introduction to nanomechanics (spring 2012)

34
Introduction to Nanomechanics (Spring 2012) Martino Poggio

Upload: hidi

Post on 22-Feb-2016

65 views

Category:

Documents


0 download

DESCRIPTION

Introduction to Nanomechanics (Spring 2012). Martino Poggio. Preliminary Logistics and Introduction. Course outline and expectations; What is nanomechanics ? Why study nanomechanics ?. People. Course Leader/Lectures: Martino Poggio Teaching Assistants/Exercise Sessions: - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Introduction to  Nanomechanics (Spring 2012)

Introduction to Nanomechanics(Spring 2012)

Martino Poggio

Page 2: Introduction to  Nanomechanics (Spring 2012)

Preliminary Logistics and Introduction

Course outline and expectations; What is nanomechanics? Why study

nanomechanics?

Page 3: Introduction to  Nanomechanics (Spring 2012)

Introduction to Nanomechanics 3

People

• Course Leader/Lectures: – Martino Poggio

• Teaching Assistants/Exercise Sessions: – Michele Montinaro– Fei Xue– Gunter Wüst– Jonathan Prechtel

21.02.2012

Page 4: Introduction to  Nanomechanics (Spring 2012)

Introduction to Nanomechanics 4

Format and requirements

• Language: English• Prerequisites: Physics III; course-work in solid- state

physics and statistical mechanics• Lectures: 10-12 on Tues. (21.02-29.05.2012)• Exercise Sessions: 13-14 on Wed.• Assignments: exercises and reading of current papers• Final paper: 4-5 page report on significant

experimental paper due on 29.06.2012• Grading: Pass/fail

21.02.2012

Page 5: Introduction to  Nanomechanics (Spring 2012)

Introduction to Nanomechanics 5

Literature

• Foundations of Nanomechanics, A. N. Cleland (Springer, 2003)

• Fundamentals of Statistical and Thermal Physics, F. Reif (McGraw-Hill, 1965)

• Original papers from Nature, Science, Physical Review Letters, Applied Physics Letters, Review of Scientific Instruments, Physics Today, etc.

21.02.2012

Page 6: Introduction to  Nanomechanics (Spring 2012)

6

Websitehttp://poggiolab.unibas.ch/NanoMechSpring2012.htm

• Overview• Format and Requirements• Schedule

– Lecture content– Exercise session

• Documents (PDF)– Optional reading

• Documents (PDF)

Introduction to Nanomechanics21.02.2012

Page 7: Introduction to  Nanomechanics (Spring 2012)

Introduction to Nanomechanics 7

http://poggiolab.unibas.ch/NanoMechSpring2012.htm

21.02.2012

Page 8: Introduction to  Nanomechanics (Spring 2012)

Introduction to Nanomechanics 8

http://poggiolab.unibas.ch/NanoMechSpring2012.htm

21.02.2012

Page 9: Introduction to  Nanomechanics (Spring 2012)

What is nanomechanics?

• Well… it’s the study of the mechanical properties of very very small things

• A nanometer is 10-9 meters1 nm = 0.000000001 m100,000 nm ≈ diameter of a human hair1 nm ≈ diameter of 10 atoms

9Introduction to Nanomechanics21.02.2012

Page 10: Introduction to  Nanomechanics (Spring 2012)

Red blood cell10 mm

DNA2.5 nmH atom50 pm

Visible light0.4 - 0.8 mm

Proton1.75 fm

Matterhorn1.0 km

Size scales

21.02.2012 Introduction to Nanomechanics 10

mmm fm103 m109 m 10-15 m106 m

pm10-12 m

nm10-9 m

Mm kmGm mm10-6 m10-3 m100 m

BIG small

The sun

1.4 Gm1.2 Mm

Basel

Lecce

Average man1.75 m

Dog flea2 mm

Page 11: Introduction to  Nanomechanics (Spring 2012)

(Macro)mechanics

11

mmm fm103 m109 m 10-15 m106 m

pm10-12 m

nm10-9 m

Mm kmGm mm10-6 m10-3 m100 m

Introduction to Nanomechanics21.02.2012

Nanomechanics

Page 12: Introduction to  Nanomechanics (Spring 2012)

12

How is nanomechanics different than (macro)mechanics?

• Thermal fluctuations significantly affect the motion of small bodies

• Quantum mechanical fluctuations affect the motion of even smaller bodies

Introduction to Nanomechanics21.02.2012

Page 13: Introduction to  Nanomechanics (Spring 2012)

Brownian motion

13

Fat droplets suspended in milk through a 40x objective. The droplets are 0.5 - 3.0 mm in size.

Introduction to Nanomechanics21.02.2012

Page 14: Introduction to  Nanomechanics (Spring 2012)

Thermal energy

14

Tkvm B23

21 2

Particle mass

Boltzmann constant

TemperatureMean square velocity

Introduction to Nanomechanics21.02.2012

Page 15: Introduction to  Nanomechanics (Spring 2012)

Brownian motion

15

taTk

r B

2

Viscosity of medium

Mean square displacement(a measure of the size of the fluctuations)

Particle radius

Elapsed time

Introduction to Nanomechanics21.02.2012

Page 16: Introduction to  Nanomechanics (Spring 2012)

Cantilever

16

x

F

Spring constant

3

3

lwtk

kxF

Introduction to Nanomechanics21.02.2012

Page 17: Introduction to  Nanomechanics (Spring 2012)

Cantilever

17

x

F

kxF

Tkxk B21

21 2

Mean square displacement

kTk

x B2

3

32

wtlTkx B

Introduction to Nanomechanics21.02.2012

Page 18: Introduction to  Nanomechanics (Spring 2012)

1st mode

18Introduction to Nanomechanics21.02.2012

Page 19: Introduction to  Nanomechanics (Spring 2012)

(Macro)mechanics

19

L = 2 mw = 100 mmt = 50 mmESS = 200 GPa

3

3

4L

Ewtk

k = 78 kN/m

xth = 0.2 pm

for T = 300 K

Tkk

xx Bth 2

Introduction to Nanomechanics21.02.2012

Page 20: Introduction to  Nanomechanics (Spring 2012)

L = 120 mmw = 3 mmt = 100 nmESi = 169 GPa

Nanomechanics

20

3

3

4L

Ewtk

k = 73 mN/m

xth = 8 nm

for T = 300 K

Tkk

xx Bth 2

Introduction to Nanomechanics21.02.2012

Page 21: Introduction to  Nanomechanics (Spring 2012)

Quantum fluctuations

21

mxZPF 2

Zero point fluctuations

Planck constant

Resonant frequencyMass

mkxZPF

2

2wtlxZPF

Introduction to Nanomechanics21.02.2012

Page 22: Introduction to  Nanomechanics (Spring 2012)

(Macro)mechanics

22

l = 2 mw = 100 mmt = 50 mmESS = 200 Gpar = 7.85 g/cm3

k = 78 kN/m

xZPF = 0.2 amxZPF = 0.2 x 10-18 m

4lwtm r

m = 20 kg

3

3

4lEwtk

mkxZPF

2

Introduction to Nanomechanics21.02.2012

Page 23: Introduction to  Nanomechanics (Spring 2012)

L = 120 mmw = 3 mmt = 100 nmESi = 169 Gpar = 2.3 g/cm3

Nanomechanics

23

3

3

4lEwtk

k = 73 mN/m

m = 20 pgmk

xZPF2

xZPF = 0.2 pmxZPF = 0.2 x 10-12 m

4lwtm r

Introduction to Nanomechanics21.02.2012

Page 24: Introduction to  Nanomechanics (Spring 2012)

Carbon nanotube

24

m = 10-21 kg = 2 x 500 MHz

xZPF = 4 pmxZPF = 4 x 10-12 m

mkxZPF

2

Introduction to Nanomechanics21.02.2012

Page 25: Introduction to  Nanomechanics (Spring 2012)

Quantum fluctuations of a drum

25

Lehnert, 2011

Introduction to Nanomechanics21.02.2012

Page 26: Introduction to  Nanomechanics (Spring 2012)

26

Why study nanomechanics?

• Link between classical mechanics and statistical mechanics

• Link between classical mechanics and quantum mechanics

• Smaller sensors are more sensitive

Introduction to Nanomechanics21.02.2012

Page 27: Introduction to  Nanomechanics (Spring 2012)

What is nanomechanics good for?

• Smaller sensors are more sensitive!

– Measurement of displacement– Measurement of mass– Measurement of force– Measurement of charge– Measurement of magnetic moment

27Introduction to Nanomechanics21.02.2012

Page 28: Introduction to  Nanomechanics (Spring 2012)

Atomic force microscopy (AFM)

28

10 nm

Giessibl, 2000

Si (111) (AFM)

Folks, 2000

Magnetic Bits (MFM)

10 mm

DNA (AFM)

Hamon, 2007500 nm

Introduction to Nanomechanics21.02.2012

Page 29: Introduction to  Nanomechanics (Spring 2012)

29

Scanning tunneling microscopy (STM)

Eigler, 1993

Introduction to Nanomechanics21.02.2012

Page 30: Introduction to  Nanomechanics (Spring 2012)

Quantum effects

30

Schwab et al., 2000 Decca, 2003

Quantum of Thermal Conductance Casimir Force Measurement

Introduction to Nanomechanics21.02.2012

Page 31: Introduction to  Nanomechanics (Spring 2012)

Weighing a single atom

31

Zettl, 2008

Page 32: Introduction to  Nanomechanics (Spring 2012)

Measuring a single electron spin

32

Rugar, 2004

Introduction to Nanomechanics21.02.2012

Page 33: Introduction to  Nanomechanics (Spring 2012)

33

Nano-magnetic resonance imaging (nanoMRI)

50 nm

Degen, 2009

Introduction to Nanomechanics21.02.2012

Page 34: Introduction to  Nanomechanics (Spring 2012)

34

Cantilever Basics (statics)

Introduction to Nanomechanics21.02.2012