key concepts for section iv (electrokinetics and forces) · slip (shear) boundary vz x δ Φ(0)...

19
1: Debye layer, Zeta potential, Electrokinetics 2: Electrophoresis, Electroosmosis 3: Dielectrophoresis 4: Inter-Debye layer force, Van-Der Waals forces 5: Coupled systems, Scaling, Dimensionless Number Goals of Part IV: (1) Understand electrokinetic phenomena and apply them in (natural or artificial) biosystems (2) Understand various driving forces and be able to identify dominating forces in coupled systems Key Concepts for section IV (Electrokinetics and Forces)

Upload: others

Post on 24-Jan-2021

15 views

Category:

Documents


0 download

TRANSCRIPT

  • 1: Debye layer, Zeta potential, Electrokinetics

    2: Electrophoresis, Electroosmosis

    3: Dielectrophoresis

    4: Inter-Debye layer force, Van-Der Waals forces

    5: Coupled systems, Scaling, Dimensionless Number

    Goals of Part IV:

    (1) Understand electrokinetic phenomena and apply them in (natural or artificial) biosystems

    (2) Understand various driving forces and be able to identify dominating forces in coupled systems

    Key Concepts for section IV (Electrokinetics and Forces)

  • Helmholtz model(1853)

    Guoy-Chapman model(1910-1913)

    Stern model (1924)

    + -+++++++++++

    -----------

    1κ −

    1κ −

    x

    + -+++++++++++

    --

    --

    -

    - --

    - --1κ −

    1κ − x

    +

    +

    +

    ++

    ++

    -

    +++++++++++

    -

    -

    --

    -

    --

    -

    --

    -1κ −

    +

    +

    +

    +

    +

    +

    1κ −

    x

    -

    --

    slip boundary

    (zeta potential)ξ

  • Jongyoon HanText BoxkT

  • From NessCAP Inc. website

    Debye layer is a extraordinary capacitor!

    http://www.nesscap.com/

    Image removed due to copyright restrictions.Graph of power vs. energy characteristics of energy storage devices.

    http://www.nesscap.com/

  • Image removed due to copyright restrictions.Datasheet for NESSCAP Ultracapacitor 3500F/2.3V

  • Motion of DNA in Channels

    35.7 V/cm

    -(cathode)+

    (anode)

    electroosmosis

    electrophoresis

    - - -

    --

    --

    -

    -

    - - - - - -

    - - - - - -- - -

    + + + + + ++ + +

    + + + + + ++ + +

    (surface charges)

    E field

    Source: Prof. Han’s Ph.D thesis

  • -60

    -40

    -20

    0

    20

    40

    0 0.25 0.5 0.75 1

    Buffer concentration(M)

    Velo

    city

    ( μm

    /sec

    )

    T7 T20.5X TBE

    10X TBE

    Velocity of DNA in obstacle-free channel

    DNA electrophoresis in a channel

  • • The oxide or glass surface become unprotonated (pK ~ 2) when they are in contact with water, forming electrical double layer.

    • When applied an electric field, a part of the ion cloud near the surface can move along the electric field.

    • The motion of ions at the boundary of the channel induces bulk flow by viscousdrag.

    Electroosmosis

    Figure by MIT OCW.

    1 2 3 4

  • Image removed due to copyright restrictions.Schematic of electroosmotic flow of water in a porous charged medium.

    Figure 6.5.1 in Probstein, R. F. Physicochemical Hydrodynamics: An Introduction. New York: NY, John Wiley & Sons, 1994.

    http://www.moldreporter.org/vol1no5/drytronic

  • Gels and Tissues

    Nanoporous materials

    Extra-Cellular matrix

    Microfluidic system

    Electrokinetic pumping

    http://www.eksigent.com/

    http://www.eksigent.com/

  • http://micromachine.stanford.edu/~dlaser/research_pages/silicon_eo_pumps.html

    Courtesy of Daniel J. Laser. Used with permission.

  • Electroosmosis Streaming potential

    Electrophoresis Sedimentation potentialFigure by MIT OCW.

    E field (ΔΦ)generates fluid flow (Q)

    E field (ΔΦ)generates particle motion (v)

    fluid flow (Q) generates E-field (ΔΦ)

    particle motion (v)generatesE-field (ΔΦ)

    + + + + + + +

    + ++

    ++++

    +

    v v

    + + + + + + +

    ++ + + + + + +

    P0P1

    + ++

    ++++

    +

    EE

    E

    v

    vv

    v

    +

    + + + + + + +

    v

  • Concentration(c)(ρ)

    Maxwell’s equationFick’s law of diffusion

    E and B field

    Navier-Stokes’ equation

    ρ, J : source

    Osmosis

    (aqueous) medium, Flow velocity (vm)

    Convection

    Electrophoresis

    Streamingpotential

    Electroosmosis

  • Stern layer (Realistic Debye layer model)

    +

    ++

    ++

    +

    ++

    ++

    +++++++++

    Distance

    Pote

    ntia

    l, φ

    Diffuse Layer

    Stern Layer

    φδ

    δ

    φw

    Particle Surface Stern Plane

    Surface of Shear

    ζ

    λD0

    Structure of electric double layer with innerStern layer (after Shaw, 1980.)

    Figure by MIT OCW.

  • Sheer boundary, zeta potential

    1~ κ −

    x

    Φξ-+

    +

    ++- - - - - - - - - - - - - - - - - - -+ + + + +

    +

    +

    ++

    ++

    ++

    Stern layer

    Slip (shear) boundary

    zv

    x

    δ

    (0)Φ

    Zeta potential

    EEOvzE

    Stern layer : adsorbed ions, linear potential dropGouy-Chapman layer : diffuse-double layer

    exponential dropShear boundary : vz=0Navier-Stokes equation

    2 0

    0 ( )

    edv p v Edtv incompressible

    ρ μ ρ= −∇ + ∇ + ≅

    ∇ ⋅ =

    r rr

    r

    New term

  • Poiseuille flowparabolic flow profile

    ( )2 2

    ( ) ( )4z zo

    electroosmotic flow Poiseuille flow

    R r Pv r r EL

    ε ζμ μ

    ⎛ ⎞− Δ= − − Φ −⎜ ⎟⎝ ⎠1444244431442443

    0, 0 :zP EΔ ≠ =

    Electroosmotic flowflat (plug-like) profile0, 0 :zP EΔ = ≠

    :

    z zEEO EEO

    EEO

    v E E (outside of the Debye layer)

    electroosmotic 'mobility'

    εζ μμμ

    = − =

  • Paul’s experiment

    Pressure-driven flow vs. Electroosmotic flow. These images were taken by caged dye techniques (Paul et al. Anal. Chem. 70, 2459 (1998)). At t=0, an initial flat fluorescent line is generated in microchannel by pulse-exposing and breaking the caged dye, rendering them fluorescent. These dyes were transported by the fluid flow generated by pressure (left column) or electroosmosis (right column), demonstrating the flow profile.

    http://www.ca.sandia.gov/microfluidics/research/pdfs/paul98.pdf

    Figure by MIT OCW. After Paul, et al. Anal Chem 70 (1998): 2459.

  • EEO zv Eεζμ

    = −2

    8PoiseuilleR Pv

    LμΔ= −

    (averaged over r)

    Electroosmotic flow velocity is independent of the size (and shape) of the tube.

    Pressure-driven flow velocity is a strong function of R.

    R=1μm R=10μm R=1m

    EEO zv Eεζμ

    = − EEO zv Eεζμ

    = − EEO zv Eεζμ

    = −

    ?

    Key Concepts for section IV (Electrokinetics and Forces)Motion of DNA in ChannelsImage removed due to copyright restrictions.��Schematic of electroosmotic flow of water in a porous charged medium. ��Figure 6Stern layer (Realistic Debye layer model) Sheer boundary, zeta potentialPaul’s experiment