k-meter survey system lidar data jennifer prentice dave allocca tom curran brian concannon alan laux...

12
K-meter Survey System Lidar Data Jennifer Prentice Dave Allocca Tom Curran Brian Concannon Alan Laux Go forth and collect data EO and Special Mission Sensors Div AIR-4.5.6 Bldg. 2185 Suite 1100 22347 Cedar Point Road Patuxent River, MD 20670-1161 301-342-2025 [email protected] Mike Contarino

Post on 19-Dec-2015

219 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: K-meter Survey System Lidar Data Jennifer Prentice Dave Allocca Tom Curran Brian Concannon Alan Laux Go forth and collect data EO and Special Mission Sensors

K-meter Survey SystemLidar Data

Jennifer Prentice

Dave AlloccaTom Curran

Brian ConcannonAlan Laux

Go forth and collect data

EO and Special Mission Sensors DivAIR-4.5.6 Bldg. 2185 Suite 110022347 Cedar Point RoadPatuxent River, MD [email protected]

Mike Contarino

Page 2: K-meter Survey System Lidar Data Jennifer Prentice Dave Allocca Tom Curran Brian Concannon Alan Laux Go forth and collect data EO and Special Mission Sensors

What is ksys?

Ret

urne

d O

ptic

al S

igna

l

Time = Depth

H2OAir

Returned optical power vs. depth is a function of : - system parameters - water IOP’s

• System Attenuation Coefficient• An apparent optical property• Water Clarity

P(d) = AP0 e

-2Ksys d

(n h + d)2

Po, FOV, Div

a, b, c, , n

h

d

Where :A includes system parameter effects, air-water transmission and Po = transmitted powerh = height above surfacen = water index of refractiond = water depth

Page 3: K-meter Survey System Lidar Data Jennifer Prentice Dave Allocca Tom Curran Brian Concannon Alan Laux Go forth and collect data EO and Special Mission Sensors

ksys cLoss is due to a and b

ksys kdKrumboltz

Wide DivNarrow FOV

Wide DivWide FOV

Pencil BeamWide FOV

Three Simple Lidar Cases

ksys aLoss is due to a

Page 4: K-meter Survey System Lidar Data Jennifer Prentice Dave Allocca Tom Curran Brian Concannon Alan Laux Go forth and collect data EO and Special Mission Sensors

Adjustable Iris

PMT

1nm Interference Filter

1nm Interference Filter

Adjustable IrisPMT

Window

LASER

Attenuator

Steering Mirrors

Divergence Lens

.25” AperturePentium IVComputerw ith:GPSDigitizersPitch & Roll

Receiver Lens

Receiver Lens

Adjustable Iris

PMT

1nm Interference Filter

1nm Interference Filter

Adjustable IrisPMT

Window

LASER

Attenuator

Steering Mirrors

Divergence Lens

.25” AperturePentium IVComputerw ith:GPSDigitizersPitch & Roll

Receiver Lens

Receiver Lens

Shipboard System Design Specs:

Div = 3o, CH 1 FOV = 10o, CH 2 FOV = 4o

Dual Independent 4” x 4”, ND of 2.6 to 4Output Power: 100mJ @ 532 nm8nS Pulse Width100Mhz Analog Bandwidth8 bit, 1 GSPS Dual DigitizersPMT Photo Detectors with 10% QEInterference Filters with 4 nm Bandwidth

Shipboard KSS Optical Layout

K-Meter Survey System (KSS)

CH 2

CH 1

Page 5: K-meter Survey System Lidar Data Jennifer Prentice Dave Allocca Tom Curran Brian Concannon Alan Laux Go forth and collect data EO and Special Mission Sensors

0 5 10 15 20 25 30

Depth (m)

LO

G(v

olt

s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ks

ys (

/m)

Clean Return

Dirty Return

Clean Ksys

Dirty Ksys

CleanEnroute Sta 2 - 3

DirtySta 13

Lidar Signals for Different Water Types

Page 6: K-meter Survey System Lidar Data Jennifer Prentice Dave Allocca Tom Curran Brian Concannon Alan Laux Go forth and collect data EO and Special Mission Sensors

Comparison of Lidar and In-situ Profile DataShallow Mixed Layer at Station 10

Page 7: K-meter Survey System Lidar Data Jennifer Prentice Dave Allocca Tom Curran Brian Concannon Alan Laux Go forth and collect data EO and Special Mission Sensors

HyCODE 2001 – NAVAIR Station Locations

25,000 Ksys Waveforms Collected On Station and In Transit July 22-25

Typical Sample=

40 waveforms

Waveforms processed to yield an average Ksys point measurement for a given depth range

e.g. (1-15 m)

Page 8: K-meter Survey System Lidar Data Jennifer Prentice Dave Allocca Tom Curran Brian Concannon Alan Laux Go forth and collect data EO and Special Mission Sensors

KSS Transect Data, Stations 2 to 10>500 Ksys Samples

0.170

0.220

0.270

0.320

-73.4 -73.2 -73 -72.8 -72.6 -72.4 -72.2 -72 -71.8 -71.6 -71.4 -71.2

Longitude (deg)

c (

/m)

0.050

0.057

0.064

0.071

a (

/m)

c(532) [Pegau slowdrop]

a(532) [Pegau slowdrop]

0.050

0.100

0.150

0.200

0.250

0.300

Ksy

s (

/m)

Ave. Ksys CH1

Ave Ksys Ch2

Sta Num

34567 28910

CH 2Narrow FOV

CH 1Wide FOV

Page 9: K-meter Survey System Lidar Data Jennifer Prentice Dave Allocca Tom Curran Brian Concannon Alan Laux Go forth and collect data EO and Special Mission Sensors

y = 5.159x - 0.4685

y = 0.4434x - 0.0034

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

2.000

0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.500

Ksys (/m)

a,

c (

/m)

a(532)

c(532)

Ksys vs c

Ksys vs a

A Quick Look at Ksys vs. a(532) and c(532)(Pegau, SLOWDROP Profiler)

Page 10: K-meter Survey System Lidar Data Jennifer Prentice Dave Allocca Tom Curran Brian Concannon Alan Laux Go forth and collect data EO and Special Mission Sensors

Dr. E. Zege Analytical Lidar Model - KSS-2

Page 11: K-meter Survey System Lidar Data Jennifer Prentice Dave Allocca Tom Curran Brian Concannon Alan Laux Go forth and collect data EO and Special Mission Sensors

Future Work

Science Missions :•Validate the model using in-situ dataSolving the forward problem (IOP inputs gives lidar waveform)

•Reverse problemCan a unique set of IOP’s be derived from a single lidar measurement ?

•Detect, identify and monitor shallow water column structuresFor example: plankton and particle scattering layers

Navy Mission :•Sensor performance predictions (ALMDS = AES1)Generate global maps of water clarity versus season

•Mixed layer detection and mapping

Page 12: K-meter Survey System Lidar Data Jennifer Prentice Dave Allocca Tom Curran Brian Concannon Alan Laux Go forth and collect data EO and Special Mission Sensors

Krumboltz REFERENCE1. H. Krumboltz, “Experimental Investigation of System Attenuation Coefficient for HALS”,,Report No

NADCS0035-30 prepared for Defense Mapping Agency, August 1979.

Zege REFERENCES1. E.P. Zege, A.P. Ivanov, and I.L. Katsev, Image Transfer through a Scattering Medium (Springer- Verlag,

Heidelberg, 1991). 349p.

2. I.L. Katsev, E.P. Zege, A.S. Prikhach, and I.N. Polonsky, “Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems”, JOSA A., 14, 1338-1346, (1997).

3. E.P. Zege, I.L. Katsev, and I.N. Polonsky, “Analytical solution to LIDAR return signals from clouds with regard to multiple scattering”, Appl. Phys., B60, 345-353, (1995).

4. E.P. Zege, I.L. Katsev, and I.N. Polonsky, “Effects of Multiple Scattering in Laser Sounding of a Stratified Scattering Medium. 1. General Theory”, Izv., Atmos. Oceanic Phys., 34, N1, 36-40, (1998).

References