k() s g() l() n...−controllability / observability concept. −performance criteria / nominal...

74
Nano System Control Lab. Chosun University 235 Summary K() N s G() N s 0 L() s Plant Output 1 max 0 min (L ( ) I) I G ( )K ( ) , N N j j j 1 max 0 min (L ( ) I) I G ( )K ( ) , N N j j j or

Upload: others

Post on 30-Jan-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Nano System Control Lab.Chosun University 235

    Summary

    K ( )N s G ( )N s 0L ( )s

    Plant Output

    1max 0 min( L ( ) I ) I G ( )K ( ) ,N Nj j j

    1max 0 min(L ( ) I ) I G ( )K ( ) ,N Nj j j

    or

  • Nano System Control Lab.Chosun University 236

    K ( )N s G ( )N s1L ( )s

    Plant Iutput

    1max 1 min( L ( ) I ) I K ( )G ( ) ,N Nj j j

    1max 0 min(L ( ) I ) I K ( )G ( ) ,N Nj j j

    or

  • Nano System Control Lab.Chosun University 237

    Quiz #2 : 3-problem, 1-bonus

    Some True – False questions

    − Multivariable Transmission Zeros : GEP solving

    − Controllability / Observability Concept.

    − Performance Criteria / Nominal Stability

    Understand MIMO Nyquist Criterion

    • SV & SVD

    • perf. Spec. via s-plane

    − Bonus – Simple Eigenstructure Assignment.

  • Nano System Control Lab.Chosun University 238

    1 2U [u ,u ] u i

    1 2V [ v , v ] vi

    − right eigenvector ofHA A

    HA A− right eigenvector of

    1u A vi ii

    H H T H H T

    H

    A U V , A V U , A U V1 1v A u , u A vi i i i

    i i

    1.

    2.min min max( I A ) (A) 1 (A) 1 ,

    1 1min min

    max

    1( I A ) (A ) 1 1(A)

    min max

    1 1 ,( I A ) ( A ) 1

    max1

    min max

    ( A )1( I A ) (A ) 1

    3.max min1.0 , 0.0000474 '' ''depends on untis

    Hw #5 solution

  • Nano System Control Lab.Chosun University 239

    4.

    45

    45

    1 1 1

    2,3 1 1.02j

    1 2 2B , u 0 ,b b 12

    1 0 0C

    0 0 1cc

    1q 1,2,3

    0ii

    1 1p ( I A ) Bq ( I A ) b ,i i i Q 1 1 1

    1

    1

    A bS

    c 0

    q 1i

  • Nano System Control Lab.Chosun University 240

    Design of MIMO Feedback System

    Standard form

    K( )sr ( )s e( )s u ( )s

    d( )s

    y( )sL( )sG( )s

    n ( )s

    Error e ( ) r ( ) y ( )t t t t

    e ( ) S( ) r ( ) d ( ) C( ) n ( )t s s s s s s

    Error bound

    max maxL ( ) I e ( ) ,j all

  • Nano System Control Lab.Chosun University 241

    Sensitivity

    disturbance

    Sensor noise

    max S( )j

    min S( )j

  • Nano System Control Lab.Chosun University 242

    Closed Loop

    HighLoop gain

    Sensornoise

    max C( )j max

    1 ( )e j

    min C( )j

  • Nano System Control Lab.Chosun University 243

    Issue

    T( ) , C( ) , S( )s s s Time Domain

    T( )sr( )s e( )sy( )s

    y T( ) es

    1x A x Bu y C(sI A ) Bey C x

    1T( ) C(sI A ) Bs

    u e

  • Nano System Control Lab.Chosun University 244

    1y C ( ) rs

    e r y Cx r

    1x [A BC]x Br y C(s I A BC) B ry C x

    11C ( ) C(s I A BC) Bs

    e ( ) S( ) r ( )t s s s

    1x [A BC]x Br C(s I A BC) B I re C x I r e

    1S( ) C(s I A BC) B Is

  • Nano System Control Lab.Chosun University 245

    • can analyze given MIMO design

    • can’t design compensator

    − Nyquist diagram does not help !

    − Eigenstructure assignment ; Standard form

    • How about applying SISO methods ?

    1r

    rm

    1u

    u m

    MIMOG( )sm m

    1y

    y m

    11K

    K mm

    K ( )s

    So far , Discussion ;

  • Nano System Control Lab.Chosun University 246

    • Dumb way

    - Set Design

    - Set Design

    (1) Must decide which control for which output.

    For TITO

    1 11 1 12 2y ( ) g ( ) u ( ) g ( ) u ( )s s s s s

    2 21 1 22 2y ( ) g ( ) u ( ) g ( ) u ( )s s s s s

    12g ( ) 0s

    21g ( ) 0s 11K ( )s

    22K ( )sWatch out for

    stability of TITO

    • Closing the loop one at a time.

  • Nano System Control Lab.Chosun University 247

    • Sensible way

    Close Loop #2, first

    2r ( )s e( )s 2u ( )s

    2y ( )s22K ( )s 22g ( )s

    21g ( )s

    1u ( )s

    − Ignore Design 21g ( )s 22K ( )s

    2u ( ) ;s 2 22 2u K e 22 2 22 21 1 22 2K r K (g u g u )

    22 22 2 22 2 22 21 1(1 K g )u K r K g u

    22 22 212 2 1

    22 22 22 22

    K K gu ( ) r u1 K g 1 K g

    s 2 2 2 21 1

    h ( ) r h ( )g ( ) us s s

  • Nano System Control Lab.Chosun University 248

    Impact on closed – loop #1

    1 11 1 12 2y g ( ) u g ( ) us s 11 1 12 2 2 2 21 1g ( ) u g (h r h g u )s

    11 12 2 21 1 12 2 2[g g h g ]u g h r

    First Loop

    1r ( )s 1e ( )s 1u ( )s

    1y ( )s11K ( )s 11f ( )s

    12 2g h

    2r ( )s

    Design for

    − Good command following

    − Good dist. rej. of

    11K ( )s

    12 2g h

    11 1 12 2 2f u g h r

  • Nano System Control Lab.Chosun University 249

    1K

    2K

    1r

    2r

    1u

    2u

    1y

    2y

    G

    d irec t con tro l

    Interaction of control Loops and the Relative Gain Array (RGA) (E. Bristol, 1966)

    − Tool for Static loop interaction analysis

    • Cannot design each loop separately

    • MIMO Loop should be stable

    Which is the “best” coupling 1 1 1 22 2 2 1

    y u y uor

    y u y u

    ind irec t con tro l

  • Nano System Control Lab.Chosun University 250

    RGA analysis (Relative Gain Array)

    Step 1 : static gain between

    (other loop gain)

    1 1y & u

    1u

    2u 0

    1y

    2y2

    1

    1 u 0

    yu

  • Nano System Control Lab.Chosun University 251

    Step 2 : static gain between

    (other loop closed )

    1 2y & u

    1u

    2u

    1y

    2y 02r2K

    2

    1

    1 y 0

    yu

    2

    2

    1 1 u 011

    1 1 y 0

    ( y u )( y u )

    1 1( y & u )forRelative gain

    Relative gain Array :11 12

    21 22

  • Nano System Control Lab.Chosun University 252

    e.g. (=exempli gratia)

    1 11 1 12 2y g u g u

    2 21 1 22 2y g u g u 1

    2 22 21 1u g g u 2( y 0)for

    11 11 12 22 21 1y g g g g u

    11 11 2211 1

    11 12 22 21 11 22 12 21

    g g gg g g g g g g g

    11 12 1

    21

    1

    g g gg

    G

    g g

    n

    n nn

    u 0;

    y 0;

    ( y u )( y u )

    k

    k

    i j k jij

    i j k i

  • Nano System Control Lab.Chosun University 253

    Note :

    u 0;( y u ) g [G]ki j k j ij ij

    1y 0;

    y 0;

    1 ( u y ) [G ]( y u ) k

    k

    j i k i jii j k i

    T 1G (0) (G (0) )ij ij ij 0RGA evaluated at s

    TITO case

    11 2211

    11 22 12 21

    g gg g g g

    , y G u

    • For Static Interaction (s=0)

    11 12 21: 1 g g 0 '' ''complete decoupling1 00 1

  • Nano System Control Lab.Chosun University 254

    • Properties of RGA

    1.1 1

    1n n

    ij ijj i

    11 0

    11 1

    11 22g g 0

    11 22g g 0

    11 22 12 21g g g g

    '' ''bad decoupling

    11 2211

    11 22 12 21

    g gg g g g

    '' ''holding effect 11 121 , 0

    11 0 '' ''wrong direction

  • Nano System Control Lab.Chosun University 255

    e.g.

    1 11 0.1 1G

    0.2 0.80.5 1 1

    s s

    s s

    T 111 11 111G (0) (G (0) ) 0.8

    1.25

    0.8 0.20.2 0.8

    1 1 1 2

    2 2 2 1

    y u y uy u y u

    or

    21 1 u ( ) 0 11[ y ( ) u ( ) ] g ( )ss s s

    2

    11 1 y ( ) 0 11 12 22 21[ y ( ) u ( ) ] g g g gss s

    This condition is impossible for holding

  • Nano System Control Lab.Chosun University 256

    Property

    2. RGA is invariant under input or output scaling

    RGA (G(0) ) If

    1 2RGA ( G (0) )S S

    Then

    3. If G is diagonal or triangular

    Then I

  • Nano System Control Lab.Chosun University 257

    Relative Gain

    SISO yMIMO y

    i

    i

    Normal measure output responseof decoupling output response

    0 cross coupled

    1 completely decoupled

    with all the output = 0

    0y 0 r

    0

    11 12

    21 22

    g gG

    g g

    ;

  • Nano System Control Lab.Chosun University 258

    Nominal Stability & RGA

    r

    yk Is

    K( )s G( )s

    T ( ) G ( )K ( )s s s

    Thm 1. Iff det[T (0) ] 0

    Then is integrally stabilizableT( )s

    RGA[G (0) ]

  • Nano System Control Lab.Chosun University 259

    Thm 2. If some of at least one of the following is true.

    (a) MIMO C.L. is unstable.

    (b) Loop is unstable with all the other loops open.

    (c) MIMO C.L. is unstable even with loops open.

    0,ii

    ithi

    If for all0,ii 1, ,i n

    Then MIMO C.L. system is stabilizable.

  • Nano System Control Lab.Chosun University 260

    Sensitivity to Modeling Error

    be actual static gain matrix.

    be nominal static gain matrix.

    G (0)A

    G (0)N

    condition

    1

    G (0) G (0) 1 1G (0) [G ]G G

    A N

    N NN N

    max min[ ] [ ] [ ]N N NG G G

    1* min 2max ,

  • Nano System Control Lab.Chosun University 261

    Regulator Design

    Nominal Plant Dynamic

    x ( ) A x ( ) Bu ( ) : y ( ) C x( )t t t t t

    Feedback Law

    u ( ) G x( ) 0t t : r ( ) 0t

  • Nano System Control Lab.Chosun University 262

    o

    B 1(sI A) G

    C

    u ( )s

    Gyy( )t

    B 1( sI A )

    Gr

    y( )t

    x r

    u

    x ( )t

    y( )t

    G x ( )t

    y( )x ( )

    x ( )r

    tt

    t

    yu ( ) G y G xr rt

    o

  • Nano System Control Lab.Chosun University 263

    • Linear Quadratic Regulator (LQR) Problem ( R. E. Kalman )

    − How do we obtain the value of ?G

    Optimal Control Problem

    T T

    0[ x ( )Q x( ) u ( )R u( ) ]t t t t dt

    : minimize

    x ( ) A x( ) Bu( )t t t

    - Symmetric & Positive definite, real & positive Eigenvalues.

    Optimal Control - Find that minimizes

    constrained to x ( ) A x( ) Bu( )t t t Ju ( )t

    Q, R

    J

    Q = min. state size , R = min. control size

    J

  • Nano System Control Lab.Chosun University 264

    • LQR Solution

    − There exists a unique solution which can be realized in

    feedback form, assuming full state feedback.

    Feedback Law u ( ) G x ( )t t

    LQR1 TG R B K

    Where is matrix

    − symmetric & positive semidefinite

    − solution of CARE ( Control Algebraic Riccati Equation )

    K n n

    T 1 T0 K A A K Q K BR B K

    Re (A BG ) 0i A, B : GivenQ, R : Design

  • Nano System Control Lab.Chosun University 265

    • LQR Variant 1

    − Cross - Coupled cost functional

    T T T

    0[ x Q x 2 x Su u R u ]J dt

    control u G x TQ S

    MS R

    1 T TG R [S B K ]

    is solution of CAREK

    T 1 T T0 K A A K Q [K B S]R [B K S ]

    Guarantee : Re[ (A BG )] 0i : Nominal stability

    , : positive semi-definite

  • Nano System Control Lab.Chosun University 266

    • LQR Variant 2

    − Exponential weighting

    T T

    0[ x Q x u R u ]J ate dt

    0a j

    0

    a

  • Nano System Control Lab.Chosun University 267

    Control : u G x 1 TG R B K

    where is solution of CARE K

    T 1 T0 K A I A I K Q K B R B Ka a

    • LQR problem

    x A x Bu

    Control : u G x 1 TG R B K

    T T[ x Q x u R u ]J fi

    t

    tdt

    is a solution of CARE K

    T 1 T0 Q KA A K KBR B K

  • Nano System Control Lab.Chosun University 268

    • Optimal Control – LQR Problem

    minimize V L( x , x , )fi

    t

    tt dt

    L( x , x , )t is continuous to second partial

    ˆ ˆV x ( ) V x ( ) x x xt t for

    Find forV x ( )t

    V V(x x ) V(x)

    22

    2x( ) x( )

    V 1 VV(x) x x V(x)x 2! xt t

    21V V ;2!

    V

    first ordervariation of

    x( )

    VVx t

    x

  • Nano System Control Lab.Chosun University 269

    • Differential Calculus

    x x 0 0as t

    x 0dx dxtdt dt

    .cond for extremum

    2 2

    2 2max 0 , min 0d x d xif ifdt dt

    • Variational Calculus

    V 0 x 0as

    x( )

    VV V xx t

  • Nano System Control Lab.Chosun University 270

    x( )

    V 0x t

    .cond for extremum

    2

    2x( )

    Vmax 0x t

    if

    2

    2x( )

    Vmin 0x t

    if

    V L( x , x , )fi

    t

    tt dt

    V L( x x , x x , ) L ( x , x , )fi

    t

    tt t dt

    L LV x xx x

    f

    i

    t

    tdt

  • Nano System Control Lab.Chosun University 271

    ˆx x x

    ˆ( x ) x x xd d ddt dt dt

    ( x ) xd dt

    Second term of V

    L Lx x xx x x

    ff f

    i ii

    tt t

    t tt

    d Ldt dtdt

    L L LV x xx x x

    ff

    ii

    tt

    tt

    d dtdt

    Boundary Condition

  • Nano System Control Lab.Chosun University 272

    Necessary condition

    L L 0x x

    ddt

    Euler equation

    comment

    If L L( x , u )

    and are independent x , u Apply Euler eq. directly

    and are dynamically constrained by x , u

    x ( x , u , )f t

    − change to incorporate the constraint

    Lagrange Multiplier

    L

  • Nano System Control Lab.Chosun University 273

    Example : maximize area of rectangle with fixed parameter

    b

    l

    ,a l b 2 2p l b constraint

    ( 2 2 )c l b l b p

    2 0c bl

    2 0c lb

    2b 2l ,,

    2 2 0

    4 4

    8

    c l b p

    pp

    ① ② ③

    from ① , ② b l

    ③ ① ②, ,4 4p pl b

    , ,

  • Nano System Control Lab.Chosun University 274

    Method of Pontryagin

    min J L( x , u , )fi

    t

    tt dt

    subject to constraint x ( x , u , ) 0f t

    create TJ* L( x , u , ) p ( ) ( x )fi

    t

    tt t f dt

    p ( )t Vector of Lagrange multiplier 1n

    Design Parameter

    p ( ) K x ( )t t 1n ( ) ( 1)n n n

  • Nano System Control Lab.Chosun University 275

    • Resulting Euler Eq.

    T Tx : [L p ( x ) ] L p ( x ) 0x x

    f ft

    define TH L p f • Hamiltonian control

    • State function of Pontryagin

    TH p x 0x xddt

    ② TH px

  • Nano System Control Lab.Chosun University 276

    T Tu : L p ( x ) L p ( x ) 0u u

    df fdt

    ④H 0u

    LQR

    T TL x Q x u R u , A x Buf

    T T TH x Q x u R u p (A x Bu )

    ②⑤

    ④⑤

    T T 1 Tu R p B 0 : u R B p

    0

    Tp Q x A p T T Tx Q p A p :

  • Nano System Control Lab.Chosun University 277

    p ( ) K x ( )t t

    Tp ( ) K x K x Q x A pt

    TK (A x Bu ) K x Q x A p

    1 T TK A x K B( R B p) K x Q x A p

    T 1 TK x Q x A K x K A x K BR B K x

    T 1 TK Q A K K A K BR B K

    '' . ''general eq of CARE

    K : const. gain matrix ; K 0

    p K x

  • Nano System Control Lab.Chosun University 278

    Example

    1) 1st Order

    x x ua 2 2

    0

    x uJx um m

    dt

    '' ''Bryson Method

    2

    1Qxm

    21R

    um

    when max. des. value for xm x

    max. des. value for um u

    CARE

    T 1 T0 K A A K Q K BR B K

    2 22

    10 2 K K uxm m

    a

    ,

    ,

  • Nano System Control Lab.Chosun University 279

    2 2ux

    2

    ( )K

    u

    mm

    m

    a a

    positive

    Finally 1 TG R B K

    2 2ux( )m ma a

    Closed – Loop system

    2 2uxx (A BG ) x ( ) xm ma

    x ( ) x (0) tt e

    If unstable open-loop poles 0 ,a

    2G a '' ''Expensive Control

    0

  • Nano System Control Lab.Chosun University 280

    2) 2nd Order

    1 2x x x ua a

    2 2 2

    0

    x x uJx x um m m

    dt

    '' ''Bryson Method

    21

    2

    1 0x

    Q10

    x

    m

    mn

    n n

    21

    2

    1 0u

    R10

    u

    m

    mm

    m m

  • Nano System Control Lab.Chosun University 281

    Normalizing

    2 2 2 2

    0u J x x um P R dt

    where 2ux

    mP

    m

    2ux

    mR

    m

    After Some Algebra

    x xx

    u G Gx

    2x 2 2G Pa a

    2 2x 1 1 2 2G 2( )R Pa a a a

    ,

  • Nano System Control Lab.Chosun University 282

    Closed – Loop : x (A BG ) x

    20 0x 2 x x 0

    12 4

    0 2( )Pa 2

    1 22

    2

    21 22

    R

    P

    a aa

    If is fixed , R P 2

    2

    If is fixed , P R

    ( )a ( )c( )b

    ,

    0 0 0

  • Nano System Control Lab.Chosun University 283

    Summary

    x A x Bu State Dynamics

    T T

    0J ( x Q x u R u )dt

    LQR Solution

    u G x State feedback

    -1 TG R B K : K T 1 T0 K A A K Q K BR B K

    ; cost function

  • Nano System Control Lab.Chosun University 284

    o

    B1( I A)s

    G( )s

    1LQT ( ) G (s I A) Bs

    Loop TFM

    Sensitivity TFM

    Closed - Loop TFM

    1

    LQ LQS ( ) I T ( )s s

    1

    LQ LQ LQC ( ) I T ( ) T ( )s s s

  • Nano System Control Lab.Chosun University 285

    o

    B G( )s

    E

    Stability Robustness

    1

    max min LQ[E ( ) ] [ I T ( ) ]j j

    or

    max LQ max[C ( ) ] 1 [E ( ) ]j j

  • Nano System Control Lab.Chosun University 286

    KFDE ( Kalman Freq. Domain Equality )

    From T T 1 T0 K A A K N N K BR B K

    After extensive algebra manipulate

    T TLQ LQI T ( ) R I T ( ) R N ( )B N ( )Bs s s s KFDE

    R I , 0

    T TLQ LQ1KFDE : I T ( ) I T ( ) I N ( )B N ( )Bs s s s

    Freq. Domain s j

    2LQ1I T ( ) 1 N ( )Bi ij j

    − Important for synthesis

    design parameter , N

    T; N N Q

  • Nano System Control Lab.Chosun University 287

    If 1

    Then , 21 11 N ( )B N ( )Bi ij j

    LQ 1T ( ) N ( )Bi ij j

    Small , large ( loop gain )

    good C.F. , Disturbance Reduction.

    LQT ( )i j

    For Low Frequency Approximation

    1( ) (s I A )s

    s 0 1(0) A

    At DC ( 0)

    1LQ 1T (0) N A Bi i

    : cheap control

  • Nano System Control Lab.Chosun University 288

    For identical SV at DC

    1NA B I

    1T 1 TN B A B B

    1T TN B B B A or

    LQ 1T (0)i

    1

  • Nano System Control Lab.Chosun University 289

    KFDE

    2LQ1I T ( ) 1 N ( )Bi ij j

    For 1

    LQ1T ( ) N ( )Bi ij j

    (1) Low Frequency

    T 1 TLQ

    1T ( ) N (B B) B Ai j

    (2) High Frequency

    1( ) I Aj j

    For 1( ) Ijj

    ,

    ,

  • Nano System Control Lab.Chosun University 290

    KFDE

    LQ1T ( ) N ( )Bi ij j

    1 N Bi

    20dbdec

    maxc

  • Nano System Control Lab.Chosun University 291

    Design

    want T 1 TNB I N (B B) B

    To estimate maxc

    max maxT ( ) 1cj

    LQ1T ( )i j

    (0 )db

    max1 11 c

  • Nano System Control Lab.Chosun University 292

    Summary

    (1) Cheap control ( 0)

    − Control weighting is negligible compared to state weighting

    High gain , High bandwidth

    Main Result

    If is minimum phaseN ( )Bs

    Then 0

    lim G W N

    T1G B K

    TW W I orthonorm alsquare m atrix

  • Nano System Control Lab.Chosun University 293

    (2) Expensive control

    − Control weighting is huge compared to state weighting

    Low gain , Low bandwidth

    Main Result

    If is stable

    Then lim G 0

    A

    ( )

  • Nano System Control Lab.Chosun University 294

    Disturbance rejection in LQR Design

    System : x A x Bu ; y C x

    T T T T T

    0 0J y y u u x C C x u udt dt

    1LQS ( ) I G ( )Bs s

    As 0 1

    LQS ( ) I G ( )Bs s

    1I WC ( )Bs

    0 LQ; : S ( ) 0in cheap control s

    0 0

    W C

  • Nano System Control Lab.Chosun University 295

    Ex )

    o

    u( )t

    y( )t

    u( )t

    d( )t

    x x ( )tB

    L

    A

    C

    G

    CL Dynamics

    x (A BG) x Ld( ) : y C x ( )t t

  • Nano System Control Lab.Chosun University 296

    y( ) S d( )ds s

    1S ( ) C(s I A BG ) Ld s

    For good distur. rejection

    max S ( ) 1d s

    As ( cheap control ) 0

    1 1S ( ) C( ( ) BG) Ld s s

    1 1C( ( ) B G) Ls

    1C(BWC) L

    0

    W C

  • Nano System Control Lab.Chosun University 297

    • LQ – Servo − How to adapt LQR based design to do command following

    u G x r

    • LQR − Full state Feedback

    C

    B G( )so

    d ( )s r ( )s

    y( )s e( )s

  • Nano System Control Lab.Chosun University 298

    If output is part of the states

    B ( )su ( )s

    y p

    x r

    x ( )t entire state

    System

    x A x Bu

    y C x ( )p p t

    x ( ) D x ( )r Pt t

    ( )C Ip m m m n mO

    ( ) ( ) ( )D Ip n m m n m n mO

    ,

    ,

  • Nano System Control Lab.Chosun University 299

    • Mod. LQR

    y( )to G y B ( )s

    Gr

    y px r

    u ( ) G y G xy p r rt

    x A BG C BG D xy p r p CL :

  • Nano System Control Lab.Chosun University 300

    • LQ - Servo ( Definition )

    e( )tr ( )tG y B ( )s

    Gr

    y px r

    d

    y

    Loop TFM , for LQ - Servo T ( )s

    1T ( ) C (s I A BG D ) BGp r p ys

    1LQT ( ) G (s I A ) Bs

    LQT ( ) T ( )s s

  • Nano System Control Lab.Chosun University 301

    LTR ( Loop Transfer Recovery ) Method

    K ( )s G ( )sr ( )s

    e( )s u ( )s y( )s

    compensator plant

    H C( )sr ( )s

    e( )s

    y( )s

    ( )with Filter Loop Tagret Loop

  • Nano System Control Lab.Chosun University 302

    MBC ( Model – Based Compensator )

    Plant : 1G ( ) C(s I A ) B C ( )Bs s

    MBC : 1K ( ) G (s I A BG HC) Hs

    Where Control gain matrixG u G z

    x : x A x Bu

    z : z A BG HC z H e

    u G z

    : y C x

    : y re

    H Filter gain matrix n m

    m n

  • Nano System Control Lab.Chosun University 303

    Block Diagram

    r ( )sI H ( )s

    C

    B

    G B ( )s C

    z ( )su( )s

    y( )s

    K ( )s

    G ( )s

    xx

    x x zc

    2 1n

    A BG BG 0: x x r

    0 A HC Hc c

    y C 0 xcAc

  • Nano System Control Lab.Chosun University 304

    det ( I A ) det ( I A BG ) det ( I A HC)c

    triangular matrix

    ※ Nominal stability

    Re (A BG ) 0i all i

    Re (A HC) 0i all i

    Loop TFM

    11T ( ) G ( )K ( ) C ( )BG ( ) BG HC Hs s s s s

    C ( )Hs

    I

  • Nano System Control Lab.Chosun University 305

    Step. 1.

    Fix Filter matrix H s.t.

    Re [A HC] 0 ,i i

    C ( )Hs

    Step. 2.

    Apply cheap control of LQR

    Re [A BG ] 0i

    T

    0lim G W C ; W W I

    • Desired Loop TFM

  • Nano System Control Lab.Chosun University 306

    C ( )Hs

    Main Result ( LTR )

    As 0 , T( ) C ( )Hs s : Target Loop

    r ( )s y ( )s

    r ( )s y ( )s

    Hdetermine

    K ( )s G ( )s

  • Nano System Control Lab.Chosun University 307

    What is happening ?

    The LTR causes the MBC based design to cancel

    the dynamics of the plant , and substitute

    the Filter ( Target ) Loop dynamics.

    − example of inverting the plant in a stable manner.

    Observ.

    (1) Some poles of must cancel zeros of

    the rest of the poles must be very “fast”.

    (2) Zeros of must be zeros of Target loop,

    (3) and has same poles.

    G ( )s

    G ( )sK ( )s

    K ( )s C ( )H.s

    C ( )Hs C ( )Bs

  • Nano System Control Lab.Chosun University 308

    References

    '' '' , ,Dynamics of physical system Cannon HcGraw Hill

    '' '' ,Linear system Fundamentals Reid

    '' ; '' , &system Dynamics A unified Approach Karnopp Rosenberg