com/S1769-7212(13)00125-0/sref5http://refhub.elsevier.com/S1769-7212(13)00125-0/sref5http://refhub.elsevier.com/S1769-7212(13)00125-0/sref5http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref6http://refhub.elsevier.com/S1769-7212(13)00125-0/sref6http://refhub.elsevier.com/S1769-7212(13)00125-0/sref6http://refhub.elsevier.com/S1769-7212(13)00125-0/sref6http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref7http://refhub.elsevier.com/S1769-7212(13)00125-0/sref7http://refhub.elsevier.com/S1769-7212(13)00125-0/sref7http://refhub.elsevier.com/S1769-7212(13)00125-0/sref7http://refhub.elsevier.com/S1769-7212(13)00125-0/sref7http://refhub.elsevier.com/S1769-7212(13)00125-0/sref7http://refhub.elsevier.com/S1769-7212(13)00125-0/sref7http://refhub.elsevier.com/S1769-7212(13)00125-0/sref7http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref8http://refhub.elsevier.com/S1769-7212(13)00125-0/sref8http://refhub.elsevier.com/S1769-7212(13)00125-0/sref8http://refhub.elsevier.com/S1769-7212(13)00125-0/sref8http://refhub.elsevier.com/S1769-7212(13)00125-0/sref8http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref9http://refhub.elsevier.com/S1769-7212(13)00125-0/sref9http://refhub.elsevier.com/S1769-7212(13)00125-0/sref9http://refhub.elsevier.com/S1769-7212(13)00125-0/sref9http://refhub.elsevier.com/S1769-7212(13)00125-0/sref9http://refhub.elsevier.com/S1769-7212(13)00125-0/sref9http://refhub.elsevier.com/S1769-7212(13)00125-0/sref9http://refhub.elsevier.com/S1769-7212(13)00125-0/sref9http://refhub.elsevier.com/S1769-7212(13)00125-0/sref9http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref10http://refhub.elsevier.com/S1769-7212(13)00125-0/sref10http://refhub.elsevier.com/S1769-7212(13)00125-0/sref10http://refhub.elsevier.com/S1769-7212(13)00125-0/sref10http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref11http://refhub.elsevier.com/S1769-7212(13)00125-0/sref11http://refhub.elsevier.com/S1769-7212(13)00125-0/sref11http://refhub.elsevier.com/S1769-7212(13)00125-0/sref11http://refhub.elsevier.com/S1769-7212(13)00125-0/sref11http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref12http://refhub.elsevier.com/S1769-7212(13)00125-0/sref12http://refhub.elsevier.com/S1769-7212(13)00125-0/sref12http://refhub.elsevier.com/S1769-7212(13)00125-0/sref12http://refhub.elsevier.com/S1769-7212(13)00125-0/sref12http://refhub.elsevier.com/S1769-7212(13)00125-0/sref12http://refhub.elsevier.com/S1769-7212(13)00125-0/sref12http://refhub.elsevier.com/S1769-7212(13)00125-0/sref12http://refhub.elsevier.com/S1769-7212(13)00125-0/sref12http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref12http://refhub.elsevier.com/S1769-7212(13)00125-0/sref12http://refhub.elsevier.com/S1769-7212(13)00125-0/sref12http://refhub.elsevier.com/S1769-7212(13)00125-0/sref12http://refhub.elsevier.com/S1769-7212(13)00125-0/sref12http://refhub.elsevier.com/S1769-7212(13)00125-0/sref12http://refhub.elsevier.com/S1769-7212(13)00125-0/sref12http://refhub.elsevier.com/S1769-7212(13)00125-0/sref12http://refhub.elsevier.com/S1769-7212(13)00125-0/sref12http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref11http://refhub.elsevier.com/S1769-7212(13)00125-0/sref11http://refhub.elsevier.com/S1769-7212(13)00125-0/sref11http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref10http://refhub.elsevier.com/S1769-7212(13)00125-0/sref10http://refhub.elsevier.com/S1769-7212(13)00125-0/sref10http://refhub.elsevier.com/S1769-7212(13)00125-0/sref10http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref9http://refhub.elsevier.com/S1769-7212(13)00125-0/sref9http://refhub.elsevier.com/S1769-7212(13)00125-0/sref9http://refhub.elsevier.com/S1769-7212(13)00125-0/sref9http://refhub.elsevier.com/S1769-7212(13)00125-0/sref9http://refhub.elsevier.com/S1769-7212(13)00125-0/sref9http://refhub.elsevier.com/S1769-7212(13)00125-0/sref9http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref8http://refhub.elsevier.com/S1769-7212(13)00125-0/sref8http://refhub.elsevier.com/S1769-7212(13)00125-0/sref8http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref7http://refhub.elsevier.com/S1769-7212(13)00125-0/sref7http://refhub.elsevier.com/S1769-7212(13)00125-0/sref7http://refhub.elsevier.com/S1769-7212(13)00125-0/sref7http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref6http://refhub.elsevier.com/S1769-7212(13)00125-0/sref6http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref5http://refhub.elsevier.com/S1769-7212(13)00125-0/sref5http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref4http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref3http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref2http://refhub.elsevier.com/S1769-7212(13)00125-0/sref2http://refhub.elsevier.com/S1769-7212(13)00125-0/sref2http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1
  • 8/12/2019 Kloster Et Al. 2013_CNR1

    4/4

    [13] A.M. Stadelmann, G. Juckel, L. Arning, J. Gallinat, J.T. Epplen, P. Roser, Asso-ciation between a cannabinoid receptor gene (CNR1) polymorphism andcannabinoid-induced alterations of the auditory event-related P300 potential,Neurosci. Lett. 496 (2011) 60e64.

    [14] J.C. Barrett, B. Fry, J. Maller, M.J. Daly, Haploview: analysis and visualization ofLD and haplotype maps, Bioinformatics 21 (2005) 263e265.

    [15] M. Kertesz, N. Iovino, U. Unnerstall, U. Gaul, E. Segal, The role of siteaccessibility in microRNA target recognition, Nat. Genet. 39 (2007) 1278e1284.

    [16] J. Gong, Y. Tong, H.M. Zhang, K. Wang, T. Hu, G. Shan, J. Sun, A.Y. Guo,

    Genome-wide identication of SNPs in microRNA genes and the SNP effectson microRNA target binding and biogenesis, Hum. Mutat. 33 (2012) 254e263.

    [17] D. Heller, U. Schneider, J. Seifert, K.F. Cimander, M. Stuhrmann, The canna-binoid receptor gene (CNR1) is not affected in German i.v. drug users, AddictBiol. 6 (2001) 183e187.

    [18] J. Fernandez-Ruiz, M. Moreno-Martet, C. Rodriguez-Cueto, C. Palomo-Garo,M. Gomez-Canas, S. Valdeolivas, C. Guaza, J. Romero, M. Guzman,R. Mechoulam, J.A. Ramos, Prospects for cannabinoid therapies in basalganglia disorders, Br. J. Pharmacol. 163 (2011) 1365e1378.

    [19] L.M. Borgelt, K.L. Franson, A.M. Nussbaum, G.S. Wang, The pharmacologic andclinical effects of medical cannabis, Pharmacotherapy 33 (2013) 195e209.

    [20] K. Van Laere, C. Casteels, I. Dhollander, K. Gofn, I. Grachev, G. Bormans,W. Vandenberghe, Widespread decrease of type 1 cannabinoid receptoravailability in Huntington disease in vivo, J. Nucl. Med. 51 (2010) 1413e1417.

    [21] S. Mievis, D. Blum, C. Ledent, Worsening of Huntington disease phenotype inCB1 receptor knockout mice, Neurobiol. Dis. 42 (2011) 524e529.

    [22] I.R. Dinu, S. Popa, M. Bicu, E. Mota, M. Mota, The implication of CNR1 genespolymorphisms in the modulation of endocannabinoid system effects, Rom. J.Intern. Med. 47 (2009) 9e18.

    [23] A. Benyamina, O. Kebir, L. Blecha, M. Reynaud, M.O. Krebs, CNR1 gene poly-morphisms in addictive disorders: a systematic review and a meta-analysis,Addict Biol. 16 (2011) 1e6.

    [24] S.M. Soyal, T.K. Felder, S. Auer, P. Hahne, H. Oberkoer, A. Witting,M. Paulmichl, G.B. Landwehrmeyer, P. Weydt, W. Patsch, A greatly extendedPPARGC1A genomic locus encodes several new brain-specic isoforms andinuences Huntington disease age of onset, Hum. Mol. Genet. 21 (2012)3461e3473.

    [25] P.J. Mishra, D. Banerjee, J.R. Bertino, MiRSNPs or MiR-polymorphisms, newplayers in microRNA mediated regulation of the cell: Introducing microRNApharmacogenomics, Cell Cycle 7 (2008) 853e858.

    [26] S. Bandiera, F. Cartault, A.S. Jannot, E. Hatem, M. Girard, L. Rifai, C. Loiseau,A. Munnich, S. Lyonnet, A. Henrion-Caude, Genetic variations creatingMicroRNA target sites in the FXN 3-UTR affect frataxin expression in Frie-dreich ataxia, PLoS One 8 (2013) e54791.

    [27] Y. Gong, C.N. Wu, J. Xu, G. Feng, Q.H. Xing, W. Fu, C. Li, L. He, X.Z. Zhao,Polymorphisms in microRNA target sites inuence susceptibility to schizo-phrenia by altering the binding of miRNAs to their targets, Eur. Neuro-

    psychopharmacol. (2013), http://dx.doi.org/10.1016/j.euroneuro.2012.12.002.(Epub ahead of print).

    [28] K.P. Jensen, J. Covault, T.S. Conner, H. Tennen, H.R. Kranzler, H.M. Furneaux,A common polymorphism in serotonin receptor 1B mRNA moderates regu-lation by miR-96 and associates with aggressive human behaviors, Mol.Psychiatry 14 (2009) 381e389.

    [29] G. Wang, J.M. van der Walt, G. Mayhew, Y.J. Li, S. Zuchner, W.K. Scott,E.R. Martin, J.M. Vance, Variation in the miRNA-433 binding site of FGF20confers risk for Parkinson disease by overexpression of alpha-synuclein, Am. J.Hum. Genet. 82 (2008) 283e289.

    [30] Z. Yu, Z. Li, N. Jolicoeur, L. Zhang, Y. Fortin, E. Wang, M. Wu, S.H. Shen, Aberrantallele frequencies of the SNPs located in microRNA target sites are potentiallyassociated with human cancers, Nucleic Acids Res. 35 (2007) 4535e4541.

    [31] E.M.Ramos, J.C. Latourelle, J.H.Lee, T. Gillis, J.S.Mysore,F. Squitieri, A. Di Pardo,S. Di Donato, M.R. Hayden, P.J. Morrison, M. Nance, C.A. Ross, R.L. Margolis,E. Gomez-Tortosa, C. Ayuso, O. Suchowersky, R.J. Trent, E. McCusker,A. Novelletto, M. Frontali, R. Jones, T. Ashizawa, S. Frank, M.H. Saint-Hilaire,S.M. Hersch, H.D. Rosas, D. Lucente, M.B. Harrison, A. Zanko, K. Marder,

    J.F. Gusella, J.M. Lee, I. Alonso, J. Sequeiros, R.H. Myers, M.E. Macdonald, Popu-lation stratication may bias analysis of PGC-1alpha as a modier of age atHuntington disease motor onset, Hum. Genet. 131 (2012) 1833e1840.

    Web resource

    [32] PITA: http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html, miR-NASNP: http://www.bioguo.org/miRNASNP/geneTargets.php.

    E. Kloster et al. / European Journal of Medical Genetics 56 (2013) 416e419 419

    http://refhub.elsevier.com/S1769-7212(13)00125-0/sref13http://refhub.elsevier.com/S1769-7212(13)00125-0/sref13http://refhub.elsevier.com/S1769-7212(13)00125-0/sref13http://refhub.elsevier.com/S1769-7212(13)00125-0/sref13http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref14http://refhub.elsevier.com/S1769-7212(13)00125-0/sref14http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref15http://refhub.elsevier.com/S1769-7212(13)00125-0/sref15http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref16http://refhub.elsevier.com/S1769-7212(13)00125-0/sref16http://refhub.elsevier.com/S1769-7212(13)00125-0/sref16http://refhub.elsevier.com/S1769-7212(13)00125-0/sref16http://refhub.elsevier.com/S1769-7212(13)00125-0/sref16http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref17http://refhub.elsevier.com/S1769-7212(13)00125-0/sref17http://refhub.elsevier.com/S1769-7212(13)00125-0/sref17http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref18http://refhub.elsevier.com/S1769-7212(13)00125-0/sref18http://refhub.elsevier.com/S1769-7212(13)00125-0/sref18http://refhub.elsevier.com/S1769-7212(13)00125-0/sref18http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref19http://refhub.elsevier.com/S1769-7212(13)00125-0/sref19http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref20http://refhub.elsevier.com/S1769-7212(13)00125-0/sref20http://refhub.elsevier.com/S1769-7212(13)00125-0/sref20http://refhub.elsevier.com/S1769-7212(13)00125-0/sref20http://refhub.elsevier.com/S1769-7212(13)00125-0/sref20http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref21http://refhub.elsevier.com/S1769-7212(13)00125-0/sref21http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref22http://refhub.elsevier.com/S1769-7212(13)00125-0/sref22http://refhub.elsevier.com/S1769-7212(13)00125-0/sref22http://refhub.elsevier.com/S1769-7212(13)00125-0/sref22http://refhub.elsevier.com/S1769-7212(13)00125-0/sref22http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref23http://refhub.elsevier.com/S1769-7212(13)00125-0/sref23http://refhub.elsevier.com/S1769-7212(13)00125-0/sref23http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref24http://refhub.elsevier.com/S1769-7212(13)00125-0/sref24http://refhub.elsevier.com/S1769-7212(13)00125-0/sref24http://refhub.elsevier.com/S1769-7212(13)00125-0/sref24http://refhub.elsevier.com/S1769-7212(13)00125-0/sref24http://refhub.elsevier.com/S1769-7212(13)00125-0/sref24http://refhub.elsevier.com/S1769-7212(13)00125-0/sref24http://refhub.elsevier.com/S1769-7212(13)00125-0/sref24http://refhub.elsevier.com/S1769-7212(13)00125-0/sref24http://refhub.elsevier.com/S1769-7212(13)00125-0/sref24http://refhub.elsevier.com/S1769-7212(13)00125-0/sref24http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref25http://refhub.elsevier.com/S1769-7212(13)00125-0/sref25http://refhub.elsevier.com/S1769-7212(13)00125-0/sref25http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref26http://refhub.elsevier.com/S1769-7212(13)00125-0/sref26http://refhub.elsevier.com/S1769-7212(13)00125-0/sref26http://refhub.elsevier.com/S1769-7212(13)00125-0/sref26http://refhub.elsevier.com/S1769-7212(13)00125-0/sref26http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref28http://refhub.elsevier.com/S1769-7212(13)00125-0/sref28http://refhub.elsevier.com/S1769-7212(13)00125-0/sref28http://refhub.elsevier.com/S1769-7212(13)00125-0/sref28http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref29http://refhub.elsevier.com/S1769-7212(13)00125-0/sref29http://refhub.elsevier.com/S1769-7212(13)00125-0/sref29http://refhub.elsevier.com/S1769-7212(13)00125-0/sref29http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref30http://refhub.elsevier.com/S1769-7212(13)00125-0/sref30http://refhub.elsevier.com/S1769-7212(13)00125-0/sref30http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref31http://refhub.elsevier.com/S1769-7212(13)00125-0/sref31http://refhub.elsevier.com/S1769-7212(13)00125-0/sref31http://refhub.elsevier.com/S1769-7212(13)00125-0/sref31http://refhub.elsevier.com/S1769-7212(13)00125-0/sref31http://refhub.elsevier.com/S1769-7212(13)00125-0/sref31http://refhub.elsevier.com/S1769-7212(13)00125-0/sref31http://refhub.elsevier.com/S1769-7212(13)00125-0/sref31http://refhub.elsevier.com/S1769-7212(13)00125-0/sref31http://refhub.elsevier.com/S1769-7212(13)00125-0/sref31http://refhub.elsevier.com/S1769-7212(13)00125-0/sref31http://refhub.elsevier.com/S1769-7212(13)00125-0/sref31http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.htmlhttp://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.htmlhttp://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.htmlhttp://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.htmlhttp://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.htmlhttp://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.htmlhttp://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.htmlhttp://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.htmlhttp://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.htmlhttp://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.htmlhttp://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.htmlhttp://www.bioguo.org/miRNASNP/geneTargets.phphttp://www.bioguo.org/miRNASNP/geneTargets.phphttp://www.bioguo.org/miRNASNP/geneTargets.phphttp://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.htmlhttp://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref31http://refhub.elsevier.com/S1769-7212(13)00125-0/sref31http://refhub.elsevier.com/S1769-7212(13)00125-0/sref31http://refhub.elsevier.com/S1769-7212(13)00125-0/sref31http://refhub.elsevier.com/S1769-7212(13)00125-0/sref31http://refhub.elsevier.com/S1769-7212(13)00125-0/sref31http://refhub.elsevier.com/S1769-7212(13)00125-0/sref31http://refhub.elsevier.com/S1769-7212(13)00125-0/sref31http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref30http://refhub.elsevier.com/S1769-7212(13)00125-0/sref30http://refhub.elsevier.com/S1769-7212(13)00125-0/sref30http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref29http://refhub.elsevier.com/S1769-7212(13)00125-0/sref29http://refhub.elsevier.com/S1769-7212(13)00125-0/sref29http://refhub.elsevier.com/S1769-7212(13)00125-0/sref29http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref28http://refhub.elsevier.com/S1769-7212(13)00125-0/sref28http://refhub.elsevier.com/S1769-7212(13)00125-0/sref28http://refhub.elsevier.com/S1769-7212(13)00125-0/sref28http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref26http://refhub.elsevier.com/S1769-7212(13)00125-0/sref26http://refhub.elsevier.com/S1769-7212(13)00125-0/sref26http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref25http://refhub.elsevier.com/S1769-7212(13)00125-0/sref25http://refhub.elsevier.com/S1769-7212(13)00125-0/sref25http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref24http://refhub.elsevier.com/S1769-7212(13)00125-0/sref24http://refhub.elsevier.com/S1769-7212(13)00125-0/sref24http://refhub.elsevier.com/S1769-7212(13)00125-0/sref24http://refhub.elsevier.com/S1769-7212(13)00125-0/sref24http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref23http://refhub.elsevier.com/S1769-7212(13)00125-0/sref23http://refhub.elsevier.com/S1769-7212(13)00125-0/sref23http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref22http://refhub.elsevier.com/S1769-7212(13)00125-0/sref22http://refhub.elsevier.com/S1769-7212(13)00125-0/sref22http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref21http://refhub.elsevier.com/S1769-7212(13)00125-0/sref21http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref20http://refhub.elsevier.com/S1769-7212(13)00125-0/sref20http://refhub.elsevier.com/S1769-7212(13)00125-0/sref20http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref19http://refhub.elsevier.com/S1769-7212(13)00125-0/sref19http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref18http://refhub.elsevier.com/S1769-7212(13)00125-0/sref18http://refhub.elsevier.com/S1769-7212(13)00125-0/sref18http://refhub.elsevier.com/S1769-7212(13)00125-0/sref18http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref17http://refhub.elsevier.com/S1769-7212(13)00125-0/sref17http://refhub.elsevier.com/S1769-7212(13)00125-0/sref17http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref16http://refhub.elsevier.com/S1769-7212(13)00125-0/sref16http://refhub.elsevier.com/S1769-7212(13)00125-0/sref16http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref15http://refhub.elsevier.com/S1769-7212(13)00125-0/sref15http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref14http://refhub.elsevier.com/S1769-7212(13)00125-0/sref14http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1http://refhub.elsevier.com/S1769-7212(13)00125-0/sref13http://refhub.elsevier.com/S1769-7212(13)00125-0/sref13http://refhub.elsevier.com/S1769-7212(13)00125-0/sref13http://refhub.elsevier.com/S1769-7212(13)00125-0/sref13http://refhub.elsevier.com/S1769-7212(13)00125-0/sref1