izumi nakai - spring-8cheiron2008.spring8.or.jp/lec_text/oct.5/2008_i.nakai.pdfmeasurement time : 1...

101
X-ray fluorescence analysis Tokyo University of Science Department of Applied Chemistry Izumi NAKAI

Upload: others

Post on 22-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • X-ray fluorescence analysis

    Tokyo University of ScienceDepartment of Applied Chemistry

    Izumi NAKAI

  • 反跳電子

    散乱 X 線弾性散乱 (コンプトン非弾性散乱 (トムソン

    透過 X 線 (吸収)

    蛍光 X 線

    光電子,オージェ電子

    入射 X 線

    Interaction of X-ray with matter

    トムソン

    コンプトン

    X-ray

    Heat

    PhotoelectronAuger electron

    Fluorescent X-ray

    Transmitted X-ray(Absorption)

    Scattered electron

    Scattered X-rayThomsonCompton

    sample

  • (AES)

    (XRD)

    TransmittedX-ray

    (XPS)

    (XRF)

    Interaction of X-ray with matter and X-ray analysis

    sample

    Photoelectron

    Auger electron

    Comptonscattering

    Thomsonscattering

    FluorescentX-ray

    (XAFS)

    Absorption

    Scattering

    Photoelectroneffect

  • E=hc/λ = 12.398/λ [keV],

    λ = long

    Energy = low

    Wavelength λ

    Relationship between λ and E

    ex. 1Å= 12.398keV

    Particle :energy E [keV]

    Wave : wavelength λ[Å]

    λ = short

    Energy = high

  • 光電子

    入射 X 線(E)

    蛍光 X 線(ΔE) (Kα線)

    Mα EbK

    EbK < E

    原子核

    空孔

    電子

    Kα1

    N

    ML

    K

    Kα2

    Bohr model and emission of X-ray fluorescence

    X-ray energy E > Binding energy Eb

    photoelectron

    Fluorescence X-ray Kα

    X-ray energy E

    core

    electron

    vacancy

  • Principle of X-ray fluorescence (XRF) analysis

    Energy ΔE characteristic to each elementQualitative analysis

    Quantitative analysis

    Intensity number of X-ray photons → concentration

  • 0

    500

    1000

    0 20 40 60 80X-ray energy (keV)

    Inte

    nsity

    (Cou

    nts/

    1000

    sec)

    Ca

    Bi

    Pb Kα1,2

    ReKβ

    W Kβ

    Ta Kβ

    Hf Kβ

    Re Kα, Lu Kβ

    W

    Lu

    Yb

    Er

    Ta

    Tm

    Hf

    Ho

    Gd

    Dy

    Tb

    Sm

    LaNd Eu

    CePr

    Ba

    Cs

    Cd

    SnIn

    Ag

    Sb

    Te

    U Lβ, Mo KαNb Kβ

    Nb Kα

    Y KαZr KαTh Lβ

    Pb Lα Pb LβBi Lα

    Th Lα

    U LαSr Kα

    XRF spectrum of NIST SRM612 glass

  • XRF analysis

    (a) Wavelength dispersive spectroscopy

    (b) EDS Energy dispersive spectroscopy

    (a) WDS

    (b) EDS

    試料

    (a) (b)

    面間隔 d

    分光結晶

    試料試料

    (a) (b)

    面間隔 d

    分光結晶Analyzing crystald-spacing

    ©http://www.postech.ac.kr/dept/mse/axal/index.html

  • Bragg condition nλ=2dsinθ

    Principle of analyzing crystal

  • ©http://www.postech.ac.kr/dept/mse/axal/index.html

  • Principle of Si(Li) detector → a reverse-biased silicon diode.

    Si(Li) detector electron-hole pair 3.85eVex. Fe Kα 6.400keV 6400/3.85=1662 pairs

    Bias voltage(-500V) cause current flow. The charge collected at the anode is converted to a voltage by an amplifier. This results in a voltage pulse that is proportional to the number of pairs created and thus to the incident X-ray energy. The resolution is determined by the energy required to create an electron-hole pair (3.8 eV).

    X-ray

    Be window

    Pre Amp.

  • Slides made by Prof. A. Iida (PF)

    ©A.Iida(PF)

  • Characteristics of SR-XRF( X-ray fluorescence analysis)

  • ©A.Iida(PF)

  • ©A.Iida(PF)

  • ©A.Iida(PF)

  • (1)High Brilliance Source

  • ©A.Iida(PF)

  • ©A.Iida(PF)

  • ©K. Sakurai(NIMS)

  • ©K. Sakurai(NIMS)

  • ©K.Sakurai(NIMS)

    (a) Crytal monochormator

    World record of MDL by total reflection SR-XRF

    (b)XRF spectrum of 0.1ml Ni(1ng/g)solution (20s/point)

    C: Ge(220)Johansson type

    D:YAP:Ce scintillation counter

    3.1x10-16g= 0.31fg3.1ppt(pg/g) 3x106atom

  • 6000 6500 7000 7500101

    102

    103

    104

    105

    106

    100

    101

    102

    103

    104

    105

    Mn Fe Co Ni Nd Gd Sm Tbapple 54 83 0.09 0.91 17 3 3 0.4tomato 246 83 0.09 0.91 - 0.17 3 0.4

    NIST 1573a Tomato Leaves (left axis) NIST 1515 Apple Leaves (right axis)

    CoK

    β 1

    NiK

    α 1

    NiK

    α 2

    GdL

    β 2

    FeK

    β 1

    CoK

    α 1

    GdL

    β 1

    NdL

    γ 1

    MnK

    β 1Fe

    Kα 1

    FeK

    α 2

    SmLβ

    1

    NdL

    β 2

    GdL

    α 1

    MnK

    α 1

    MnK

    α 2

    X-R

    ay In

    tens

    ity [c

    ount

    s]

    Energy [eV]

    μg/gmg/kg

    MDL(Mn)39.7ppb

    MDL(Mn) 0.22ppm

    MDL(Fe) 31.5ppb

    MDL(Fe) 0.48 ppm

    MDL(Co) 3.27ppb

    MDL(Ni) 38.4ppb

    MDL(Co) 2.51ppb

    MDL(Ni) 4.64ppb

    Typical XRF Spectra Obtained by R=100 SpectrometerTypical XRF Spectra Obtained by R=100 SpectrometerTrace Metals in Apple and Tomato Leaves (NIST1573a and 1515)Trace Metals in Apple and Tomato Leaves (NIST1573a and 1515)

    1sec/point

    ©K. Sakurai(NIMS)

  • (2)parallel beam with small divergence

  • ©A.Iida(PF)

  • ©A.Iida(PF)

  • ©A.Iida(PF)

  • ©Y.Suzuki(2002)

    Beam profile at focal points made by FZP at 8keV

    Spring-8

  • Application of SR-XRF to in vivo analysis of biological sample

    Study of hyperaccumulator plants of As and Cd

  • Cd isolation

    -Cd

    Cd

    CdCd

    Cd

    Cd

    Cd

    Cd

    Cd

    Cd

    Contaminated soil

    Cd. ...

    .. ...

    Phytoremediation

    plant remediate

    Green technology by plantMerit:no damage,low cost

    preservation of surfaceetc…

    Element conc./ ppm plantAs 22,630 Pteris vittata L. (モエジマシダ)Cd 11,000 Athyrium yokoscense ( ヘビノネゴザ)Pb 34,500 Brassica juncea (カラシナ)*1 L. Q. Ma, et al., Nature, (2001) , 409, 579.

    *1

    Some specific kinds of plants are known to be heavy metal hyperaccumulator

    ash

    Phytoremediation is a technology that uses plants to remove, destroy, or sequester hazardous substances from the environment.

  • Phytoremediation

    As

    Arsenic Hyperaccumulator Pteris vitteta L.

    (モエジマシダ)

    Environmentally friendly low cost technique

    Key:Use of hyperaccumulator plantCd

    Cd Hyperaccumulator Arabidopsis halleri ssp.gemmifera(ハクサンハタザオ)

  • HM1: absorption of heavy metal

    HM HM

    HMHM

    HM3: accumulation

    HMHM

    HMHM

    2: transportation

    Hyperaccumulation

    HMHM

    HM

    HMHM

  • Application of SR X-ray analyses

    ・Two dimensional multi-elementnondestructive analysis in cell level→ μ-XRF imaging

    ・ in vivo chemical state analysis of metals in the plant

    → X-ray absorption fine structure (XAFS) analysis

    ・chemical state analysis in cell level→ μ-XANES

  • As hyperaccumulatorChinese brake fern (Pteris vittata L.)

    (As: ca. 22,000 μg /g dry weight)

    Arsenic distribution and speciation in an arsenic hyperaccumulator fern by X-ray spectrometry utilizing a synchrotron radiation sourceA. Hokura, R. Onuma, Y. Terada, N. Kitajima, T. Abe, H. Saito, S. Yoshida

    and I. NakaiJournal of Analytical Atomic Spectrometry, 21, 321-328 (2006)

  • pinna

    midrib of a frond5cm

    Life of fern

    spore

    prothalliumsporophyte

    fertilized

    200 μm

    30 μm

    Pteris vittata L.

    Fertile pinnafrond

  • Cultivation of fern

    arsenic-contaminated soil

    culture medium containing As(1 ppm 4days)

    As level*

    pinna:2800 - 4500 µg g-1drymidrib of a frond:84 - 250 µg /g dry

    As level in soil:481 µg g-1dry

    Term: ~3 weeks

    Average As level :~720 µg /gdry

    * Anal. By AAS

  • vertical slicer (Model HS-1, JASCO Co.)

    200μm thick

    Mylar film Plastic plate

    X-ray

    moist unwoven paper

    Sample preparation for microbeam analysis

    freeze dry of frozen

  • SPring-8 BL37XU

    detecor

    Sample on XYstageX-ray

    K-Bmirror

    XY slit (0.2 x 0.2 mm)Si 111 Monochromator

    XY slit (0.15 x 0.15 mm)K-B mirror

    Sample53 m

    In-vacuum undulator

    X-ray energyAs: 12.8keVCd: 37.0keV

    μ-XRF, μ-XANES

    Beam siz: ca. 1 μm

    - BEAMLINE DESCRIPTION -The light source : In-vacuum type undulator

    (Period length : 32 mm, the number of period : 140)Monochromator : Double-crystal monochromator

    located 43 m from the source

    fused quartzplatinum coated

    250 mm100 mm0.8 mrad

    12.8 keV37 keV[1]

    fused quartzplatinum coated

    100 mm 50 mm2.8 mrad

    MaterialSurfaceFocal length (1st mirror)

    (2nd mirror)Average glancing angle

    Table Details of focusing optics by K-B mirror

    - BEAMLINE DESCRIPTION -The light source : In-vacuum type undulator

    (Period length : 32 mm, the number of period : 140)Monochromator : Double-crystal monochromator

    located 43 m from the source

    fused quartzplatinum coated

    250 mm100 mm0.8 mrad

    12.8 keV37 keV[1]

    fused quartzplatinum coated

    100 mm 50 mm2.8 mrad

    MaterialSurfaceFocal length (1st mirror)

    (2nd mirror)Average glancing angle

    fused quartzplatinum coated

    250 mm100 mm0.8 mrad

    12.8 keV37 keV[1]

    fused quartzplatinum coated

    100 mm 50 mm2.8 mrad

    MaterialSurfaceFocal length (1st mirror)

    (2nd mirror)Average glancing angle

    Table Details of focusing optics by K-B mirror

  • Instrument ~Spring-8 BL37XU~

    SDDSample

    Acrylic plate (1 mm thick)

    X-ray

    検出器

  • KEK PF BL12CAs K-edge (11.863 keV)Si(111) double crystalFluorescence mode19elements-SSD

    in vivo XAFSX-ray

    SSD

    XAFS analysis

  • A section of pinna

    KAs

    frond

    X-ray Energy : 14.999 keVBeam size : 50 μm×50 μmStep number : 35 point×90 pointmeasurement time : 1 sec/point

    spore

    200μm

    high

    low

  • X-ray Energy : 12.8 keVBeam size : 1.5 μm ×1.5 μmExposure time : 0.2 sec. / pointPoint : 150 point ×150 point

    As

    11730

    0 Ca

    372

    0K

    425

    0

    Ca

    55

    0As

    5778

    0K

    475

    0

    X-ray Energy : 12.8 keVBeam size : 1.5 μm ×1.5 μmExposure time : 0.2 sec. / pointPoint : 150 point ×150 point M-XRF imaging at Spring-8

    As level is low at spore

  • (3)Energy tunability

    Chemical state analysisby Fluorescence -XAFS

  • ©A.Iida(PF)

  • 8.20 8.40 8.60 8.80 9.00 9.20

    Energy/keV

    Abs

    orba

    nce

    = ln

    (Io/

    I)

    ( arb

    itrar

    yXANES EXAFS

    Io I

    tμt = ln(Io/I)

    Eo

    sample

    XAFS

    Ni K-absorption edge Eo=Eb

    X-ray absorption spectrum of LiNiO2

    XANES: X-ray absorption near edge structureelectronic state, oxidation number

    EXAFS: Extended X-ray absorption fine structurelocal structure (atomic distance and coordination No.)

    If

  • μM = ΣμMiwi [2]

    μMi: μM of component i

    wi:weight% of component i

    X-ray absorption by sample

    I/Io = exp(-μt) = exp(-μM ρt) [1]

    μ:linear absorption coef.(cm-1)μM:mass absorption coef.(cm2/g)ρ:density of sample(g/cm3)

  • As K-edge XANES analysis

    11.85Energy /keV

    Frond TopFrond Base

    Midrib AMidrib B

    petiole

    soil H3AsO4(Ⅴ)

    As2O3(Ⅲ)

    Nor

    mal

    ized

    Inte

    nsity

    (a.u

    .)

    As2O3(III)

    Nor

    mal

    ized

    Inte

    nsity

    (a.u

    .)

    Frond

    Root (freeze dried)in vivo XANES of frondFrond Top

    Frond Base

    Midrib A上

    petiole

    Midrib B

    Energy / keV11.85 11.86 11.87 11.88

    Energy / keV11.85 11.86 11.87 11.88

    PF BL-12C

    ②③

    KH2AsO4(V)

    Root 先端

    基部

    1 cm

  • Summary

    ・We have established μ-XRF imaging technique utilizing SR to monitor time dependent process of arsenic transfer in a leaf tissue of hyperaccumulator fern.

    ・This study visually revealed for the first time that arsenic transferred from root to marginal part of leaf within 30min after feeding.

    ・Arsenic accumulated in the region of vascular bundle and transferred to paraphysis prior to sporangium.

  • Arabidopsis halleriCd and Zn hyper-accumulator

    and

    Cd in Rice

    Micro X-ray fluorescence imaging and micro X-ray absorption spectroscopy of cadmium hyper-accumulating plant, Arabidopsis halleri ssp. gemmifera, using high-energy synchrotron radiation

    Journal of Analytical Atomic Spectrometry, 23, 1068-1075 (2008)

    N. Fukuda, A. Hokura, N. Kitajima, Y. Terada, H. Saito, T. Abe and I. Nakai.

  • Arabidpsis halleri ssp. Genmifera (ハクサンハタザオ)

    Arabidopsis halleri is known as a Cd and Zn hyper-accumulator, which contained more than 9000 mg/ kg

    Cd and Zn.

  • XRF imaging of a leaf of A. halleri ssp. Gemmifera.

    X-ray Energy : 37 keVBeam size : 50 μm× 50 μmMeasurement points : 60 point×100 pointmeasurement time : 1 sec/point

    Zn

    2063

    0

    Rb

    13

    0

    Cd

    704

    0

    Sr

    38

    0

  • μ-XRF imaging of a trichome taken from a leaf.

    Zn

    199

    0 K

    17

    0 Sr

    19

    0Cd

    101

    0 Ca

    60

    0

    X-ray Energy : 37 keVBeam size : 3 μm× 3 μmMeasurement points : 59 point×226 pointmeasurement time : 0.5 s/ point

    100 μm

    Trichomes are epidermal hairs present at the surface of leaves of A. halleri, and their functions are thought to be an exudation of various molecules.

  • Nano-beam focusing system at SPring-8

    (left)Hig precision K-B mirror

    (right) Optical parameters of elliptical mirror

    Prospect of microbeam analysis

    Microbeam → Nanobeam

    Yamauchi et al.(Osaka Univ.)

  • -20

    0

    20

    40

    60

    80

    100

    120

    -300 -200 -100 0 100 200 300

    位置(nm)

    強度

    (任

    意ス

    ケー

    ル)

    理想プロファイル

    計測

    (a)vertical (b)horizontal

    48nm

    -20

    0

    20

    40

    60

    80

    100

    120

    -300 -200 -100 0 100 200 300

    位置 (nm)

    強度

    (任意

    スケ

    ール

    )

    理想プロファイル

    計測

    36nm

    Beam profile

  • Photon Factory BL-12C

    High S/N

    S-polarization

    Si(111)

    Total reflection

    Θc < 0.3°

    19element SSD

    sample

    19el-SSD

    SR-X-ray

    XRFX-ray

    Nanosheet Monolayer

    TXRF-XAFS

  • Nanosheet(1-layer)

    heat

    Ti

    Ti

    0.45 nm

    Ti O

    Atomic arrangement

    transition How to construct the three dimensional structure

    Ti1-δO24δ-

    Titania nanosheet

    Layer structure

    Cs0.7Ti1.825□0.175O4

    Heating behavior of titania nanosheet by TXRF-XAFS

    Material Science

  • Ti K-edge XANES spectra as a function of temperature

    Anatase

    As grown

    600℃

    700℃

    800℃

    900℃

    nanosheet

    nanosheet

    Nanoーsheet

    4950 4970 4990 5010Energy / eV

    Norm

    aliz

    ed inte

    nsit

    y

    Anatase

    As grown

    600℃

    700℃

    800℃

    900℃

    (Reference)

    ©Fukuda&Nakai

    Bulk crystal: stable phase

    800℃ → rutile

    400℃ → anatase

    AnataseNanocrsytal

  • (4)High energy X-ray

  • High energy SR-XRF

    Bi Kα 76.35 Eb=90.57 U Kα 97.17 Eb=115.66keV

  • Fig.

    P Ca MnZn Br

    Zr RhSn

    CsNd

    TbYb

    ReHg

    At

    U

    Zr Rh Sn Cs Nd Tb YbRe Hg At U

    0

    20

    40

    60

    80

    100

    120

    0 10 20 30 40 50 60 70 80 90 100

    Atomic Number

    Ener

    gy 

    (KeV

    )Kα1

    Kβ1

    Lα1

    Lβ1

    X-ray fluorescence energies of K & L lines v.s. atomic number

    Z (Atomic Number)

    Ener

    gy/k

    eV

  • 0

    2000

    4000

    0 5 10 15 20

    Energy/keV

    Intens

    ity

    Problem of conventional XRF analysisoverlapping of heavy elements L lines as light elements K lines

    Sample porcelain , Source:Mo Ka X-ray 40 kV-40 mA , time:1000sec

    Rb Kβ,Y Kα

    Sr KαRb Kα

    Cu Kα

    Ni Kα Pb Lα

    Ca Kα

    Mn Kα

    Ti Kα

    K Kα

    Fe Kα

    Fe Kβ

    SnSb

    La NdDy

    TmBiLu

    Energy of heavy element L lines XRF peak

  • Si(400)MonochromatorSR

    slit

    GeSSD

    I.C.

    XYステージ

    sample

    Eliptical multipole wiggler (Gap:160~25.5 mm)Excitation energy:116 keV (100-150 keV)Beam size:1~0.1 mm2

    PC

    BL08W (for High-energy inelastic scattering experiments)

    Experimental setup for high energy XRF

    MCA

  • 0

    500

    1000

    0 10 20 30 40 50 60 70 80X-ray energy (keV)

    Inte

    nsity

    (Cou

    nts/

    1000

    sec)

    W

    Lu

    YbEr

    Ta

    TmHo

    Hf

    Gd

    Bi

    Dy W KβSm

    La

    Nd

    Eu Tb

    Pb*

    Ta Kβ

    Hf Kβ

    Lu KβCe

    Pr

    Ba

    Cs

    XRF spectrum of NIST SRM612 glass: 61 trace elements in 50ppm level(*scattering)

    Rb

    Nb

    CdPb

    Ca

    Sn

    Mo

    In

    Ag Sb

    Te

  • 0

    500

    1000

    1500

    0 10 20 30 40 50 60

    X-ray energy / keV

    Inte

    nsity

    / co

    unts

    W Kα1,2

    Hf K1,Yb Kα1,2

    Dy Kα1,2Er Kα1,2

    Ba Kα Ba Kβ

    Nd Kα

    Nd Kβ

    Sm Kα

    Ce Kβ

    Gd Kα

    Ce Kα1,2

    La Kα

    Cs Kα

    Fe Kα

    Fe Kβ

    Mn Kα

    Pb Lα,βSr Kα

    Nb Kα

    Ba esc.

    Rb Kα,βZr Kα,β

    XRF spectrum of JG1 excited at 116keV for 1000sec.

  • Contents/ ppm Ipeak Iback MDL/ppmFe 2.02a) 1557 366 0.097a)

    Rb 181 577 281 30.8Sr 184 719 258 19.2Zrb) 108 395 293.5 54.7Cs 10.2 280 181 4.2Ba 462 7205 354.5 3.8La 23 535 355.5 7.2Ce 46.6 520 86 3.0Nd 20 862 154.5 1.1Sm 5.1 136 45 1.1Gd 3.7 108 42.5 1.1Dy 4.6 110 41 1.3Er 1.7 86 51.5 1.1Yb 2.7 125 61 1.0Hf 3.5 268 98.5 0.6W 1.7 737 199.5 0.1

    MDL for JG1 sample

  • 0.001

    0.01

    0.1

    1

    10

    0.01 0.1 1 10

    Metal concentration (ng)

    Nor

    mar

    ized

    net i

    nten

    sity

    (I Lu/I

    Gd)

    Lu

    Calibration curves for Lu using K-lines XRF spectra

  • . Application field of high energy XRF

    ・Archaeology for nondestructive provenance analysis

    ・Forensic analysis

    ・Industrial chemical analysis of high-Tech materials

    ・ Geochemistry

  • Principle of Provenance Analysis of Cultural Heritages

    Raw material → Porcelain Stone

    Trace element composition tells the locality

  • Role of Heavy Elements

    • Cosmic abundances of the heavy elements with atomic number larger than 26 (Fe) are small compared with the lighter elements.

    • They exhibit characteristic distribution in earth, for the heavy elements such as rare earth and U often posseslarge ionic radii and high oxidation states.

    • The trace elements often substitute for major elements, whose manner is largely affected by the nature of the elements such as the ionic radii, oxidation state as well as the PTC condition.

    Good fingerprint elements

    → High energy SR-XRF analysis

  • ・肥前(Arita) a加賀(Kutani)

    ・福山姫谷(Himetani)

    ・有田

    ・伊万里、嬉野

    ・波佐見

    Colored Porcelain Since 17th Century 17Cの色絵の磁器

  • Provenance analysis of Old-Kutani China wares

    based on the information of their material history

    obtained by high energy XRF

    Kutani china wares were first produced in the late 17th century in the Kaga Province in Japan. In 1710, however, after half a century of continuous production, the kiln was suddenly closed. Pottery from this early period is known as Old Kutani, which is extremely precious. However, there is a possibility that the Old Kutani might come from Arita, another famous production place of porcelain since 17th century in Japan. Therefore, identification of Old Kutani and Arita is an important and mysterious problem in Japanese art history. It was expected that high-energy XRF analysis utilizing synchrotron radiation from SPring-8 would reveal the origin of the source materials. This is the first nondestructive analysis of museum grade samples of Old Kutani.

  • )とうP

    Kutani

    Himetani

    Arita

    Raw Material

    Porcelain Stone tells the Locality

  • Samples

    ◆Fragments of porcelain excavated at each

    old kiln of Kaga, Arita, and Fukuyama.

    Kutani: 121 Arita: 57 Fukuyama: 10

    ◆Museum grade samples which are thought

    to be original: 6

  • 0

    1000

    2000

    3000

    0 10 20 30 40 50 60 70Energy / keV

    Inte

    nsity

    /cou

    nts

    Fe

    PbRb

    Y

    La

    Hf WZr

    NdCe

    Cs

    Er

    Gd

    Sm

    Dy

    Yb

    Sr

    Ba

    Se

    XRF spectrum of fragments of china ware excavated from Old Kutani kiln

  • H 0 1H 0 2H 6 0H 6 4H 1 4H 3 3H 5 4H 5 2H 4 1H 5 9H 2 8H 6 3H 2 9K 0 5K H 8H 3 5H A 2K 1 7K 1 8K 3 2K 1 0 3H 4 6H 0 3H 5 7H 3 1H 6 8H 0 7H 5 5H 0 9H 1 6H 2 7H 5 6H 6 8H 2 3H 4 0H 1 5K M 1K 1 2K 1 4H 3 4H 5 1H 6 2H A 5K M 2H 0 4H 6 7H 1 3H 3 2H 6 1H 6 6H 6 5H M 1H M 3H M 5H M 6H M 8H M 9H M 2H M 4H M 7H M 1 0K 0 6K 1 3K 1 9K 2 1K H 5K 2 0K 0 8K 2 6K 2 8K H 1K H 3K 1 5K Y 2K 1 0 5K N 1H 1 0H 3 9H 5 8H 5 3H 3 0H A 6H 1 1H 1 2H A 1H 4 7K 2 7K 1 0 9K 5 2K 4 7K 5 1K 5 6K 6 0K 5 9K H 7H 4 3K 3 4K Y 2K Y 3K 5 3K H 1K 0 7K 0 9K 1 6K 2 3K M 1K 3 7K M 2K 4 9K 2 2K 4 8K 3 3K 5 0K 5 5K 3 9K 2 5K 1 0 1K 2 9K H 3K 3 8K H 5K 3 5K 4 4K H 8K Y 3H A 3

    0 5 1 0 1 5 2 0D i s t a n c e

    Cluster analysis of fragments of china wares using normalized XRF peak intensities of Ba, Ce, Nd

    Kutani

    Kutani & Arita

    Fukuyama

    Arita

  • Ba/Ce-Nd/Ce plot

    0

    4

    8

    12

    16

    0 0.2 0.4 0.6 0.8 1 1.2Nd/Ce

    Ba/

    Ce

    原明窯小溝上百間窯ダンバギリ窯窯の辻窯猿川窯長吉谷窯下白窯柿右衛門窯鍋島藩窯不動山皿屋谷二号窯吉田二号窯三股古窯永尾本登窯辺後の谷窯三股新登窯福山姫谷窯九谷一号窯九谷二号窯吉田屋窯若杉古窯八間道耳聞山今九谷山代

    KutaniKutani

    AritaArita

    FukuyamaFukuyama

  • Material History

    During the formation and existence of a substance, the information of its material history is recorded in the substance in various forms such as the concentration, distribution, and chemical state of the trace elements as well as chemical composition, structure, isotope ratio of the major elements.

    Every substance was produced in the past. The law of causality determines the chemical state of a substance.

    A latent record of information stored ina substance recording its origin and history

  • Big-bang ElementaryParticle

    Hydrogen atom

    light elements

    heavy elements

    moleculeminerals

    rock star

    geological process

    life humanbeings

    civilization

    evolution of life

    chemical evolution

    Material Evolution:material world is continuous15 billions years ago

    nuclear fusion

    Stream of Time →

    neutron capture & β-decay

  • Application of the material history: Information of the material history can be

    used in various scientific fields

    • Archaeology, forensic analysis, geology,geochemisty→To reveal the past based on the material history.

    • Biological sciences: life history, migration history, environmental problems

    • Industrial application: prediction of source material, production method and patent related problems

    • Environmental science: monitoring of environmental change→industrial, biological, and social activities etc.

    Highly sensitive nondestructive X-ray analyses utilizing SR are most suitable techniques to reveal the material history of the sample.

  • Cobalt blue 0.0002% Co

    Importance of trace element

  • S&W Gunshot Residue

    SPring-8 BL08W

    Characteristic element: Ba,Sb, Pb

    Ba

    SbPb Pb

    High energy SR-XRF characterization of trace gunshot residue

    Forensic application

  • 0 20 40 600

    500

    1000

    1500

    WTaSnNb

    ZnFeTi

    coun

    ts

    Energy(keV)

    A

    0 20 40 600

    500

    1000

    Nb

    Zn

    Ba

    Ti

    Energy(keV)

    B

    0 5 10 15 200

    5000

    10000

    SiAlFe

    Ti

    Cou

    nts

    Energy(keV)0 5 10 15 20

    0

    5000

    10000

    Al

    TiCo

    unts

    Energy(keV)

    EPMA EPMA

    Ninomiya(2004)

    High energy XRF characterization of trace heavy elements in white car paints (paints A & B) compared with X-ray microprobe (bottom)

  • Chemical speciation of arsenicChemical speciation of arsenic--accumulating accumulating mineral in a sedimentary iron deposit by mineral in a sedimentary iron deposit by

    synchrotron radiation multiple Xsynchrotron radiation multiple X--ray analytical ray analytical techniquestechniques

    S.ENDO,Y.TERADA,Y.KATO,I.NAKAIEnviron.Sci.Technol.2008,42,7152.

    Comprehensive characterization of As(V)-bearing iron minerals from the Gunma iron deposit by

    Sample the Gunma iron deposit of quaternary age

    (5) (5) multiple Xmultiple X--ray analytical techniqueray analytical techniqueμ-XRF imaging, m-XRD,XAFS and SEM

  • Decompositon of As containing minerals by acidic water

    As As fixationfixation

    ・Precipiationex.) Fe3+ + AsO43- → FeAsO4↓

    ・Adsorptionα-FeO(OH)

    ・biological effectbiomineral formation

    Remediation of As poisoning

    As

    Hot spring

    BackgroundBackground

    3

    Natural behavior of arsenic at volcanic region

  • 200 μm

    As Fe

    SPring-8 BL37XU

    X-ray: 12.8 keVBeam size : 1.8 μm×2.8 μmStep size : 2.0 μm×3.0 μmMeas. time : 0.1 s/pointDetector : SDD

    SRSR--μμ--XRF XRF XRF imagingXRF imaging

    3500

    0

    15500

    0

    Purpose: which mineral accumulate arsenic?

    strengite FePO4·7H2O ?jarosite KFe3(SO4)2(OH)6 ?goethite FeOOH?

  • As 20 μm

    SRSR--μμ--XRF & SEMXRF & SEM--EDS EDS

    Fe SEM image1800

    0

    11000

    0

    S (SEM-EDS) P (SEM-EDS) K (SEM-EDS)

    Positive correlation between As and P, negative for S and K

    Beam size: 1.8 μm×2.8 μmStep size : 1.0 μm×1.0 μm As at the region with peculiar concentric morphology

    strengite FePO4·7H2Ojarosite KFe3(SO4)2(OH)6

  • As 20 μm

    SEM-EDS spectrum

    SRSR--μμ--XRF & SEMXRF & SEM--EDS EDS

    Fe SEM

    Energy / keV

    Inte

    nsity

    0 5 10 12

    Fe Kα

    Fe KβAs Kα

    P Kα

    As LαIn

    tens

    ity

    Energy / keV

    O Kα

    1800

    0

    11000

    0

    0 2 4 6 8 100 5 10Energy / keV

    Inte

    nsity

    O Kα

    S Kα

    K Kα

    Fe Kα

    Fe KβFe Lα

    Beam size: 1.8 μm×2.8 μmStep size : 1.0 μm×1.0 μm

    Localization of As.

    strengite FePO4·7H2Ojarosite KFe3(SO4)2(OH)6

  • XRDXRD

    XRD pattern (P1)

    P1

    P2

    XRD point

    X-ray : 12.8 keVBeam size : 50 μm×50 μmMeas.time : 12 min. / sampleIP (Imaging Plate)

    * strengite FePO4·7H2O PDF No. 33-667** jarosite KFe3(SO4)2(OH)6 PDF No. 22-827

    P1 P2 ストレング石 鉄明礬鉱d / Å I / I0 d / Å I / I0 hkl d / Å I / I0 hkl d / Å I / I0

    101 5.93 45003 5.72 25

    102 5.09 70

    110 3.65 40

    201 3.11 75113 3.08 100

    202 2.965 15006 2.861 30

    204 2.542 30

    111 5.509 60

    020 4.954 30201 4.383 85211 3.996 45121 3.959 13112 3.719 25

    221 3.281 17122 3.114 100

    311 3.002 45131 2.949 45

    231 2.631 11132 2.546 50

    5.49 55

    4.95 434.37 1004.00 22

    3.27 213.12 53

    2.99 162.95 19

    2.56 45

    5.93 325.75 14

    5.10 56

    3.63 32

    3.11 723.07 100

    2.97 122.88 8

    2.55 20

    P1 P2 ストレング石 鉄明礬鉱d / Å I / I0 d / Å I / I0 hkl d / Å I / I0 hkl d / Å I / I0

    101 5.93 45003 5.72 25

    102 5.09 70

    110 3.65 40

    201 3.11 75113 3.08 100

    202 2.965 15006 2.861 30

    204 2.542 30

    111 5.509 60

    020 4.954 30201 4.383 85211 3.996 45121 3.959 13112 3.719 25

    221 3.281 17122 3.114 100

    311 3.002 45131 2.949 45

    231 2.631 11132 2.546 50

    5.49 55

    4.95 434.37 1004.00 22

    3.27 213.12 53

    2.99 162.95 19

    2.56 45

    5.93 325.75 14

    5.10 56

    3.63 32

    3.11 723.07 100

    2.97 122.88 8

    2.55 20

    strengite jarosite

  • 11.85 11.9

    Nor

    mal

    ized

    inte

    nsity

    (a.u

    .)

    11.85 11.86 11.87 11.88 11.89 11.90 Energy / keV

    μμ--XANESXANES

    P1

    P2

    XANES points

    As exists as As(V) in the sample(AsO43-, HAsO42-)P1

    P2

    As(V) in strengite

    KH2AsO4

    KAsO2

    As(V)

    As

    AsO43-

    As K-edge XANES spectrameasured by 2μm X-ray beam

    strengite (FePO4・2H2O)

  • 動径構造関数

    0 1 2 3 4 5 6r / Å

    FT M

    agni

    tude

    P1

    P2

    As(V) instrengite

    As-OAs-Fe

    μμ--EXAFS EXAFS

    EXAFS測定箇所

    EXAFS

    P1

    P2

    As(V) in strengite

    OFe

    O

    OFe

    1.683.36

    1.69

    1.683.35

    4.04.0

    4.0

    4.04.0

    Atom r / Å CN

    P1

    P2

    As

    As

    OAsO43- イオン

    As→AsO4AsO4 tetrahedra-Fe(III)octahedra

    Fe

    As

    O

    k / Å

    k3χ(

    k)

    ― Meas.・ fitting

    P1

    2 7 12

    Curve fitting

    strengite FePO4·7H2O

  • Crystal structure of strengite (FePO4・2H2O)

    PO4

    FeO4(OH)2 Octahedron

    O P Fe

    AsO4

    As

    As in strengite

    1.68 Å

    3.36 Å

    As accumulation mechanismAs accumulation mechanism

    PO4 → AsO4

    As in solution

    AsO43-

    Substitution of PO4 tetrahedra instrengite (FePO4・2H2O) by AsO4 teterahedra

  • ConclusionLimitation of the SR-XRF

    1.Microbeam analysis

    i) the thickness of the sample should be in the order of beam size

    → preparation of thin sample is not easy

    ii) it takes long hours to carry out two dimensional mapping

    because of large numbers of measurement points

    2. Low excitation efficiency for light elements

    3. Special efforts is necessary to carry out quantitative analysis

    4. Sample damage should be considered if you use brilliant Undulator SR Source or white X-ray radiation. Especially, care must be taken about photo-reduction/oxidation of the component elements.

    However!

  • Attractiveness of SR-XRF1.Nondestructive analysis, multielemental analysis

    2. Two dimensional resolution

    3. Easy to carry out the analysis and easy to understand the results

    4. Basic optical system for EDS analysis is simpleSR → Monochromator → sample → detector

    5.We can analyze almost any samples

    size → from cell level to sculpture, paintings

    in situ、 in vivo、 in air at any temperature

    6. Information

    concentration: major(%), minor, trace(ppm) elements C ~Na ~ U

    distribution: from nm level to cm level

    chemical state ( oxidation state, local structure) C ~ Si ~ U

    7.Multiple SR-X-ray analysis: combination with X-ray diffraction and XAFS

  • SR-XRF is waiting for you.

    Come and just try it !

    Invitation to SR-XRF