introduction to lie groups and transformation groups

182
Lecture Notes in Mathematics An informal series of special lectures, seminars and reports on mathematical topics Edited by A. Dold, Heidelberg and B. Eckmann, ZUrich 7 Philippe Tondeur Department of Mathematics University of ZfJrich Introduction to Lie Groups and 1965 Transformation Groups Springer-Verlag. Berlin-Heidelberg. New York

Upload: others

Post on 11-Sep-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to Lie Groups and Transformation Groups

Lecture Notes in Mathematics An informal series of special lectures, seminars and reports on mathematical topics

Edited by A. Dold, Heidelberg and B. Eckmann, ZUrich

7

Philippe Tondeur Department of Mathematics

University of ZfJrich

Introduction to Lie Groups

and

1965 Transformation Groups

Springer-Verlag. Berlin-Heidelberg. New York

Page 2: Introduction to Lie Groups and Transformation Groups

All rights, especially that oftranalation/nto foreign languages, reserved. It is also forbidden to reproduce this book, either whole or in part, by photomechanical means (photostat, microfilm and/or microcard)or by other procedure without

written permission from Springer Verlag. @ by Sprlnger-Verlag Berlin �9 Heidelberg 196~. Library of Congress Catalog Card Number 6~--26947. Printed in Germany. Title No. 7327

Printed by Behz, Weinhelm

Page 3: Introduction to Lie Groups and Transformation Groups

PREFACE

T h e s e n o t e s w e r e w r i t t e n f o r i n t r o d u c t o r y l e c t u r e s on L i e g r o u p s

a n d t r a n s f o r m a t i o n g r o u p s , h e l d a t t h e U n i v e r s i t i e s of B u e n o s A i r e s

a n d Z u r i c h . T h e n o t i o n s of a d i f f e r e n t i a b l e m a n i f o l d , a d i f f e r e n t i a b l e

m a p a n d a v e c t o r f i e l d a r e s u p p o s e d k n o w n . T h e r e i s a n a p p e n d i x on

c a t e g o r i e s a n d f u n c t o r s .

T h e f i r s t t w o c h a p t e r s a r e i n f l u e n c e d b y a p a p e r of R . P a l a i s [ l g ] .

In s e c t i o n s 5. Z a n d 5. 3, a l o t i s t a k e n f r o m S. K o b a y a s h i a n d K. N o m i z u

[11] . In c h a p t e r 7, S. H e l g a s o n [61 w a s o f t e n u s e d . Of c o u r s e ,

C. C h e v a l l e y [ 3] w a s c o n s t a n t l y c o n s u l t e d . T h e b i b l i o g r a p h y o r i e n t s

on t h e v a r i o u s s o u r c e s . A s p e c i a l f e a t u r e of t h i s p r e s e n t a t i o n i s t h e

s y s t e m a t i c a v o i d a n c e of t h e u s e of l o c a l c o o r d i n a t e s on a m a n i f o l d . T h i s

a l l o w s t h e u s e of t h e p r e s e n t e d t h e o r y w i t h s l i g h t m o d i f i c a t i o n s f o r L i e

g r o u p s o v e r B a n a c h m a n i f o l d s . S e e e . g . B . M a i s s e n [10].

J u n e 1964 P h i l i p p e T o n d e u r

Page 4: Introduction to Lie Groups and Transformation Groups

CONTENTS

.

.

.

.

G - O b j e c t s .

1.1.

1. Z.

1 .3.

" 1 . 4 .

D e f i n i t i o n a n d e x a m p l e s .

E q u i v a r i a n t m o r p h i s m s .

O r b i t s .

P a r t i c u l a r G - s e t s .

G - S p a c e s .

Z. 1. D e f i n i t i o n a n d e x a m p l e s .

Z .Z. O r b i t s p a c e .

G - M a n i f o l d s .

3.1. D e f i n i t i o n a n d e x a m p l e s of L i e g r o u p s .

3. Z. D e f i n i t i o n and e x a m p l e s of G - m a n i f o l d s .

V e c t o r f i e l d s .

4. 1. R e a l f u n c t i o n s .

4. Z. O p e r a t o r s a n d v e c t o r f i e l d s .

4 . 3 . T h e L i e a l g e b r a of a L i e g r o u p .

4 . 4 . E f f e c t of m a p s on o p e r a t o r s and v e c t o r f i e l d s .

4. 5. T h e f u n c t o r L.

4. 6. A p p l i c a t i o n s of t h e f u n c t o r a l i t y of L.

4. 7. The adjoint representation of a Lie group.

1

7

13

23

28

30

34

37

40

4Z

46

50

5Z

59

64

The * indicates a section, the lecture of which is not necessary for the

understanding of the subsequent developments.

Page 5: Introduction to Lie Groups and Transformation Groups

.

.

.

V e c t o r f i e l d s a n d 1 - p a r a m e t e r ~ r o u p s of t r a n s f o r m a t i o n s .

5.1.

5. Z.

5. 3.

5 . 4 .

5 . 5 .

* 5 . 6 .

*5. 7.

1 - p a r a m e t e r g r o u p s of t r a n s f o r m a t i o n s .

1 - p a r a m e t e r g r o u p s of t r a n s f o r m a t i o n s a n d e q u i v a r i a n t m a p s .

T h e b r a c k e t of t w o v e c t o r f i e l d s .

1 - p a r a m e t e r s u b g r o u p s of a L i e g r o u p .

K i l l i n g v e c t o r f i e l d s .

T h e h o m o m o r p h i s m aV: RG > DX f o r a G - m a n i f o l d .

K i l l i n g v e c t o r f i e l d s a n d e q u i v a r i a n t m a p s .

T h e e x p o n e n t i a l m a p of a L i e g r o u p .

6.1.

6. Z.

6.3.

*6.4.

6.5.

D e f i n i t i o n a n d n a t u r a l i t y of e x p .

e x p is a l o c a l d i f f e o m o r p h i s m at t h e i d e n t i t y .

U n i c i t y of L i e g r o u p s t r u c t u r e .

A p p l i c a t i o n to f i x e d p o i n t s on G - m a n i f o l d s .

T a y l o r ' s f o r m u l a .

S u b g r o u p s a n d s u b a l g e b r a , s .

7 .1. L i e s u b g r o u p s .

7. Z. E x i s t e n c e of l o c a l h o m o m o r p h i s m s .

7. 3. D i s c r e t e s u b g r o u p s .

7 . 4 . O p e n s u b g r o u p s ; c o n n e c t e d n e s s .

7 . 5 . C l o s e d s u b g r o u p s .

7 . 6 . C l o s e d s u b g r o u p s of t h e f u l l l i n e a r g r o u p .

7. 7. Coset spaces and factor groups.

66

70

74

77

84

89

96

103

108

1 iZ

116

IZO

128

132

138

142

144

150

154

Page 6: Introduction to Lie Groups and Transformation Groups

. G r o u p s of a u t o m o r p h i s m s .

8.1. The a u t o m o r p h i s m g roup of an a l g e b r a .

8. Z. The ad jo in t r e p r e s e n t a t i o n of a L i e a l g e b r a ,

8. 3. The a u t o m o r p h i s m g r o u p of a L i e g roup ,

160

16Z

167

Append ix : C a t e g o r i e s and f u n c t o r s . 170

B i b l i o g r a p h y 175

Page 7: Introduction to Lie Groups and Transformation Groups

-1-

C h a p t e r l . G - O B J E C T S

The first two paragraphs of this chapter are essential for all that

follows, whereas paragraphs i. 3 and i. 4 are only required for the

lecture of g. g and shall not be used otherwise. For the notion of

category and functor, see appendix.

i. i Definition and examples.

If X is an object of a category ~ , we denote by Aut X the group

of equivalences of X with itself. Let G be a group.

DEFINITION I. i. I An operation of G on X is a homomorphisrn

r: G >Aut X. X is called a G-object with respect to T.

on X is a representation of G by automorphisrns An o p e r a t i o n of G

of X .

E x a m p l e 1 .1 .2

s e t X

of X .

by the s a m e l e t t e r )

A G - o b j e c t X in the c a t e g o r y of s e t s E n s is a

e q u i p p e d w i t h a h o m o m o r p h i s m 7 of G in to the g r o u p of b i j e c t i o n s

Such a homomorphism is equivalently defined by a map (denoted

G x X > X

(g, x) ~ - ~ ~ v (x) g

satisfying

Page 8: Introduction to Lie Groups and Transformation Groups

-Z-

a) (x) = v ( v (x)) for gz C G xC X Tglgz gl gz gl' '

b) T (x) = x f o r e C G, x C X e

The last conditions in the example i. i. Z suggest calling an

operation in the sense of definition i. i. i more precisely a left-

o p e r a t i o n of G on X . A r i g h t - o p e r a t i o n of G on X w i l l t h e n

G ~ be a h o m o m o r p h i s m ~" : > A u t X, w h e r e G ~ i s t h e

o p p o s i t e g r o u p of G , i . e . t h e u n d e r l y i n g s e t of G w i t h t h e

m u l t i p l i c a t i o n (g lgg) o o = g z g 1. X i s t h e n a G - o b j e c t . We

s h a l l g e n e r a l l y u s e t h e w o r d o p e r a t i o n a s s y n o n y m o u s f o r

left-operation and only be more precise when right-operations

also occur.

Example 1.1. 3 Let G be a group. If to any g C G we

assign the corresponding left translation L of G defined by g

L (~/) = gv f o r V g G , g

we obtain a left-operation of G on

the underlying set of G. Similarly, the assignment of the right

translation Rg of G, Rg(V) = Vg for V C G, to any g 6 G

defines a right-operation of G on the underlying set of G.

Example 1. I. 4 Let p : G

of groups. It defines an operation

set of G' in the following way: set

> G' be a homomorphism

r of G on the underlying

= Lp(g) for g C G.

Page 9: Introduction to Lie Groups and Transformation Groups

-3 -

One o b t a i n s s i m i l a r l y a r i g h t o p e r a t i o n

= Rp f o r g g G O-g (g) .

o- by the definition

E x a m p l e 1.1. 5 L e t G be a g r o u p . T o a n y g C G we

a s s i g n t h e i n n e r a u t o m o r p h i s m g

-1 induced by g, ~I (~) = g~/g

g

f o r ~ C G . T h i s d e f i n e s an o p e r a t i o n of G on i t s e l f .

E x a m p l e 1 .1 .6

c o n s i d e r the m a p G x H

m u l t i p l i c a t i o n O x O

H on the s e t O .

L e t H be a s u b g r o u p of t h e g r o u p G and

> G d e f i n e d by r e s t r i c t i n g the

> O . It d e f i n e s a r i g h t - o p e r a t i o n of

by

l a w

E x a m p l e 1.1. 7 L e t t h e g r o u p G

T : G > Au t G ' . On the s e t G'

o p e r a t e on t h e g r o u p G'

x G the m u l t i p l i c a t i o n

(gl" g l ) (gz" gz ) = (gl ''r gl (gz ')' glg2 )

f o r g i ' g G ' , g i g G (i = ~, Z)

d e f i n e s a g r o u p s t r u c t u r e , t h e s e m i - d i r e c t p r o d u c t d e n o t e d

O ' x v G . C o n s i d e r t he h o m o m o r p h i s m s

j : G ' > G ' x~: G j (g ' ) = (g ' , e) f o r g' 6 G ' , e n e u t r a l i n G

p : G' x ~ G > G p (g ' , g) = g f o r g' g G ' , g E G

s : G > G' x G s(g) = (e' g) for e' neutral in G' g GG T J

Page 10: Introduction to Lie Groups and Transformation Groups

-4 -

T h e s e q u e n c e

(*) e > G' J > P P > G > e

with P = G'x G is exact and s satisfies p oS = 1 G Conversely T

an e x a c t s e q u e n c e (*) and a h o m o m o r p h i s m s : G > P w i t h

p o s = 1G (a s p l i t t i n g of (*)) d e f i n e s an o p e r a t i o n T of G on G v :

the a u t o m o r p h i s m -r o f G ' c o r r e s p o n d i n g to g ~ G i s the g

i n n e r a u t o m o r p h i s m of P d e f i n e d b y s ( g ) , r e s t r i c t e d to the

n o r m a l s u b g r o u p G ' . T h e r e f o r e G - g r o u p s a r e in ( 1 - 1 ) - c o r r e s p o n d e n c e

w i t h s p l i t t i n g e x a c t s e q u e n c e s (*).

E x a m p l e 1.1. 8 A t y p i c a l c a s e of the s i t u a t i o n j u s t m e n t i o n e d

i s a s f o l l o w s : L e t V be a f i n i t e - d i m e n s i o n a l I R - v e c t o r s p a c e

and G L ( V ) the g r o u p of l i n e a r a u t o m o r p h i s r n s of V. T h e n G L ( V )

o p e r a t e s n a t u r a l l y on V . T h e s e m i - d i r e c t p r o d u c t V x G L ( V )

i s the g r o u p of a f f i n e m o t i o n s of V . N o t e t h a t t he m u l t i p l i c a t i o n

j u s t c o r r e s p o n d s to the n a t u r a l c o m p o s i t i o n of a f f i n e m o t i o n s .

We s h a l l on ly h a v e to c o n s i d e r c a t e g o r i e s ~ w h o s e o b j e c t s

h a v e an u n d e r l y i n g s e t an d w h o s e m o r p h i s m s a r e a p p l i c a t i o n s

of the u n d e r l y i n g s e t s . M o r e p r e c i s e l y t h i s m e a n s t h a t t h e r e

e x i s t s a f u n c t o r V : ~ > E n s w h i c h c a n be t h o u g h t of a s

f o r g e t t i n g a b o u t the a d d i t i o n a l s t r u c t u r e on X in R and t a k i n g

a m o r p h i s m j u s t a s an a p p l i c a t i o n . T o a v o i d e n d l e s s r e p e t i t i o n s

Page 11: Introduction to Lie Groups and Transformation Groups

- 5 -

we m a k e t h e following c o n v e n t i o n : F r o m n o w on we s h a l l

o n l y c o n s i d e r c a t e g o r i e s of t h a t s o r t a n d s h a l l u s e t h e s a m e

n o t a t i o n X f o r a n o b j e c t X a n d i t s u n d e r l y i n g s e t V X .

A n o p e r a t i o n of t h e g r o u p G on X d e f i n e s a n o p e r a t i o n on

t h e u n d e r l y i n g s e t . M o r e g e n e r a l l y w e h a v e t h e

P R O P O S I T I O N 1 . 1 . 9

f u n c t o r f r o m t h e c a_tegor_~y

of t h e group G

FX ~ ~.'

on X C~

Let F : R --> g' be a c ovariant

to the category R'. An operation

induces a well-defined operation on

Proof: F defines a homomorphism Aut X

By composition with the given homomorphism G

> Aut FX.

> Aut X we

functor F : ~. ISO

obtain a homomorphism G > Aut FX, which is the desired

operation of G on FX.

Remark I. I. I0 If in a given category ~ we only consider

equivalences as morphisms, we obtain a new category ~. Iso

Evidently proposition I. I. 9 is still valid if we are only given a

> ~I. ISO

If F :~ > ~' is a contravariant functor, a left-operation

of G on X induces a right-operation of G on FX, and a right-

operation on X is turned into a left-operation on FX.

Example 1.1.11 Consider the covariant functor

P : Ens > Ens, making correspond to each set X the set PX

Page 12: Introduction to Lie Groups and Transformation Groups

- 6 -

of i t s s u b s e t s , to e a c h m a p X

P X > P X ' of s u b s e t s . L e t X be a G - s e t .

-1 G - s e t by p r o p o s i t i o n 1 .1 .9 . T h e f u n c t o r P

h a v i n g the s a m e e f f e c t a s P

> X' t h e i n d u c e d m a p

T h e n P X is a

: E n s > E n s ,

o n o b j e c t s of E n s , but a s s i g n i n g

-1 to a m a p @ : X > X ' t h e m a p r : P X ' > P X ( i n v e r s e

images of subsets), transforms the G-set X into the G ~ -set

P X .

E x a m p l e 1.1.12

T h e c o n t r a v a r i a n t f u n c t o r

L e t R be a f i x e d o b j e c t of t h e c a t e g o r y

hR(X) = [ X , R ] , = f o

g i v e s f o r a n y l e f t - o p e r a t i o n of G

on the s e t [ X , R] . If T : G

p h i s m , we w r i t e T

i n t o t h e g r o u p of b i j e c t i o n s o f [ X , R ] .

E x a m p l e 1 . 1 . 1 3 L e t A be a r i n g ,

hR : ~ > E n s d e f i n e d by

f o r f E ; [ X t, R] , ~ : X > X ' ,

on X a r i g h t - o p e r a t i o n of G

> Au t X is the g i v e n h o m o m o r -

f o r t h e i n d u c e d h o m o m o r p h i s m of G ~

2l the c a t e g o r y of

l e f t - A - m o d u l e s . A G - m o d u l e X i s d e f i n e d by a n o p e r a t i o n of

G on X by A - l i n e a r m a p s ; i . e . a r e p r e s e n t a t i o n of G in X

in t he u s u a l s e n s e . By p r o p o s i t i o n 1 .1 .9 s u c h a r e p r e s e n t a t i o n

i n d u c e s an o p e r a t i o n of G on the s e t of s u b m o d u l e s of X .

F o l l o w i n g o u r c o n v e n t i o n on t h e c a t e g o r i e s to c o n s i d e r , i t

m a k e s s e n s e to s p e a k of an e l e m e n t of an o b j e c t X .

Page 13: Introduction to Lie Groups and Transformation Groups

-7-

D E F I N I T I O N i. i . 14 A n e l e m e n t x i n t h e G - o b j e c t

c a l l e d i n v a r i a n t o r G - i n v a r i a n t i f x i s f i x e d u n d e r e v e r y

transformation m g

A subset M c

X is

: Tg(X) = x f o r a l l g ~ G .

X i s c a l l e d i n v a r i a n t i f i t i s a n i n v a r i a n t

element of PX under the induced G-operation (example i. I. Ii),

i . e . i f T (M) c M f o r a l l g C G . g

E x e r c i s e 1 . 1 . 1 5 L e t X a n d X ' b e G - o b j e c t s of ~ w i t h

respect to T: G >Aut X and I-' : G >Aut X'.

O-g(~) = T' g o ~ o ~" -I for g G G, ~: X >X' defines an g

operation of G on the set of morphisms from X to X'.

(Example i. 1. IZ is a special case of this situation, if we considert

trivial G-operation on X'.) Show that there is a suitable functor

inducing this operation according to proposition I. I. 9.

1 . 2 E q u i v a r i a n t m o r p h i s m s .

L e t G a n d G ' b e g r o u p s a n d R a c a t e g o r y . S u p p o s e X

w i t h r e s p e c t t o a h o m o m o r p h i s m

w i t h r e s p e c t t o a h o m o m o r p h i s m

a G ' - o b j e c t of ~ w i t h r e s p e c t t o a

O' > Aut X'.

A p-equivariant morphism

P:G

t o b e a G - o b j e c t of

T: G > A u t X , X '

! h o m o m o r p h i s m v :

D E F I N I T I O N I. 2. i

~: X --> X' > G '

Page 14: Introduction to Lie Groups and Transformation Groups

- 8 -

i s a m o r p h i s m ~0: X > X'

f o l l o w i n g d i a g r a m c o m m u t e s

of g s u c h t h a t f o r a l l g ~ G t h e

T g

X ~o > X'

X

I

d T

>X

map.

If G =G' and P = I G, we just speak of anequivariant

E x a m p l e 1. Z. Z If X i s a G - s e t a n d X' a G ' - s e t w i t h t h e

o p e r a t i o n s g i v e n a s i n e x a m p l e 1.1. ~, t h e n a m a p ~ : X > X'

i s P - e q u i v a r i a n t i f a n d o n l y i f t h e f o l l o w i n g d i a g r a m c o m m u t e s

GxX T > X

I ' d , T

G ' x X t . > X t

E x a m p l e 1. Z. 3 L e t P : G - - > G v be a h o m o m o r p h i s m

of g r o u p s . I f G a n d G ' a r e o p e r a t i n g on i t s e l f by l e f t -

t r a n s l a t i o n a s i n e x a m p l e 1.1. 3, t h e n a m a p q~ : G > G ' i s

p - e q u i v a r i a n t i f a n d o n l y i f ~ ( g l g 2 ) = p ( g l ) ~ ( g z ) . T h e r e -

f o r e p i t s e l f i s a n e x a m p l e of a p - e q u i v a r i a n t m a p w i t h

r e s p e c t to t h e l e f t - o p e r a t i o n s .

Page 15: Introduction to Lie Groups and Transformation Groups

- 9 -

If w e c o n s i d e r t h e o p e r a t i o n s of G a n d G '

i n n e r a u t o m o r p h i s m s ,

on i t s e l f b y

commutes, i.e. p is

Example I. Z. 4

t h e n f o r a l l g C G t h e d i a g r a m

G P > G'

I I

G P > G'

p - e q u i v a r i a n t .

If w e c o n s i d e r t h e r i g h t - o p e r a t i o n of t h e

s u b g r o u p H of G on G a s i n e x a m p l e 1 . 1 . 6 , t h e n a h o m o m o r p h i s m

P : G - - > G s e n d i n g H i n t o H c a n b e c o n s i d e r e d a s a p / H -

p / H d e n o t e s t h e r e s t r i c t i o n of p e q u i v a r i a n t m a p , w h e r e

t o H .

E x a m p l e 1. Z. 5 A n y r i g h t - t r a n s l a t i o n of a g r o u p G i s a n

e q u i v a r i a n t m a p of t h e G - s e t G d e f i n e d b y t h e l e f t - t r a n s l a t i o n .

T h i s i s j u s t t h e a s s o c i a t i v i t y l a w i n G .

Example i. Z. 6 If

of G on X, then for any g ~ G the map

- equivariant, where g

automorphism of G defined by g.

Example i. Z. 7 Let X be a G-set.

p ( g ) = "r

T: G > A u t X d e f i n e s a n o p e r a t i o n

T :X >X i s g

[~ : G - - > G d e n o t e s t h e i n n e r g

g(X o) de fines a map p : G

F o r f i x e d x C X o

> X . I f w e c o n s i d e r t h e

Page 16: Introduction to Lie Groups and Transformation Groups

- 1 0 -

o p e r a t i o n of G on G by l e f t - t r a n s l a t i o n , p is an e q u i v a r i a n t

map.

If X, X', X" are G, G,

9:G >G', P' :G'

~0: X >X', ~01 : X'

respectively, then clearly

G"-objects respectively,

> G" homornorphisms and

> X" p, p'-equivariant morphisms

! !

~0 o r is a P o p-equivariant

m o r p h i s m . F o r f i x e d G the G - o b j e c t s of a c a t e g o r y ~ t h e r e -

G f o r e f o r m a c a t e g o r y ~ w i t h t h e e q u i v a r i a n t m o r p h i s m s as

m o r p h i s m s ( D e f i n i t i o n 1 . 2 . 8 ) .

As a c o m p l e m e n t to p r o p o s i t i o n 1 .1 .9 we h a v e

P R O P O S I T ION 1. Z. 9 L e t F : K > K' b e a c o v a r i a n t

functor, X, X' respectively G, G'-objects of ~ , p : G~> G'

a h o m o m o r p h i s m and q~: X > X' a p-equivariant morphism.

!

C o n s i d e r the n a t u r a l o p e r a t i o n s i n d u c e d on F X and F X T h e n

F ( ~ ) : F X > F X ' is P - e q u i v a r i a n t w i t h r e s p e c t to t h e s e

o p e r a t i o n s . F o r a f i x e d g r o u p G th i s d e f i n e s in p a r t i c u l a r a n

extension of the map of proposition 1.1.9, sending G-objects of

into G-objects of K' , to a functor F G ~G ~,G : > .

Page 17: Introduction to Lie Groups and Transformation Groups

-ii-

Proof: The commutative diagram

X ~ ,> X' r

% r [

~o X ~ X -- ' >

f

i s t r a n s f o r m e d by F in t h e c o m m u t a t i v e d i a g r a m

FX F(~) > FX'

r T

F(Tg) i i F ( ' ~

FX F(~) > FX'

p(g)

s h o w i n g t h e P - e q u i v a r i a n c e of F(~) w i t h r e s p e c t to t h e

i n d u c e d o p e r a t i o n on F X a n d F X ' . T h e r e s t i s c l e a r .

If an e q u i v a r i a n t m o r p h i s r n

!

i n v e r s e ~ : X > X in R , i . e .

t h e n ~ i s n e c e s s a r i l y e q u i v a r i a n t ,

G e q u i v a l e n c e in ~ .

T h e r e i s a c a n o n i c a l f u n c t o r V : R G

c o n s i s t s i n f o r g e t t i n g a b o u t t h e G - o p e r a t i o n .

~0 : X > X ' in ~G h a s an

% o ~0 = l x , ~0 o ~ = I x , ,

and ~0 t h e r e f o r e an

> ~ w h i c h

On t h e o t h e r h a n d ,

Page 18: Introduction to Lie Groups and Transformation Groups

-12 -

w e d e f i n e a f u n c t o r I : ~ > ~G b y c o n s i d e r i n g on e v e r y

o b j e c t X of ~ t h e t r i v i a l G - o p e r a t i o n 7: G > A u t X

m a p p i n g G on 1 x . T h e r e f o r e i t m a k e s s e n s e t o s p e a k of

e q u i v a r i a n t m o r p h i s m s ~0: X > R , w h e r e X i s a G - o b j e c t

of ~ a n d R a n a r b i t r a r y o b j e c t of e . W e c a l l s u c h a m a p

a n i n v a r i a n t m o r p h i s m . M o r e p r e c i s e l y w e h a v e t h e

D E F I N I T I O N 1 .2 .11 L e t X be a G - o b j e c t of ~ , R a n

o b j e c t of ~ . A m o r p h i s m ~0 : X > R in ~ i s c a l l e d

i n v a r ! a n t i f f o r a l l g G G t h e f o l l o w i n g d i a g r a m c o m m u t e s

X

X

P R O P O S I T I O N 1. Z. 12 L e t X b e a G - s e t , X ' I

a G - s e t

a n d ~9 : X > X ' a 9 - e q u i v a r i a n t m a p w i t h r e s p e c t t o _a

h o m o r n o r p h i s m 9 : G > G ' . If x 6 X i s G - i n v a r i a n t , t h e n

(x) i s p ( G ) - i n v a r i a n t .

P r o o f : !

Tg(X) = x i m p l i e s T p ( g ) ( ~ ( x ) ) = ~ ( T g ( X ) ) = ~ ( x ) .

Page 19: Introduction to Lie Groups and Transformation Groups

-13-

A s a c o n s e q u e n c e j G - i n v a r i a n t s u b s e t s of X go i n t o

p ( G ) - i n v a r i a n t s u b s e t s of X t .

E x e r c i s e 1 . 2 . 1 3 ~G c a n be c o n s i d e r e d a s a c a t e g o r y of

f u n c t o r s ( i n t e r p r e t G as a c a t e g o r y c o n s i s t i n g of a s i n g l e o b j e c t

and m o r p h i s m s g w i t h g C G w i t h n a t u r a l c o m p o s i t i o n l aw) .

E q u i v a r i a n t m o r p h i s m s a r e t h e n j u s t n a t u r a l t r a n s f o r m a t i o n s .

T h e f u n c t o r F G of p r o p o s i t i o n 1 . 2 . 9 is t he c a n o n i c a l f u n c t o r

i n d u c e d b y F b e t w e e n the c o r r e s p o n d i n g f u n c t o r c a t e g o r i e s .

E x e r c i s e 1. Z .14 If X and X' a r e G - o b j e c t s of ~ , t h e

s e t of m o r p h i s m s f r o m X to X' i s a G - s e t a c c o r d i n g to

e x e r c i s e 1 .1 .15 . T h e i n v a r i a n t e l e m e n t s u n d e r t h i s o p e r a t i o n

a r e the e q u i v a r i a n t m o r p h i s m s X - - > X ' . As a s p e c i a l c a s e ,

t he i n v a r i a n t m o r p h i s m s X > R , w h e r e R i s an o b j e c t of

, a r e t h e i n v a r i a n t e l e m e n t s u n d e r the o p e r a t i o n d e f i n e d in

e x a m p l e 1.1.1Z.

1 . 3

the g i v e n o p e r a t i o n i s the s e t

O r b i t s .

L e t X b e a G - s e t w i t h r e s p e c t t o T: G - > A u t X.

D E F I N I T I O N 1. 3.1 T h e o r b i t o r G - o r b i t of x C X u n d e r

~(x) = [ "rg(X)/g. G G } .

Page 20: Introduction to Lie Groups and Transformation Groups

- 1 4 -

L E M M A I. 3.2. If

o r b i t s f o r m a p a r t i t i o n of

X i s a G - s e t , t h e d i f f e r e n t

X i n t o d i s j o i n t s e t s .

P r o o f : A s x g ~(x) , t he o r b i t s c o v e r X . We

o n l y h a v e to s h o w : i f two p o i n t s x , x ' g X h a v e i n t e r -

s e c t i n g o r b i t s [2(x), ~(x ' ) , t h e n ~(x) = ~(x ' ) . L e t

y ~ ~2(x) (] ~2(x' ): y = Vg(X), y = Vg, (x') . For z ~ ~2(x):z

= "rX(x ) we h a v e z = (-rye -rg_ 1 . - r g , ) ( x ' ) ~ ~ { x ' ) , i . e .

~(x) c ~(x' ), This shows ~(x) = ~2(x' ) .

Let X/G be the set of orbits, ~x:X -. X/G the

canonical map. An orbit is the orbit of any of its points.

This implies ~(Vg(X)) = =(x), i.e. ~ is an invariant map.

More generally we have

L E M M A 1 . 3 . 3 . L e t X be a G - s e t , m , ,

t he c a n o n i c a l m a p on to i t s o r b i t s e t X / G a n d

a r b i t r a r y , s e t . F o r a n y i n v a r i a n t m a p r X -. R

i s o n e a n d o n l y one m a p 4 : X / G -. R s u c h t h a t

~X: X -- X / G

R a n

t h e r e

= ~,Ir x

P r o o f : I f ~ , "rg = r f o r a l l g ~: G , t h e n

i s c o n s t a n t on e a c h o r b i t ~(x) , a n d t h e r e f o r e d e f i n e s a

m a p @: X / G -. R w i t h t h e d e s i r e d p r o p e r t y .

Page 21: Introduction to Lie Groups and Transformation Groups

-15 -

On t h e o t h e r h a n d , a m a p x~ : X / G

Tr x : X > X / G g i v e s a n i n v a r i a n t m a p

h a v e p r o v e d

> R c o m p o s e d w i t h

~o= ~ o ~ W e X"

P R O P O S I T I O N 1. 3 . 4 L e t X be a G - s e t , WX : X > X / G

t h e c a n o n i c a l m a p o n t o i t s s e t of o r b i t s a n d R a n a r b i t r a r y s e t .

T h e c o r r e s p o n d e n c e % ~ - ~ - > % o ~ , s e n d i n ~ m a p s f r o m X / G

t o R i n t o i n v a r i a n t m a p s f r o m X t_~o R i s b i j e c t i v e .

Remark. X/G is characterized by this universal

property up to a canonical bijection by a standard argument.

This property allows therefore the definition of X/G in an

arbitrary category. Of course, there remains to show the

existence of such an orbit-object in a given category.

PROPOSITION I. 3.5 Let X be a G-set, X' a G'-set,

p : G >G' a homomorphism and q~ : X >X' a

9 - e q u i v a r i a n t m a p . T h e n t h e r e e x i s t s o n e a n d o n l y one m a p

~: X/G > X'/G' , such that the following diagram commutes

Q0 X >X

I I

~ x ~ X / G ' > / G t

Page 22: Introduction to Lie Groups and Transformation Groups

-16 -

P r o o f : By t h e u n i v e r s a l p r o p e r t y s t a t e d in p r o p o s i t i o n 1. 3 . 4 ,

it is sufficient to show that w x, o ~ : X > X t/G t is an invariant

map. But

( ~ x ' ~ ~ ) ~ Tg = = x ' ~ ( ~ ~ *g) = ~ x ' o(T;(g) - 0 )

!

= (~r x, o Tp(g ) ) o ~ = w x, o ~2 WXV b e i n g

an i n v a r i a n t m a p . ~ is n o w d e f i n e d as t h e f a c t o r i z a t i o n of

,r x, o ~ through X / G .

E x a m p l e 1. 3. 6 L e t G be a g r o u p a n d H a s u b g r o u p ,

o p e r a t i n g by r i g h t t r a n s l a t i o n s on G ( e x a m p l e 1. 1 .6) . T h e n G / H

d e n o t e s t h e s e t of o r b i t s , t he s e t of l e f t c o s e t s m o d u l o H . L e t

G v be a n o t h e r g r o u p and H v a s u b g r o u p of G v L e t f u r t h e r

: G > G v be a m a p s u c h t h a t ~ ( H ) C H v a n d ~ ( g h )

= ~0(g}~0(h) f o r g ~ G , h ~ H . T h e n ~o/H : H > H' i s a

h o m o m o r p h i s m and ~ is ~ / H - e q u i v a r i a n t . B y p r o p o s i t i o n

1. 3 .5 t h e r e e x i s t s one a n d o n l y one m a p ~0 : G / H > GV/H t

s u c h t h a t t h e d i a g r a m

G ~ > G I

r l Gf f - G ,

G / H > G /H '

Page 23: Introduction to Lie Groups and Transformation Groups

-17-

c o m m u t e s . In t h e c a s e w h e r e H and H' a r e n o r m a l s u b g r o u p s

of G and G' r e s p e c t i v e l y and ~0 i s a h o m o m o r p h i s m , (p is t he

i n d u c e d h o m o m o r p h i s m of the q u o t i e n t g r o u p s .

C o n s i d e r n o w a f i x e d g r o u p G . F o r a n y G - s e t X we h a v e

d e f i n e d the o r b i t s e t X / G . M o r e o v e r by p r o p o s i t i o n 1. 3 .5 a n y

e q u i v a r i a n t m a p (p: X - > X' i n d u c e s one and o n l y one m a p

r X / G > X ' / G . In t h i s w a y we o b t a i n a c o v a r i a n t f u n c t o r

Ens G "~ B : ~ Ens from G-sets to sets: B(X) = X/G, B(~0) : (p.

A standard consequence is that an equivalence ~0: X > X'

in Ens G induces a bijection ~0: X/G .... > X'/G.

Remark. If we consider the "forget-functor" V: Ens G

defined as forgetting about the G-set structure, we see that

w : V >B is a natural transformation of V into B.

To the beginning of this paragraphjfor a G-set X 2 we have

introduced the map

by the map w x : X

can be extended to a map PX --> PX and we interpret now

-i as the map w x , w x : PX > PX. For M c X Q(M) is

just the orbit of M under the induced G-operation on PX.

Explicitly

> Ens

: X > P X , w h i c h c a n a l s o be d e s c r i b e d

-1 X / G as ~ = ~ X ~ T h e r i g h t s i d e

- (-,- (x) l g c G , x e ; M } . g

Page 24: Introduction to Lie Groups and Transformation Groups

-18-

2 ( M ) i s t h e r e f o r e t h e s a t u r a t i o n of M w i t h r e s p e c t t o G ,

i . e . t h e u n i o n of a l l G - o r b i t s of X i n t e r s e c t i n g M .

T h e i n v a r i a n c e of M c X c a n n o w be e x p r e s s e d by

(M) = M. For an arbitrary M c X the set

intersection of all invariant sets containing M.

are the minimal invariant sets.

~ ( M ) i s t h e

T h e o r b i t s

CfK-"

Isotropy groups.

{g e G / = x }.

Let X be a G-set and x C X.

G is a subgroup of G. x

Consider

DEFINITION i. 3.7. G is called the isotropy group of x. x

= Gxg-I PROPOSITI ON I. 3.8. Gg x g

Proof:

h6G x

g Gxg -1 c G gx

g-1 c G G g x g x

For simplicity we write Vg(X) = gx. Then for

we have ghg -I . gx = ghx = gx, which implies

A s g - 1 . g x = x , we h a v e b y t h e s a m e a r g u m e n t

o r Gg x c g G x g - 1 , w h i c h p r o v e s t h e p r o p o s i t i o n .

This can also be expressed in the following way.

the map ~0 : X

by qg(x) = G x .

orbit being a c o n j u g a c y class

Consider

> SG into the set of subgroupsof G, defined

G operates by inner automorphisms on SG, .an

of subgroups. By proposition .

I. 3.8 the diagram

Page 25: Introduction to Lie Groups and Transformation Groups

-19 -

X r > SG

. l [

X ~ > SG

g

c o m m u t e s f o r a l l g ~ G , i . e . ~0 i s a n e q u i v a r i a n t m a p . T h e r e -

f o r e ~0 i n d u c e s f o l l o w i n g p r o p o s i t i o n 1 . 3 . 5 a m a p

N

~0: X / G > S G / G , i . e . t o e v e r y o r b i t of X t h e r e c o r r e s p o n d s

a w e l l - d e f i n e d c o n j u g a c y c l a s s of s u b g r o u p s of G , c a l l e d t h e

o r b i t - t y p e o f t h e o r b i t .

P a r t i c u l a r o r b i t - t y p e s a r e t h e c o n j u g a c y c l a s s e s {e} a n d

G . L e t x be in ~ ( X o ) of o r b i t - t y p e { e } . T h e n f o r x 6 ~ ( x ) 0

t h e r e i s one a n d o n l y one g C G s u c h t h a t gx ~ = x . B e c a u s e

= l g l x = i m p l i e s g~ lg 1 = e a n d gl = g z " glXo gzXo o r g~ o Xo

If Xo i s i n ~] (x o) of o r b i t - t y p e G , t h e n Xo i s G - i n v a r i a n t ,

a n d (Xo) - x o . T h e r e f o r e t h e f i x e d p o i n t s a r e e x a c t l y t h e

o r b i t s of o r b i t - t y p e G .

E x a m p l e 1. 3 .9 . C o n s i d e r t h e f u l l l i n e a r g r o u p G L ( n , JR),

c o n s i s t i n g of t h e r e a l q u a d r a t i c m a t r i c e s w i t h n e n t r i e s h a v i n g

a d e t e r m i n a n t d i f f e r e n t f r o m z e r o , w i t h t h e n a t u r a l o p e r a t i o n

on n~ n . T h e o r i g i n O and i t s c o m p l e m e n t n~ n - { o } a r e t h e

o r b i t s of t h i s o p e r a t i o n . T h e o r b i t - t y p e of O i s G L ( n , ]1%).

Page 26: Introduction to Lie Groups and Transformation Groups

- 2 0 -

E x a m p l e 1. 3 .10. C o n s i d e r IR n w i t h t h e s t a n d a r d e u c l i d e a n

m e t r i c a n d the c o r r e s p o n d i n g o r t h o g o n a l g r o u p O ( n , JR). T h e

o r b i t s of t h e n a t u r a l o p e r a t i o n a r e t he s p h e r e s w i t h t he o r i g i n

as c e n t e r . T h e i s o t r o p y g r o u p of a po in t d i f f e r e n t f r o m the

o r i g i n i s i s o m o r p h i c to t he o r t h o g o n a l g r o u p O(n-1 , JR).

E x a m p l e 1. 3.11. L e t X d e n o t e t h e c o m p l e x p l a n e w i t h a

p o i n t a t i n f i n i t y a d j o i n e d . T h e g r o u p of t r a n s f o r m a t i o n s of t he

az +b t y p e z " " > w i t h a, b, c d 6 ~; a n d ad - bc ~ O

cz + d

o p e r a t e s on X . X is the o r b i t of a n y po in t x ~ X .

E x a m p l e 1. 3.1Z. C o n s i d e r t h e o p e r a t i o n of a g r o u p G on

i t s e l f by i n n e r a u t o m o r p h i s m s . T h e f i x p o i n t s a r e t he e l e m e n t s

of t he c e n t e r C G . We h a v e a l r e a d y c o n s i d e r e d t h e i n d u c e d

G - o p e r a t i o n on the s e t SG of s u b g r o u p s of G . T h e o r b i t of a

s u b g r o u p i s i t s c o n j u g a c y c l a s s . T h e r e f o r e t he i n v a r i a n t s u b -

g r o u p s of G a r e e x a c t l y t h e f i x p o i n t s u n d e r t h i s o p e r a t i o n .

M o r e o v e r i t f o l l o w s t h a t t h e d i f f e r e n t c o n j u g a c 7 c l a s s e s f o r m

a p a r t i t i o n of S G .

T h e e f f e c t of an e q u i v a r i a n t m a p on t h e i s o t r o p y g r o u p s

i s d e s c r i b e d by the

Page 27: Introduction to Lie Groups and Transformation Groups

-21-

PROPOSITION i. 3.13. L e t X be a G - s e t , X v G' a -set,

P: G >G' a homomorphism and ~0 : X >X' a

p-equivariant m a p . T h e n p (G x) c G ~ ( x ) .

Proof: Let g ~ G , i.e. gx= x. Then x

p (g)~0(x) = ~0 (gx) = ~(x) i.e. p(g) ~ G' ' ( p ( x ) "

G ! E x e r c i s e 1. 3 . 1 4 . L e t X b e a G - s e t , X v a - s e t ,

p: G > G' "~ a h o m o m o r p h i s m a n d ~o : X / G > X ' / G ' a m a p .

S t u d y t h e c o n d i t i o n s u n d e r w h i c h ~ i s i n d u c e d by a p - e q u i v a r i a n t

m a p ~0 : X > X t i n t h e s e n s e of p r o p o s i t i o n 1 . 3 . 5 .

Exercise I. 3. 15. For a G-set X consider the map

= Tr X o ir X : PX > PX defined above. Show that

h a s t h e f o l l o w i n g p r o p e r t i e s :

a) ~ (~)) = (~ fo~.the empty set r of X

b) M c ~ (M) f o r M c X

f o r a f a m i l y ( M x ) x 6 A of M X c X .

Page 28: Introduction to Lie Groups and Transformation Groups

-ZZ -

T h e r e f o r e Q i s a " K u r a t o w s k i - o p e r a t o r " on X and d e f i n e s

a t o p o l o g y on X a c c o r d i n g to the d e f i n i t i o n : M c X is c l o s e d

if and o n l y if ~ ( M ) = M . T h i s r e m a i n s t r u e i f we c o n s i d e r

an a r b i t r a r y e q u i v a l e n c e r e l a t i o n R on X (no t n e c e s s a r i l y

d e f i n e d by a g r o u p G) and the map ~= ~-I o ~r : PX x X

>PX,

w h e r e lr : X x

> X / R is the c a n o n i c a l m a p onto t h e q u o t i e n t

s e t X / R . Show t h a t m o r e g e n e r a l l y f o r an a r b i t r a r y r e l a t i o n

R on a set X the "saturation-operator " ~: PX > PX

d e f i n e d by

(M) = [ y ~ X / x R y f o r s o m e x ~ M ]

f o r M c X s a t i s f i e s t he p r o p e r t i e s 1) to 4) if a n d o n l y i f R

is a r e f l e x i v e and t r a n s i t i v e r e l a t i o n on X .

E x e r c i s e 1 . 3 . 1 6 . C o n s i d e r t he t o p o l o g y d e f i n e d in e x e r c i s e

1. 3.15 on a s e t X e q u i p p e d w i t h an e q u i v a l e n c e r e l a t i o n R .

Show t h e f o l l o w i n g p r o p e r t i e s :

1) M c X is c l o s e d i f a n d o n l y if M is a u n i o n of

e q u i v a l e n c e c l a s s e s ;

2) M c X is closed if and only if M is open.

Page 29: Introduction to Lie Groups and Transformation Groups

- Z 3 -

Wha t a r e t h e c o n d i t i o n s on X / R f o r t h e t o p o l o g y in q u e s t i o n to s a t i s f y

i)

z)

3)

Exercise i. 3.17. Let

t h e s e c o n d c o u n t a b i l i t y a x i o m ,

t o be c o m p a c t ,

t o be c o n n e c t e d ?

X be a G - s e t , R a n a r b i t r a r y s e t a n d ~ : X ' > R

a map. Suppose X equipped with the topology defined in exercise I. 3.15 and

R topologized by the discrete topology. Then (~ is invariant if and only if

(~ is continuous.

I. 4 Particular G-sets.

Let X be a G-set, defined by a homomorphism 7 : G

define some particular properties an operation can have.

7 is an effective operation if 7 D E F I N I T I O N 1 .4 . 1

Ker T = {e}.

> B i j X . We

is injective, i.e.,

W e o b s e r v e t h a t K e r T = N G x , an e l e m e n t of K e r T x C X

exactly an element of G contained in every isotropygroup. If

e f f e c t i v e , t h e n t h e r e e x i s t s a f a c t o r i z a t i o n T t h r o u g h G / K e r

i Bij x

G/Ker T

a n d G / K e r T o p e r a t e s e f f e c t i v e l y on X .

Example i. 4. Z The operation [~ of a group O

has the center CG = Ker ~ as kernel.

being

T is n o t

T

by inner automorphisms

Page 30: Introduction to Lie Groups and Transformation Groups

- 2 4 -

D E F I N I T I O N 1 . 4 . 3

x 6 X i m p l i e s g = e .

T h i s m e a n s t h a t a t r a n s f o r m a t i o n

T i s a f r e e o p e r a t i o n , i f Tg(X) = x f o r s o m e

T f o r g ~ e h a s n o f i x p o i n t . g

F r e e m e a n s " f r e e of f i x p o i n t s " . T h e i s o t r o p y g r o u p i s r e d u c e d t o t h e

n e u t r a l e l e m e n t : G = { e } f o r e v e r y x ~ X . X i s a l s o c a l l e d a x

" G - p r i n c i p a l s e t " . N o t e t h a t a f r e e o p e r a t i o n i s e f f e c t i v e .

E x a m p l e 1 . 4 . 4 T h e o p e r a t i o n of G on G b y l e f t - t r a n s l a t i o n s i s f r e e .

L e t H b e a s u b g r o u p of G ,

o p e r a t i o n i s f r e e .

D E F I N I T I O N 1 . 4 . 5 T

t h e r e e x i s t s a g ~ G s u c h t h a t

t h e e l e m e n t g i s u n i q u e .

o p e r a t i n g on G b y r i g h t - t r a n s l a t i o n s . T h i s

i s a t r a n s i t i v e o p e r a t i o n , i f f o r x 1 , x z ~ X

7g(Xl) = x z , s i m p l 7 t r a n s i t i v e , i f , m o r e o v e r ,

A s i m p l y t r a n s i t i v e o p e r a t i o n i s f r e e . C o n v e r s e l y , a f r e e o p e r a t i o n

i s s i m p l y t r a n s i t i v e on e a c h o r b i t . B e c a u s e i f x = g iXo ( i = 1, Z) , t h e n

-I -i -i ={e}, i.e. gl = gz" Xo = gz x = gz glXo and therefore gz gl C Gxo

The definition of a transitive operation can also be put in the following

form: there exists an element x C X such that ~(Xo) = X. X is then O

the orbit of each point x C X. This shows that the set of orbits X/G is

a point. This property allows us to define the transitivity of a G-operation

in an arbitrary category, as so~n as the notion of point is defined.

DEFINITION i. 4. 6 A G-set X is called homogeneous, if G

transitively on X.

o p e r a t e s

Page 31: Introduction to Lie Groups and Transformation Groups

- 2 5 -

E x a m p l e 1 .4 . 7 T h e o r t h o g o n a l g r o u p O(n, JR) o p e r a t e s t r a n s i t i v e l y

on the un i t s p h e r e S n-1 in IR n .

M o r e g e n e r a l l y , an o p e r a t i o n of G on X d e f i n e s a t r a n s i t i v e o p e r a t i o n

on e a c h G - o r b i t .

E x a m p l e 1 .4 . 8 T h e g r o u p of h o l o m o r p h i s m s of t h e un i t d i s k in t he

c o m p l e x p l a n e o p e r a t e s t r a n s i t i v e l y .

A f u n d a m e n t a l e x a m p l e of a h o m o g e n e o u s G - s e t is o b t a i n e d in t he

f o l l o w i n g w a y . C o n s i d e r a g r o u p G and a s u b g r o u p H o p e r a t i n g on G by

r i g h t - t r a n s l a t i o n s . T h e n we c a n d e f i n e an o p e r a t i o n of G on t h e o r b i t s e t

G / H . T h e l e f t t r a n s l a t i o n L : G > G s a t i s f i e s L g ( v H ) = g v H and g

t h e r e f o r e d e f i n e s by r ( v H ) = g v H a m a p �9 : G / H > G / H . r is g g

t he d e s i r e d o p e r a t i o n , m a k i n g G / H a G - s e t , w h i c h i s e v i d e n t l y h o m o g e n e o u s .

R e m a r k . T h e i s o t r o p y g r o u p of H i s H .

We s h a l l s h o w t h a t f o r an a r b i t r a r y h o m o g e n e o u s G - s e t X t h e r e

e x i s t s a s u b g r o u p H of G and an e q u i v a l e n c e ~ : G / H > X of G - s e t s ,

w h e r e G / H is c o n s i d e r e d as a G - s e t in t he s e n s e i n d i c a t e d .

F i r s t l e t X be an a r b i t r a r y G - s e t and x ~ X . We put H = G and O x o

d e f i n e ~ : G / H > ~ ( X o ) X by r = g x o .

L E M M A 1 . 4 . 9 @

P r o o f : F o r V ~ G

( q~ o - r y ) ( g H ) = ~0 ( "vgH) =

t he e q u i v a r i a n c e of

i s e q u i v a r i a n t and i n j e c t i v e .

one has(T~o~)(gH) =v v(gx o) = Vgx o and

�9 ~ = ~D o 0 " i . e . Vgx o , and t h e r e f o r e v V V '

~ . T o s h o w t h e i n j e c t i v i t y , c o n s i d e r g l ' gz ~ G

Page 32: Introduction to Lie Groups and Transformation Groups

- Z 6 -

s u c h t h a t q~ (g l H) = O ( g z H ) .

-1 a n d t h e r e f o r e gz gl E; H . B u t gl

I f X i s h o m o g e n e o u s , t h e n

We h a v e p r o v e d

This means glXo = gZXo - i

o r gz glXo = Xo

E; gz H implies gl H = gz H , q . e . d .

Q ( x o) = X a n d cp i s a n e q u i v a l e n c e .

P R O P O S I T I O N 1 . 4 . 1 0 L e t X be a h o m o g e n e o u s G - s e t a n d s e l e c t

x 0

on G / H i n d u c e d by t h e l e f t - t r a n s l a t i o n of G . T h e n t h e m a p @ : G / H

d e f i n e d by ~ ( g H ) = g x o i s a n e q u i v a l e n c e of G - s e t s .

T h e g r o u p H d e p e n d s on t h e c h o i c e of x o 6 X , b u t t h e c o n j u g a c y

c l a s s of H i s w e l l - d e f i n e d by t h e o p e r a t i o n i n v i e w of t h e t r a n s i t i v i t y .

6 X . Le___tt H be t h e i s o t r o p y g r o u p of x o a n d c o n s i d e r t h e G - o p e r a t i o n

> X

We c o n c l u d e t h i s c h a p t e r b y s o m e r e m a r k s on e f f e c t i v e a n d t r a n s i t i v e

o p e r a t i o n s on s e t s . I n v i e w of t h e p r e c e d i n g p r o p o s i t i o n , w e c a n c o n s i d e r

w i t h o u t l o s s of g e n e r a l i t y G - s e t s of t h e t y p e G / H , w h e r e H i s a s u b g r o u p

of G . T h e k e r n e l K of t h e h o m o m o r p h i s m d e f i n i n g t h e o p e r a t i o n of G

on G / H i s t h e i n t e r s e c t i o n of t h e i s o t r o p y g r o u p s , t h e r e f o r e

K = N gHg I .

g C G

K is an invariant subgroup of G

an invariant subgroup of G with

= i l i gH g l ' H f o r s o m e ~ L i n v i e w of

s i g n i f i e s L c K . T h e r e f o r e w e h a v e

c o n t a i n e d in H . C o n v e r s e l y , i f L i s

L c H , t h e n L c K , b e c a u s e

L g = g L a n d l g H = g H w h i c h

Page 33: Introduction to Lie Groups and Transformation Groups

-27 -

PROPOSITION I. 4. Ii Let G be a sroup, H a subgroup and_consider

the G-operation on G/H induced by the left-translations of G. The kernel

K of the homomorphism ~: G > Bij {G/H) definin~ this operation is

the g r e a t e s t i n v a r i a n t s u b g r o u p of G c o n t a i n e d in H and c a n be d e s c r i b e d

a s

-I K = fl gHg

g~G

C O R O L L A R Y 1.4. 12 G o p e r a t e s e f f e c t i v e l y on G / H if and only if

H c o n t a i n s no i n v a r i a n t s u b g r o u p of G d i f f e r e n t f r o m { e } .

Exercise I. 4.13 Study the effect of the choice of the point x o G X

in proposition I. 4. i0.

Page 34: Introduction to Lie Groups and Transformation Groups

- 2 8 -

C h a p t e r Z. G - S P A C E S

Z. 1 D e f i n i t i o n and e x a m p l e s .

D E F I N I T I O N Z, 1.1 A t o p o l o g i c a l g r o u p G is a g r o u p w h i c h is a

t o p o l o g i c a l s p a c e s u c h t h a t t he m a p s

G x G > G

( g l ' gz ) ~ g lg2

, G > G

-1

a r e c o n t i n u o u s .

D E F I N I T I O N Z. 1. Z L e t G b e a t o p o l o g i c a l g r o u p . A G - s p a c e X

is a t o p o l o g i c a l s p a c e w h i c h i s a G - s e t w i t h r e s p e c t to a m a p G x X > X .

M o r e o v e r t h i s m a p i s s u p p o s e d to be c o n t i n u o u s . T h e p a i r (G,X) i s a l s o

c a l l e d a t o p o l o g i c a l t r a n s f o r m a t i o n g r o u p .

I t i s c l e a r t h a t t he g r o u p G is a c t i n g by h o m e o m o r p h i s m s on X ,

so t h a t X i s a G - o b j e c t in t he c a t e g o r y of t o p o l o g i c a l s p a c e s . We

r e q u i r e , m o r e o v e r , the c o n t i n u i t y of t h e m a p G x X > X .

L e t G a n d G' be t o p o l o g i c a l g r o u p s .

D E F I N I T I O N Z. 1. 3 A h o r n o m o r p h i s m 9 : G > G w of t o p o l o g i c a l

g r o u p s i s a h o m o m o r p h i s m of g r o u p s , w h i c h i s c o n t i n u o u s .

L e t X be a G - s p a c e , X' G' a a - s p a c e a n d P: G > G '

h o m o m o r p h i s m .

Page 35: Introduction to Lie Groups and Transformation Groups

-Z9 -

DEFINITION Z. i. 4 A 9-equivariant map ~: X > X' is a

p -equivariant map in the sense of definition I. 2.1 which is continuous.

The map r makes the following diagram commutative

G x X > X

[ [ px ] $

X' X' G' x >

~0 i s c o n t i n u o u s and t h e r e f o r e a l s o P

the u n i v e r s a l p r o p e r t y of t he p r o d u c t t o p o l o g y .

An e q u i v a l e n c e of G - s p a c e s X, X t is an e q u i v a l e n c e

of G - s e t s w h i c h i s a h o m e o m o r p h i s m .

E x a m p l e Z. 1 .5 L e t G be a t o p o l o g i c a l g r o u p .

x @, as follows immediately by

~:X >X'

T h e o p e r a t i o n of

G on G by l e f t o r r i g h t - t r a n s l a t i o n s m a k e s t he s p a c e G a G - s p a c e .

T h e o p e r a t i o n of G on G by i n n e r a u t o m o r p h i s m s a l s o m a k e s G a

G - s p a c e .

R e m a r k . L e t X be a t o p o l o g i c a l s p a c e and G the g r o u p of

h o m e o m o r p h i s m s of X . T h e d i s c r e t e t o p o l o g y on G c e r t a i n l y m a k e s

X a G - s p a c e .

L e t X be a c o m p a c t G - s p a c e . C o n s i d e r t h e g r o u p Aut X

of h o m e o m o r p h i s m s w i t h t he c o m p a c t - o p e n t o p o l o g y . I t c a n be p r o v e d

t h a t Au t X i s a t o p o l o g i c a l g r o u p , a n d t h a t t h e m a p G x X > X is

continuous .

Page 36: Introduction to Lie Groups and Transformation Groups

- 3 0 -

2. Z Orbitspace.

Let G be a topological group and X a G-space. Consider the set

of orbits X/G and the canonical map w : X > X/G. The quotient x

topology on X/G is the strongest topology on X/G making w x continuous.

T h e o p e n s e t s of X / G a r e t h e s e t s h a v i n g a n o p e n s a t u r a t i o n in X .

D E F I N I T I O N Z. Z. 1 T h e o r b i t s p a c e X / G of t h e G - s p a c e X i s

t h e s e t of o r b i t s w i t h t h e q u o t i e n t t o p o l o g y .

P R O P O S I T I O N Z. Z. Z w : X : > X / G i s a n o p e n m a p . T h e X ....

t o p o l o g y on X / G i s c h a r a c t e r i z e d a s b e i n 8 t h e u n i q u e t o p o l o g y m a k i n g

t h e m a p w c o n t i n u o u s a n d o p e n . X

P r o o f : L e t M C X be o p e n . 7g (M) i s o p e n a n d t h e r e f o r e a l s o

(~rxl o Wx)(lVi ) b e i n g t h e u n i o n of a l l s e t s T ( M ) . B u t t h i s ~(M) ' g

m e a n s t h a t ~rx(M) i s o p e n by d e f i n i t i o n of t h e q u o t i e n t t o p o l o g y . T o

p r o v e t h e s e c o n d s t a t e m e n t , c o n s i d e r m o r e g e n e r a l l y a m a p ~ : X > Y

f r o m X to a s e t Y . T w o t o p o l o g i e s on Y m a k i n g b o t h ~ c o n t i n u o u s

a n d o p e n n e c e s s a r i l y c o i n c i d e . B e c a u s e i f O i s a n o p e n s e t of Y in t h e

i s o p e n i n X a n d ~ ( ~ - 1 ( O ) ) = O i s a l s o o p e n i n one t o p o l o g y , ~ - 1 ( 0 )

t h e o t h e r t o p o l o g y .

Example Z. Z. 3 L e t G be a t o p o l o g i c a l g r o u p a n d H a s u b g r o u p

of G w i t h t h e r e l a t i v e t o p o l o g y . T h e o p e r a t i o n of H on G b y r i g h t

translations makes G an H-space. The canonical map w G : G > G/H

onto the orbitspace is continuous and open.

Page 37: Introduction to Lie Groups and Transformation Groups

- 3 1 -

T h e q u o t i e n t t o p o l o g y on X / G c a n a l s o b e c h a r a c t e r i z e d b y t h e

f o l l o w i n g p r o p e r t y . L e t R b e a n a r b i t r a r y t o p o l o g i c a l s p a c e . T h e

m a p x~--------> ~ o lr , s e n d i n g c o n t i n u o u s m a p s x~ : X / G - - > R i n t o

c o n t i n u o u s m a p s X > R i s i n j e c t i v e .

t h e r e f o r e n o w b e c o m p l e t e d b y

P R O P O S I T I O N Z. Z. 4 L e t G

~r : X x

s p a c e .

from X/G t o R

bijective.

PROPOSITION Z. Z. 5

a homomorphism and X, X'

T h e p r o p o s i t i o n 1. 3. 4 c a n

b e a t o p o l o g i c a l ~ r o u p , X a G - s p a c e ,

> X / G t h e c a n o n i c a l m a p o n t o t h e o r b i t s p a c e a n d R a n a r b i t r a r y

T h e c o r r e s p o n d e n c e $ ~ qt o ~ , s e n d i n 8 c o n t i n u o u s m a p s

o n t o i n v a r i a n t c o n t i n u o u s m a p s f r o m X t o R i s

map 4: X > X' induces one and only one continuous map

> X'/G' such that the loll owing diagram commutes

Let G, G' be topological groups, p: G-->G'

respectively G, G'-spaces. A p-equ/variant

~: X/G

X 0 > X'

I i ~x [ 7fX! I

X/G - ~ > X'/G'

Proof: There is only t o show t h e continuity of ~ . But t h i s is a

consequence of the continuity of ~r , o (~ in view of proposition Z. Z. 4. x

Exercise 2.2.6 Consider a G-space X with a transitive operation

of G on X S e l e c t x 6 X a n d l e t H b e t h e i s o t r o p y g r o u p of x �9 0 0

Page 38: Introduction to Lie Groups and Transformation Groups

-32-

D e f i n e , as in p r o p o s i t i o n 1 .4 . 10, a m a p ~ : G / H > X . T h i s m a p i s an

e q u i v a l e n c e of G - s e t s and c o n t i n u o u s , bu t no t n e c e s s a r i l y a h o m e o m o r p h i s m .

T h e f o l l o w i n g c o u n t e r - e x a m p l e i s t a k e n f r o m B o u r b a k i . L e t ]R o p e r a t e on

TZ = IR~-/~Z by 7x(x I, x 2) = (x I + a(X), x 2 + a(8•)) where X C IR,

a:]R > ]R/Z the canonical homomorphism and Z

(x 1, x 2) ~ 3" ,

i r r a t i o n a l n u m b e r . F i x i n g (x 1, xz) 6 T z we d e f i n e

1 e m i ~ a 1 .4 . 9, o b t a i n i n g a c o n t i n u o u s i n j e c t i o n .

X = ~ (x 1, x Z) w i t h t h e r e l a t i v e t o p o l o g y . ~ : ]R

b i j e c t i o n , bu t n o t a h o m e o m o r p h i s m . B e c a u s e X i s d e n s e in

c a n n o t be h o m e o m o r p h i c to t he c o m p l e t e s p a c e ]R.

0 an

~:]R > T z as in

C o n s i d e r t he i m a g e

> X is a c o n t i n u o u s

T Z and

E x e r c i s e Z. Z. 7 L e t G be a t o p o l o g i c a l g r o u p a n d H an o p e n s u b -

g r o u p . T h e n H is c l o s e d in G . ( C o n s i d e r t h e p a r t i t i o n of G d e f i n e d

by t h e e l e m e n t s of G / H . )

E x e r c i s e Z. Z. 8 L e t G be a c o n n e c t e d t o p o l o g i c a l g r o u p a n d U a

-1 n e i g h b o r h o o d of e . T h e n e i g h b o r h o o d V = U N U h a s t he p r o p e r t i e s :

Vc U, V "I V n = V. Consider the sets ={gl .... gn/gi CV, i = l,...,n}.

The union V ~176 = UV n is a group, the group generated by V. e is an

inner point of V O~ as e ~ V cV c~ Any point of V ~176 is therefore an

inner point, the left-translations being homeomorphisms leaving V ~176

invariant. V ~176 is an open subgroup of G and therefore closed. As G

is connected, this shows V ~176 = G. This proves that G is generated by

an arbitrary neighborhood U of e.

Page 39: Introduction to Lie Groups and Transformation Groups

- 3 3 -

E x e r c i s e 2 . 2 . 9 Let G be a topological group and G the connected o

component of the neutral element e C G, the identity component of G.

Show that G o is a closed invariant subgroup of G

Page 40: Introduction to Lie Groups and Transformation Groups

- 3 4 -

C h a p t e r 3. G - M A N I F O L D S

This chapter introduces the fundamental notions of these lectures.

In the following chapters, we proceed to a detailed study of G-manifolds

and Lie groups.

3. i Definition and examples of Lie ~roups.

Manifold will mean a Hausdorff, but not necessarily connected

manifold.

DEFINITION 3. I. I A Li e group is a group G which is an analytic

manifold such that the maps

G x G > G G > G

(gl ' gz ) ~ glgz g ~ g-1

are analytic.

C ~ Differentiable shall always mean . If one replaces analycity

by differentiability in the definition above, it doesn't change anything;

i. e. , analycity is then automatically satisfied (Pontrjagin, [14] ,

p. 191). For a great part of the theory, we shall only make explicit use

of d i f f e r e n t i a b i l i t y .

In the d e f i n i t i o n a b o v e ,

manifold.

analytic manifold means real analytic

Replacing it by complex analytic manifold, one obtains the

notion of a complex Lie group.

Page 41: Introduction to Lie Groups and Transformation Groups

- 3 5 -

T w o a r b i t r a r y c o n n e c t e d n e s s c o m p o n e n t s G 1, 0 2 of a L i e g r o u p O

a r e a n a l y t i c a l l y d i f f e o m o r p h i c . F o r gl ~ O l ' g2 6 O 2 t h e m a p

~-~-~> g 2 g l l g i s a n e x a m p l e of s u c h a d i f f e o m o r p h i s m . A l l t h e g

c o n n e c t e d n e s s c o m p o n e n t s t h e r e f o r e h a v e t h e s a m e d i m e n s i o n a n d i t

m a k e s s e n s e t o s p e a k of t h e d i m e n s i o n of a L i e g r o u p .

E x a m p l e 3. I. 2 T h e a d d i t i v e g r o u p ]R n o r (~ n . 3rn ] R n / Z n , = ;

G L ( n , IR ) - t h e g r o u p of q u a d r a t i c m a t r i c e s w i t h n r o w s a n d d e t e r m i n a n t

d i f f e r e n t f r o m z e r o .

E x a m p l e B. 1. 3 L e t G b e a L i e g r o u p a n d T G t h e t a n g e n t b u n d l e .

T h e n T G i s a L i e g r o u p . T h i s f o l l o w s f r o m t h e f a c t t h a t T i s a f u n c t o r

c o n s e r v i n g d i r e c t p r o d u c t s .

E x a m p l e S. 1 . 4 L e t G 1 a n d G 2 b e L i e g r o u p s . T h e n t h e d i r e c t

p r o d u c t G 1 x G 2 i s a L i e g r o u p .

D E F I N I T I O N 3. 1 . 5 L e t G a n d G ' b e L i e g r o u p s . A h o r n o m o r p h i s m

p : G > G of Lie groups is a homomorphism of groups which is analytic.

Remark. It is to be noted that in the literature the term homomorphism

is often reserved for analytic homomorphisms of groups such that the mEp

p: G > 9 (G) is open.

Example 3. i. 6 Let V be an n-dimensional vector space over JR.

T h e c h o i c e of a b a s e e 1 . . . . , e n of V d e f i n e s a n i s o m o r p h i s m

G L ( V ) > G L ( n , IR) of g r o u p s , p e r m i t t i n g u s t o d e f i n e a L i e g r o u p

s t r u c t u r e on t h e g r o u p of l i n e a r a u t o m o r p h i s m s G L ( V ) of V . T h i s

Page 42: Introduction to Lie Groups and Transformation Groups

- 3 6 -

s t r u c t u r e i s i n d e p e n d e n t of the c h o i c e of the b a s e . B e c a u s e t w o c h o i c e s

of t he b a s e of V c o r r e s p o n d t o t w o i s o m o r p h i s m s G L ( V ) > G L ( n , JR)

w h i c h d i f f e r b y an i n n e r a u t o m o r p h i s m of G L ( n , ]1%).

E x a m p l e 3. 1. 7 L e t G b e a L i e g r o u p and TG the t a n g e n t b u n d l e

w i t h i t s L i e g r o u p s t r u c t u r e ( e x a m p l e 3. 1. 3). C o n s i d e r t he t a n g e n t s p a c e

G e of G a t t he i d e n t i t y e of G and i t s n a t u r a l i n j e c t i o n j : G > T G . e

If G e i s e q u i p p e d w i t h the L i e g r o u p s t r u c t u r e d e f i n e d b y a d d i t i o n , j i s

a h o m o m o r p h i s m of L i e g r o u p s . T h e n a t u r a l p r o j e c t i o n p : T G > G ,

a s s i g n i n g to e a c h t a n g e n t v e c t o r i t s o r i g i n , i s a l s o a h o m o m o r p h i s m of

L i e g r o u p s . T h e s e q u e n c e

P O >G ~ > TG >G > e

e

i s e x a c t . M o r e o v e r , t h e r e e x i s t s a s p l i t t i n g , t he n a t u r a l i n j e c t i o n

s : G > T G , s a t i s f y i n g p o s = 1G.

E x e r c i s e 3 . 1 . 8 L e t G be a l o c a l l y E u c l i d e a n t o p o l o g i c a l g r o u p ,

i. e. , h a v i n g a n e i g h b o r h o o d of the i d e n t i t y e h o m e o m o r p h i c to an o p e n

s u b s e t of an E u c l i d e a n s p a c e . T h e i d e n t i t y c o m p o n e n t G O of G h a s a

c o u n t a b l e b a s e . T h e r e f o r e G i s p a r a c o m p a c t .

Exercise 3.1.9

Exercise 3.1. I0

open subgroup of G.

A L i e g r o u p i s l o c a l l y c o n n e c t e d .

T h e i d e n t i t y c o m p o n e n t G o of a L i e g r o u p i s an

Page 43: Introduction to Lie Groups and Transformation Groups

- 3 7 -

3 . 2 D e f i n i t i o n a n d e x a m p l e s of G - m a n i f o l d s .

D E F I N I T I O N 3. 2 . 1 L e t G b e a L i e g r o u p . A G - m a n i f o l d X i s a

d i f f e r e n t i a b l e m a n i f o l d X w h i c h i s a G - s e t w i t h r e s p e c t t o a m a p

G x X > X . M o r e o v e r t h i s m a p i s s u p p o s e d t o b e d i f f e r e n t i a b l e . T h e

p a i r (G , X) i s a l s o c a l l e d a L i e t r a n s f o r m a t i o n g r o u p .

T h e g r o u p G i s a c t i n g b y d i f f e o m o r p h i s m s on X , s o t h a t X i s a

G - o b j e c t i n t h e c a t e g o r y of d i f f e r e n t i a b l e m a n i f o l d s . M o r e o v e r t h e

d i f f e r e n t i a b i l i t y of t h e m a p G x X

!

L e t X b e a G - m a n i f o l d , X a

h o m o m o r p h i s m of L i e g r o u p s .

> X i s r e q u i r e d .

v GI G -manifold, and p : G > a

D E F I N I T I O N 3. 2. ~ A 9 - e q u / v a r i a n t m a p ~ : X > X ~ i s a

9 - e q u i v a r i a n t m a p i n t h e s e n s e of d e f i n i t i o n 1. Z. 1 w h i c h i s d i f f e r e n t i a b l e .

E x a m p l e B. 2. 3 I R - m a n i f o l d s a r e of f u n d a m e n t a l i m p o r t a n c e f o r

t h e t h e o r y of G - m a n i f o l d s . T h e y h a v e r e c e i v e d a s p e c i a l n a m e : o n e -

p a r a m e t e r g r o u p s of t r a n s f o r m a t i o n s . W e s h a l l t a k e u p t h e s t u d y of

o n e - p a r a m e t e r g r o u p s of t r a n s f o r m a t i o n s in c h a p t e r 5.

E x a m p l e 3 . 2 . 4 T h e o p e r a t i o n of a L i e g r o u p G on t h e u n d e r l y i n g

m a n i f o l d b y l e f t - t r a n s l a t i o n s d e f i n e s G a s a G - m a n i f o l d . T h e o p e r a t i o n

of G on i t s e l f b y i n n e r a u t o m o r p h i s m s a l s o d e f i n e s G a s a G - m a n i f o l d .

E x a m p l e 3. Z. 5 L e t V b e a f i n i t e - d i m e n s i o n a l ] R - v e c t o r s p a c e .

GL(V) is then a Lie group. Let G be a Lie group and 7: G >GL(V)

a homomorphism. We call 7 a representation of the Lie group G in

V,

Page 44: Introduction to Lie Groups and Transformation Groups

-38-

Remark.

compact G-space X the continuity of the map G x X

expressed by the continuity of the homomorphism G

As observed at the end of section 2. I, for a locally

>X canbe

> Aut X defining

the operation, if Aut X is equipped with the compact-open topology.

One would like to describe similarly the differentiability of the map

G x X--> X for a G-space X. But for this the group Aut X of diffeo-

morphisms of X should first be turned into a manifold (modeled over

a suffi'ciently general topological vectorspace), which presents serious

difficulties. Nevertheless we shall use this viewpoint for heuristical

remarks.

Example 3.2.6 Let X be a G-manifold and T the functor assigning

to each differentiable manifold its tangent bundle. Then TX is a

TG-manifold, because T conserves direct products. G being a subgroup

of TG (example 3. i. 7), TX is also a G-manifold. This justifies many

classical notations in the theory of transformation groups, which at

first sight seem abusively short.

Example 3. Z. 7 Let G and G' be Lie groups and G' a G-manifold

w i t h r e s p e c t t o an o p e r a t i o n T : G > Au t G ' . T h e n t h e s e m i - d i r e c t

p r o d u c t G" xwG d e f i n e d in e x a m p l e 1 .1 .7 i s a L i e g r o u p w i t h t he a n a l y t i c

s t r u c t u r e of t he p r o d u c t - m a n i f o l d . T h i s g e n e r a l i z e s e x a m p l e 3. 1.4~

w h i c h c o r r e s p o n d s to t he t r i v i a l o p e r a t i o n of G on G ' .

L e t V be a f i n i t e d i m e n s i o n a l ] R - v e c t o r s p a c e . T h e g r o u p of a f f i n e

m o t i o n s of V , w h i c h i s t h e s e m i - d i r e c t p r o d u c t V x G L ( V ) w i t h r e s p e c t

Page 45: Introduction to Lie Groups and Transformation Groups

- 3 9 -

to t h e n a t u r a l o p e r a t i o n of GL(V)

E x a m p l e 3. 2 . 8

s e q u e n c e

on V, i s a L i e g r o u p by t h e p r e c e d i n g .

L e t G be a L i e g r o u p a n d c o n s i d e r t he e x a c t

O > G e

J >TG P > G >e

of e x a m p l e 3. 1. 7.

i n j e c t i o n of G

G e d e f i n e d by

T h e s p l i t t i n g s : G > TG d e f i n e d by the n a t u r a l

g i v e s r i s e to an o p e r a t i o n of G on t h e a d d i t i v e g r o u p

Wg = g s ( g ) / G e ( e x a m p l e 1 .1 .7 ) . T h i s r e p r e s e n t a t i o n

of G in G e p l a y s an i m p o r t a n t r o l e in t he t h e o r y of L i e g r o u p s ( a d j o i n t

r e p r e s e n t a t i o n ) . , TG is i s o m o r p h i c to t he s e m i - d i r e c t p r o d u c t C, e xTG

w i t h r e s p e c t to t h i s o p e r a t i o n r .

Page 46: Introduction to Lie Groups and Transformation Groups

-40 -

C h a p t e r 4. VECTORFIEI.nS

In this chapter we begin with the detailed theory of G-manifolds and

Lie groups. The Lie algebra of a Lie group is defined and the formal

properties of this correspondence are studied.

4. i. Realfunctions.

The adjective "differentiable" shall be omitted from now on, it being

understood that all manifolds and maps are differentiable.

Let X be a manifold and denote by CX the set of real-valued functions

on X. CX is a commutative ring with identity, the operations on functions

being defined pointwise. It can also be considered as an algebra over the

reals ]R, identifying the set of constant functions on X -with IR.

Let X' be another manifold. A map ~0 : X > X' induces a map

g)*: CX' > CX defined by g)*(f')= f' o ~ for f' 6 CX'. ~0" is a ring

homomorphism respecting identities.

structure on CX and CX', then ~* is

If we consider the ]R-algebra

a homomorphism of ]R -algebras

r e s p e c t i n g i d e n t i t i e s . T h i s s h o w s t h a t the c o r r e s p o n d e n c e X ~ C X ,

~ ~ * d e f i n e s a c o n t r a v a r i a n t s C : ~ > e f r o m the c a t e g o r y

~/ of m a n i f o l d s to the c a t e g o r y i~ of c o m m u t a t i v e r i n g s w i t h i d e n t i t y ,

r e s p e c t i v e l y c o m m u t a t i v e R - a l g e b r a s w i t h i d e n t i t y .

Now l e t X be a G - m a n i f o l d . A c c o r d i n g to p r o p o s i t i o n 1 .1 .9 and the

r e m a r k 1.1.10, CX is a G O - r i n g , i . e . a r i n g on w h i c h G o p e r a t e s f r o m the

r i g h t . If T : G > Aut X is the g i v e n o p e r a t i o n , "r* : G > Aut CX s h a l l

Page 47: Introduction to Lie Groups and Transformation Groups

-41-

denote the induced operation. We r e p e a t the d e f i n i t i o n : I" f = f o T g g

f o r f ~ C X .

Exercise 4.1. i. Let X and X' be manifolds, CX and CX' the corres-

p o n d i n g s e t s of r e a l - v a l u e d f u n c t i o n s . Show t h a t an a r b i t r a r y r i n g h o m o -

morphism CX' > CX is a homomorphism of ]R-algebras.

E x e r c i s e 4.1. Z. L e t the s i t u a t i o n be a s in e x e r c i s e 4. 1.1 a n d

q~i:X > X (i = 1, 2) be m a p s s u c h t h a t ~1 = ~ Z " Show t h a t t h e n ~1 = Og"

Exercise 4. i. 3. Let the situation be as in exercise 4. I. i and consider

t he m a p

f r o m m a p s X

@ ~ - . > ~

[x, x'] > [cx' , cx]

> X' to r i n g h o m o m o r p h i s m s CX' > CX d e f i n e d by

E x e r c i s e 4. 1. g s h o w s t h a t t h i s m a p is i n j e c t i v e . Show t h a t

for paracompact manifolds X, X' this map is bijective. (Hint: Try to

imitate the theory of duality for A-modules over a ring A , considering

CX as the dual space of X. The study of the bidual space will then give the

desired result. ) This result should allow on principle a cornplete algebrai-

sation of the theory of differentiable manifolds.

Exercise 4. i. 4. A manifold X is connected if and only if the ring CX

is not decomposable in a direct product of non-trivial rings.

Page 48: Introduction to Lie Groups and Transformation Groups

- 4 Z -

4. 2. O p e r a t o r s and v e c t o r f i e l d s .

L e t X be a m a n i f o l d and CX the s e t of r e a l - v a l u e d f u n c t i o n s , c o n -

s i d e r e d as an ]R - v e c t o r s p a c e .

D E F I N I T I O N 4. Z. 1. An o p e r a t o r A

A : CX > C X .

on X is an ]R-linear map

Example 4. 2.2. An automorphism of CX is an operator. A vector-

f i e l d on X is an o p e r a t o r . M o r e g e n e r a l l y , a d i f f e r e n t i a l o p e r a t o r on X

is an operator.

L e t OX d e n o t e t he ] R - a l g e b r a of o p e r a t o r s on X . If X' is a n o t h e r

manifold and ~ : X > X' a diffeomorphism, then ~ induces an isomor-

p h i s m ~ : OX > OX' by the d e f i n i t i o n ~ A = @~-1 o A o ~ . T h i s

d e f i n i t i o n m e a n s t h a t t he f o l l o w i n g d i a g r a m c o m m u t e s

CX ~= ~ CX'

A I I r , I

CX < ~0 j CX'

It i s c l e a r t h a t t h e c o r r e s p o n d e n c e X--N--> O X , ~--,----> ~Oa d e f i n e s a c o v a r i a n t

f u n c t o r 0 : ~ i s o ~ > ~ i s o f r o m the c a t e g o r y of m a n i f o l d s a n d d i f f e o m o r -

p h i s m s to t h e c a t e g o r y of ] R - a l g e b r a s and a l g e b r a i s o r n o r p h i s m s .

N o w l e t X be a G - m a n i f o l d w i t h r e s p e c t to a h o m o m o r p h i s m

v : G > Aut X. Then according to proposition I. I. 9, OX is a G-object

in the category of ]R -algebras. Moreover, the invariant elements under

Page 49: Introduction to Lie Groups and Transformation Groups

- 4 3 -

t h i s o p e r a t i o n f o r m a n ] R - s u b a l g e b r a of OX , a s f o l l o w s i m m e d i a t e l y .

L e t u s c o n s i d e r a n a r b i t r a r y a s s o c i a t i v e A - a l g e b r a O o v e r a r i n g 1%

w i t h i d e n t i t y . T h e n o n e c a n d e f i n e a n e w m u l t i p l i c a t i o n [ , ] : O x O > O

i n t h e f o l l o w i n g w a y :

[A I, A2] = AIA 2 - AzA I for A I, A z g O

This multiplication is bilinear and satisfies

I) [A , A ] : O for A g O

Z) [A I, [A Z, A3] ] + [Az,[A 3, AI] ] + [A 3. [A l, Az]] = o

for AI, A z, A 3 g O (Jacobian identity)

t u r n i n g t h e r e f o r e O i n t o a L i e - a l g e b r a a c c o r d i n g t o

D E F I N I T I O N 4. 2. 3. A / % - m o d u l e O o v e r a r i n g 1% w i t h a b i l i n e a r

map [ , ] : O x O----> O satisfying [A, A] = O for A e O and the Jacobian

i d e n t i t y i s a L i e z a ! g e b r a o v e r A .

D E F I N I T I O N 4. 2. 31. A h o m 0 m o r p h i s m h : O > O ' of L i e _ a l j e b r a s

O a n d O t o v e r a f i e l d A i s a / % - l i n e a r m a p s a t i s f y i n g

h[A I, AZ] = [hA1, hAg] f o r A1, A g e O .

S t a r t i n g f r o m a n a s s o c i a t i v e / % - a l g e b r a O w e h a v e a s s o c i a t e d t o O

a t% - L i e a l g e b r a . T h i s c o n s t r u c t i o n i s f u n c t D r i a l , i . e . i f h : O > O I

i s a h o m o m o r p h i s m of /% - a l g e b r a , t h e n t% i s a l s o a h o m o m o r p h i s m of t h e

a s s o c i a t e d A - L i e a l g e b r a . A p p l y i n g t h i s t o t h e ] 1 % - a l g e b r a of o p e r a t o r s

on X , w e o b t a i n

Page 50: Introduction to Lie Groups and Transformation Groups

-44-

PROPOSITION 4. Z. 4. Let X be a G-manifold and OX the set of

operators on X. T h e definition (Tg) ,~(A) =Tg ~-I

oA o T for A C OX makes g

OK a G-set. This operation conserves the ]R-algebra structure on OX a___s

w e l l a s t h e a s s o c i a t e d s t r u c t u r e of a n ] R - L i e a l g e b r a . In p a r t i c u l a r , t h e

invariant elements under this operation form a ]R-algebra and _a JR-Lie

algebra respectively.

PROPOSITION 4. Z. 5. Let X be a G-manifold, X' G' a -manifold

and ~:X > X' a p-equivariant diffeomorphism with respect to a homo- . . . .

morphism p : G > G'. Then @~ : OX > OX' is a p -equivariance

w i t h r e s p e c t to t h e o p e r a t i o n s d e f i n e d i n p r o p o s i t i o n 4. 2 . 4 . M o r e o v e r ,

X'.

s e n d s G - i n v a r i a n t o p e r a t o r s on X i n t o p ( G ) - i n v a r i a n t o p e r a t o r s on

This follows from remark I. i. I0 and propositions i. Z. 9 and i. g. IZ.

We now apply this to vectorfields. Let X be a manifold and A a

vectorfield on X. Then A is a map A : CX > CX which satisfies

(i) A(f I + fz) = Af I +~ for fl' fz C CX

(ii) A(flf2) = Afl-f z + fI.AIz for fl' f2 ~ CX

(iii) A(?~) = O for X C ]R

T h e r e f o r e A C O X . In f a c t , t h e s e p r o p e r t i e s a r e c h a r a c t e r i s t i c f o r v e c t o r -

f i e l d s . T h e c o m p o s i t i o n of v e c t o r f i e l d s i n OX is n o t a v e c t o r f i e l d , b u t t h e

c o m p o s i t i o n of v e c t o r f i e l d s w i t h r e s p e c t t o t h e a s s o c i a t e d ] R - L i e a l g e b r a

s t r u c t u r e [ , ] : OX x OX ~ OX g i v e s a v e c t o r f i e l d . H e r e ( i i ) i s e s s e n t i a l .

Page 51: Introduction to Lie Groups and Transformation Groups

-45-

T h u s t h e v e c t o r f i e l d s f o r m a s u b a l g e b r a of t h i s ] R - L i e a l g e b r a . L e t DX

d e n o t e t h e J R - L i e a l g e b r a of a l l v e c t o r f i e l d s on X .

If X and X' are manifolds and ~: X > X a diffeomorphism, then

the isomorphism @# : OX > OX' defined at the beginning of this section

certainly sends DX into DX' . Applying proposition 4. 2.4 we therefore

obtain

COROLLARY 4. Z. 6. Let X be a G-manifold and DX the ]R-Lie

,-i 7 g ) , ( f o r algebra of vectorfields on X. The definition ( A) = 7g oA �9 7g

A ~ DE makes DE a G-Lie algebra with respect to 7: G > Aut DE.

In p a r t i c u l a r , t h e i n v a r i a n t e l e m e n t s of DX u n d e r t h i s o p e r a t i o n f o r m a

] R - L i e a l g e b r a .

A n d p r o p o s i t i o n 4. Z. 5 g i v e s

COROLLARY 4. Z. 7. L e t X b e a G - m a n i f o l d , X I ! a G -manifold

and ~0 : X !

> X a p - e q u i v a r i a n t d i f f e o m o r p h i s m w i t h r e s p e c t to a h o m o -

morphism p: G > G' Then ~, : DX > DX' �9 is a P-equivariance with

r e s p e c t t o t h e o p e r a t i o n s d e f i n e d i n c o : r o l l a r y 4. Z. 6. M o r e o v e r , g)$ s e n d s

X' G-invariant vectorfields on X into p (G)-invariant vectorfields on .

F o r l a t e r u s e , we m a k e e x p l i c i t t h e e f f e c t of q g , .

L E M M A 4. 2 . 8 . L e t ~0: X !

> X be a diffeomorphism and ~$ : DX

, -1 t h e i n d u c e d i s o m o r p h i s m on v e c t o r f i e l d s , d e f i n e d b y cpsA = r o A o q~

> DX'

�9 L e t

f' = Ax(cp#f' ). I__f cP. : T (X) x6 X and f' C CX'. Then ( ~A)~ (x) x x

! > T (x)(X) denotes, the linear map of tangent spaces induced by r

( ~ , A ) ~ ( x ) = ~ , A . X X

then

Page 52: Introduction to Lie Groups and Transformation Groups

-46 -

Proof: ((~,A) f')($(x)) = ~*((r f'))(x) = ((A~*)f')(x) by

definition of ~0,. This means ( ~0,A)~(x)f' = Ax({p*f'). The right side is

exactly the definition of (~x Ax)f' and therefore also (~A)~(x) = ~,xAX.

4. 3. The Lie algebra of a Lie group.

L e t G be a L i e g r o u p � 9

D E F I N I T I O N 4. 3.1. T h e L i e a l s e b r a L G of G i s t h e IR - L i e a l g e b r a

of i n v a r i a n t v e c t o r f i e l d s u n d e r t h e o p e r a t i o n of G on G b y l e f t - t r a n s l a t i o n s .

E x p l i c i t l y s t a t e d , t h i s m e a n s t h a t t% 6 L G i f a n d o n l y i f ( L g ) . A = A

f o r a l l g E G . L G i s a L i e a l g e b r a b y c o r o l l a r y 4. Z . 6 . T h e l e t t e r L s h a l l

r e m i n d u s of l e f t i n v a r i a n t a s w e l l a s t h e f o u n d e r of t h e t h e o r y , S o p h u s L i e .

T h e f o l l o w i n g l e m m a i n s u r e s t h e e x i s t e n c e of m a n y l e f t i n v a r i a n t

vectorfields on a Lie group.

_ t h e L E M M A 4. 3. Z. L e t G be a L i e g r o u p , L G i t s L i e a l g e b r a , G e

t a n g e n t s p a c e of G a t t h e i d e n t i t y e a n d A ~ G e e

a n d on l F one A C L G s u c h t h a t A = A e e

P r o o f : I f A e x i s t s , t h e n ~ = ( L g ) , A f o r g C (3

Ag = ( ( L g ) . A)g . In v i e w of l e m m a 4. Z. 8 t h i s m e a n s

T h e n t h e r e e x i s t s one

a n d i n p a r t i c u l a r

(1) Ag = ( L g ) . e A e "

T h i s n e c e s s a r y c o n d i t i o n f o r X s h o w s t h e u n i q u e n e s s . We n o w d e f i n e A

= 1G b y t h i s f o r m u l a . A s L e , w e c e r t a i n l y h a v e A = A . T h e l e f t e e

invariance of A is seen from

Page 53: Introduction to Lie Groups and Transformation Groups

- 4 7 -

((Lg),A)g~ = ( L g ) , A = ( L g ) , ( L ) , e A

= ( L g ) , A = A . e e g'~

T h e r e r e m a i n s to s h o w t h a t t he f a m i l y ( A g ) g ~ G is a v e c t o r f i e l d (i. e.

~ w

a d i f f e r e n t i a b l e v e c t o r f i e l d ) , w h i c h m e a n s t h a t A(CG) c C G . Le t f ~ C G .

By lemma 4.2.8

{ ( L g ) , A ) g f = Ae(L$f)g

and t h e r e f o r e

{Af)(g) = A e ( L g f ) .

Let N: I > G, I an interval of IR o-ontaining

d Nt/t = A Then G wi t h ~-~ = o e

O , a d i f f e r e n t i a b l e c u r v e i n

A e ( L g f) = ~ L f) ( ~ ) t = o = ~'[ f( g ~t) t - 0

w h i c h s h o w s ~ f 6 C G . |

T h e c o r r e s p o n d e n c e A "~> A e

of t he l e m m a d e f i n e s a b i j e c t i v e m a p

~ : G > L G e

w h i c h i s s e e n to be an i s o m o r p h i s m of I R - v e c t o r s p a c e s by (1). We h a v e

p r o v e d

Page 54: Introduction to Lie Groups and Transformation Groups

- 4 8 -

G e

T H E O R E M 4. 3. 3. L e t G be a L i e g r o u p , L G i t s L i e a l g e b r a a n d

t h e t a n g e n t s p a c e of G a t t h e i d e n t i t y e . T h e f o r m u l a

( ~ ( A e ) ) g = ( L g ) . e A e f o r g C G , A e C G e

defines a map ~: G ----> 113, which is an isomorphism of ]R-vectorspaces. e

T h i s m a p ~ a l l o w s t r a n s p o r t i n g t h e s t r u c t u r e of ] R - L i e a l g e b r a f r o m

L G to G e

In t h i s s e n s e , G i s o f t e n r e f e r r e d to a s t h e L i e a l g e b r a of G. e

C O R O L L A R Y 4. 3 . 4 . L e t G be a L i e g r o u p of d i m e n s i o n n . T h e

L i e a l g e b r a L G is a L i e a l g e b r a of d i m e n s i o n n .

C o n s i d e r t h e m a p ( L g ) . : G > G , w h i c h i s a n i s o m o r p h i s m f o r e e g

all g6; G. More generally, the maps P(gl' gz ) = (Lgz)*e(Lgl):1~e : Gg I >Ggz

h a v e t h e p r o p e r t i e s :

1) P ( g z ' g3 ) p ( g l ' gz ) = P ( g l ' g3 ) f o r g l ' gz ' g3 6; G

Z) P(g, g) = IGg for g 6; G

(x) > T (x) DEFINITION 4. 3.5. Let X be a manifold and P(gz' gl ) : T 1 gz

a n J R - l i n e a r m a p f o r a l l ( g l ' gz ) 6; X x X , s a t i s f y i n g 1) a n d Z). T h e n X

i s c a l l e d a p a r a l l e l i z a b l e m a n i f o l d .

The maps P(gz' gl ) are then necessarily isomorphisms and it makes

s e n s e t o s p e a k of t h e d i m e n s i o n of X.

L e t e be a f i x e d p o i n t of X a n d A i (i = 1, �9 �9 �9 , n , n , - d i m X) a b a s e e

of t h e v e c t o r s p a c e T X . T h e n P ( e , g) A. = A. d e f i n e s v e c t o r f i e l d s e 1 e lg

A. ( i = 1, �9 . . , n) on X such tha t thex~ec to rs A. ( i = 1, . - - , n) f o r m a base 1 lg

Page 55: Introduction to Lie Groups and Transformation Groups

-49 -

of T X for all g C G. g

COROLLARY 4. 3. 6. The manifold of a Lie group G is parallelizable.

Example 4. 3. 7. Consider IR with its additive Lie group structure.

Then LIR ~ IR as vectorspace, because the tangent space of IR at O is

]R . There is only one possible Lie algebra structure on 11% , defined by

= Ofor c m.

By the same argument, L 11 ~ = IR for the additive group ~Ir= IR/~.

Now let V be n-dimensional IR-vectorspace and G = GL(V). We

first remark that considering GL(V) c s = algebra of ]R-linear

endomorphiams of V, the tangent space G is identified to s (V) for all g

g G G. The multiplication in GL(V) is the restriction of the bilinear

map s (V) x s (V) > s defining the multiplication in s This

shows that (Lg)~ A,~ = gay for g ~ GL(V), Ay C Gy identified to s

Y We s h o w n o w

P R O P O S I T I O N 4. 3 . 8 . A f t e r t h e c a n o n i c a l i d e n t i f i c a t i o n of L { G L ( V ) )

w i t h t h e t a n g e n t s p a c e a t t h e i d e n t i t y , w e h a v e L ( G L ( V ) ) = s (V) a s L i e

a l g e b r a s , w h e r e on s w e c o n s i d e r t h e L i e a l g e b r a s t r u c t u r e a s s o c i a t e d

in t h e s e n s e of s e c t i o n 4. 2 t o t h e n a t u r a l a l g e b r a s t r u c t u r e .

P r o o f : L e t A 1, A 2 C L ( G L ( V } } . W e u s e t h e f o r m u l a

[AI'Az] g = Z -

which is valid for the global chart given by the embedding GL(V)c s

Page 56: Introduction to Lie Groups and Transformation Groups

-50 -

In view of A i = gA i g e

which shows

w e h a v e

I~ Aigl(g) Ajg = AjgAig

[A I, A z] g = AlgAZg - AZgAlg.

B u t t h e r i g h t s i d e i s j u s t t h e c o m m u t a t o r [ A l g , A z ] in s F o r g

g = e t h i s g i v e s t h e d e s i r e d r e s u l t .

We have defined the Lie algebra LG of a Lie group G by considera-

tion of the operation of G on G by left translation. Doing the same for

the right translations, we obtain another Lie algebra RG. Explicitly:

RG i s the Lie algebra of the right invariant vectorfields. As in theorem

4. 3. 3, we can define an isomorphism O > RG of ]R-vectorspaces, e

obtaining therefore an isomorphism LG ~ RG of ]R-vectorspaces. We

shall see in section 4. 6 that there is also a natural isomorphism LG ~ RG

of the ]R-Lie algebra structure.

Exercise 4. 3.9. Let G be a Lie group, CG the ]R-vectorspace

of real-valued functions on G , DG the ]R-Lie algebra of all vectorfields

on G and LG the Lie algebra of G. Show that D G = CG | LG.

4. 4. E f f e c t of m a p s on o p e r a t o r s a n d v e c t o r f i e l d s .

I n s e c t i o n 4. 2. w e h a v e s e e n t h e e f f e c t of d i f f e o m o r p h i s m s on o p e r a t o r s .

We w a n t to s t u d y n o w t h e e f f e c t of a r b i t r a r y ( i . e . d i f f e r e n t i a b l e ) m a p s .

Page 57: Introduction to Lie Groups and Transformation Groups

-51 -

map

v A ! ! Let X, X be manifolds and A, operators on X, X respectively.

!

DEFINITION 4. 4.1. A and A are ~0-related with respect to a

&0: X > X' , if the following diagram commutes.

C X

t AI

I CX (0"

CX'

CX'

If ~ is a diffeomorphism, A and ~0~A are @-related operators.

A ! But in the general case, A does neither determine an such that A and

A' A' are ~0-related, nor is unique, if it exists.

I

LEMMA 4. 4. g. Let ~0: X > X be a map.

(i) mIf A i and A v.1 (i = i, 2) are ~-related operators on

X and X' respectively, then the following operators

are ~-related:

! I

A I + A 2 and A I + A 2 ,

I !

AIA g and AIA 2 ,

[A I, A2] and [ AVl , A'Z]

Proof:

(ii) If A and A' are ~0-related operators on X and X'

res]~ectively, then for k C IR ~IA and XA' are

~0 -related.

(i) Let f' ~ CX'. Then

, �9 . , _ , ~0~(AV2f ') (D*((A I + A'z)f') = @$(A' I f' + A'zf') = ~ (All) +

= AI(~f') + AZ(~*f') = (A I + AZ)(~f'),

Page 58: Introduction to Lie Groups and Transformation Groups

-SZ-

! !

showing that A I + A z and A 1 + A z are W-related. The ~-relatedness

' ' is seen by comparing the diagrams serving to define of AIA g and AIA 2

@-relatedness, and the third assertion is a consequence of this and (ii).

(ii) ~*((kA')f') = (D *(k(A f )) = @ k. ~*(A'f')

= k. A(~0*f') = ( XA)(@*f') , q. e. d.

T h e l e m m a a p p l i e s in p a r t i c u l a r to v e c t o r f i e l d s . F o r t h a t we m a k e

explicit the notion of (~-relatedness in

PROPOSITION 4.4. 3. Let X, X' be manifolds, @ : X > X' a

map and A, A' vectorfields on X, X' respectively. Then A and A'

~ x A x A~( f o r e v e r y x g X . a r e ~ - r e l a t e d if and o n l y if = x)

Proof: Let f' g CX' Then

(4. Ax)f' = Ax(~f') = (A(~f'))(x) x

by d e f i n i t i o n of ~)~ . On the o t h e r h a n d x

A ! @(x)f' = (A'f')(@(x)) = (@*(A'f'))(x)

C o m p a r i s o n p r o v e s the l e m m a .

4. 5. T h e f u n c t o r L.

We h a v e d e f i n e d the L i e a l g e b r a LG f o r a n y L i e g r o u p G. We w a n t

to e x t e n d t h i s c o r r e s p o n d e n c e to a f u n c t o r f r o m L i e g r o u p s to L ie a l g e b r a s .

L E M M A 4 . 5 . i. L e t G G' be L i e g r o u p s P : G > G ' , , a h o m o -

m o r p h i s m of L i e g r o u p s and A ~ L G . T h e n t h e r e e x i s t s one and o n l y

A' a r e O - r e l a t e d . one C LG' s u c h t h a t A and A'

Page 59: Introduction to Lie Groups and Transformation Groups

-53-

Proof: Suppose A'

sition 4. 4. 3 we obtain

(i)

e x i s t s w i t h t he d e s i r e d p r o p e r t i e s . By p r o p o -

w h e r e e , e is t he i d e n t i t y of G, G'

is on ly one A' 6 IX]' s u c h t h a t ~', e

N o w w e d e f i n e c o n v e r s e l y A' a s t he u n i q u e e l e m e n t of LG '

A' ,eAe e ) = p

respectively. By lemma 4. 3. Z there

A' = , . This proves uniqueness. e

s ati s lying

!

p , g A g = 9 , g ( L g ) , e A e = ( L g ( g ) ) * e ' 9 * e Ae = A p ( g )

w h i c h i s the d e s i r e d r e s u l t in v i e w of p r o p o s i t i o n 4. 4. 3.

In t h e p r o o f of t he l e m m a 4. 5 .1 , w e u s e d on ly t he r e s t r i c t i o n of

to a neighborhood of e C G.

notion.

DEFINITION 4. 5. Z.

neighborhood of e ~ G.

T U is a differerLtiable m a p

It i s u s e f u l to i n t r o d u c e a c o r r e s p o n d i n g

L e t G , G' be L i e g r o u p s and U

A l o c a l h o m o m o r p h i s m G > G'

p : U > G' which satisfies

an open

defined on

p(g lgz ) = p ( g l ) p ( g z ) f o r a l l g l ' gz C U s u c h t h a t g lg z e U .

T h e r e s t r i c t i o n of a h o m o m o r p h i s m p : G > G' to an o p e n

n e i g h b o r h o o d of e 6 G i s a l o c a l h o m o m o r p h i s m G ~ > G ' . If we i d e n t i f y

a m a p w i t h i t s r e s t r i c t i o n s to o p e n s u b s e t s of t h e d o m a i n , we c a n c o m p o s e

l o c a l h o m o m o r p h i s m s , o b t a i n i n g t h u s the c a t e g o r y of L i e g r o u p s a n d

p o Lg - Lp(g) o p i m p l i e s

(1) T h e r e r e m a i n s to s h o w t h a t A a n d A' �9 a r e ~ - r e l a t e d . N o w

Page 60: Introduction to Lie Groups and Transformation Groups

- 5 4 -

l o c a l h o m o m o r p h i s m s .

i s o m o r p h i s m . E x p l i c i t l y s t a t e d we h a v e

D E F I N I T I O N 4. 5. 3. T w o L i e g r o u p s , G and G' ,

i s o m o r p h i c if and on ly i f t h e r e e x i s t s o p e n n e i g h b o r h o o d s

l l U I and a d i f f e o m o r p h i s m p: U > U w i t h i n v e r s e p :

b o t h P and P' a r e l o c a l h o m o m o r p h i s m s .

T H E O R E M 4. 5 . 4 . L e t G, G' be L i e g r o u p s ,

h o o d of e in G and P: U ~ G'

A n e q u i v a l e n c e in t h i s c a t e g o r y is c a l l e d a l o c a l

a r e l o c a l l y

U, U t Of e, e'

> U s u c h t h a t

U a n open nei~hbor-

a local homomorphism. The formula

(L(p)A)e, = p~ A e e

defines a homomorphism of Lie algebras

following diagram is commutative,

f o r A 6 LG

L ( p ) : LG > LG ' . T h e

P e t

G > G , e e

I I

LG L(P ) > LG'

w h e r e ~ d e n o t e s the i s o m o r p h i s m of t h e o r e m 4. 3. 3. M o r e o v e r f o r

!

A C LG the v e c t o r f i e l d s A / U and L( p)A ~ LG a r e p - r e l a t e d .

P r o o f : In t he p r o o f of l e m m a 4. 5.1 a l l w a s s h o w n e x c e p t t h e f a c t

t h a t L ( p ) is a h o m o m o r p h i s m . T h i s is a c o n s e q u e n c e of l e m m a 4. 4. Z.

We o b s e r v e t h a t a h o m o m o r p h i s m p : G > G ' d e f i n e s in the

I s a m e w a y a h o m o m o r p h i s m R(p ) : RG > RG o f t h e L ie a l g e b r a s of

right invariant vectorfields.

Page 61: Introduction to Lie Groups and Transformation Groups

-55-

Complement to 4. 5.4. If P : G > G' is an isomorphism, then

L(p ) = P~/LG , where p ~ : DG �9 > DG' is the map defined in section 4. Z.

P r o o f : We h a v e to s h o w t h e c o m m u t a t i v i t y of t h e d i a g r a m

LG L(P) ; LG'

N A p~'

DG > DG

L e t A 6 L G . T h e n on one h a n d

(L(p)A)p (g)

and on the other hand

p , A e = p , ( L g ) , e A e = (Lp(g))~e e

(P~A)p(g) : p. Ag g

by lemrna 4. Z. 8. This shows the desired property.

One cannot define U(p) in general by P~, because this map only

makes sense for a diffeomorphism p .

THEOREM 4. 5.5. Let ~ be the cate~or}r of Lie groups and local

homgmorphisms of Lie ~roups, s

homomorphisms of Lie algebras.

t h e c a t e g o r y of ] R - L i e a l g e b r a s a n d

T h e c o r r e s p o n d e n c e G ~ - ~ > L G ,

9 ~ " " > L ( p ) d e f i n e s a c o v a r i a n t f u n c t o r L : s > s

T h i s i s c l e a r by t h e o r e m 4 . 5 . 4 .

We c a n a l s o c o n s i d e r t h e f u n c t o r g i v e n by G " ' " > G , P ~ P e

The commutativity of the diagram in theorem 4. 5.4 expresses that

is a natural transformation of this functor into L, in fact a natural

e

M

e q u i v a l e n c e .

Page 62: Introduction to Lie Groups and Transformation Groups

-56-

COROLLARY 4.5.6. The Lie algebras of locally isomorphic

groups are isomorphic.

Proof: L sends equivalences in ~ into equivalences in =s

We apply this to the natural injection G o ~ G of the connected

component of the identity G o into G , which is a local isomorphism.

This shows LG o ~ LG. The Lie algebra is therefore a property of

of an arbitrary neighborhood of the identity.

>It= IR/Z

Therefore LIR ~ L~r , what we already know.

p: "][" > ]R is a homomorphism, then p = 0.

being compact, p (,j[n) is contained in a closed interval

"IF with p(t) # 0. Then there exists a positive integer

G o , in fact,

Example 4. 5. 7. The canonical homomorphism ]R

is a local isomorphism.

LEMIVIA 4.5.8. If

Proof: "Jr

I. Suppose t C

n such that nP(t) ~ l;which is a contradiction.

This proves that there is no homomorphism

the identity isomorphism LT = LIR.

isomorphism has this property.

Example 4.5.9.

and T : G > GL(V)

"ff > IR i n d u c i n g

B u t of c o u r s e t h e n a t u r a l l o c a l

L e t V be a n ] R - v e c t o r s p a c e of f i n i t e d i m e n s i o n ,

a r e p r e s e n t a t i o n of t h e L i e g r o u p G i n V. We

p r o v e d in P r o p o s i t i o n 4. 3. 8 t h a t s (V) i s t h e L i e a l g e b r a of G L ( V ) .

T h e m a p T c a n be s e e n to be d i f f e r e n t i a b l e , a n d i n d u c e s t h e r e f o r e a

homomorphism L(T) : LG > s (V).

Page 63: Introduction to Lie Groups and Transformation Groups

- 5 7 -

D E F I N I T I O N 4. 5 . 1 0 .

t h e A - L i e a l g e b r a of A - e n d o m o r p h i s m s of V.

a A - L i e a l g e b r a O i n V i s a h o m o m o r p h i s m

t h e n c a l l e d a n O - m o d u l e w i t h r e s p e c t t o v .

L e t A b e a r i n g , V a A - m o d u l e a n d s

A r e p r e s e n t a t i o n of

: 0 ~> s V is

F o l l o w i n g e x a m p l e 4. 5 . 9 , a r e p r e s e n t a t i o n of a L i e g r o u p G i n

a f i n i t e - d i m e n s i o n a l ] R - v e c t o r s p a c e V d e f i n e s a r e p r e s e n t a t i o n of t h e

L i e a l g e b r a L G in V.

W e n o w c o n s i d e r t h e h o m o m o r p h i s m d e t : G L ( V ) > ]I% $ i n t o t h e

r n u l t i p l i c a t i v e g r o u p ]R $ of t h e r e a l s . T h e L i e a l g e b r a of ]R $ i s JR.

We p r o v e

P R O P O S I T I O N 4. 5 .11. T h e h o m o m o r p h i s m s > IR of L i e

a l g e b r a s i n d u c e d b y t h e h o m o m o r p h i s m G L ( V ) > ]R $ i s t h e t r a c e

m a p .

P r o o f : L e t A ~ s (V) a n d a t a c u r v e in G L ( V ) w i t h a ~ = e ,

= A. Then 0

det, A = d {det at}/t e dt = 0 "

Now for any non-degenerated n-form co on V (n = dim V) and any

n - t u p l e of v e c t o r s Vl , ' ' - , Vn of V w e h a v e

~0(Vl, " ' ' ' V n ) " d e t a t = r t v l , ' ' ' , a t v )n

and therefore

Page 64: Introduction to Lie Groups and Transformation Groups

-58-

~(Vl, - . . , Vn) �9 d e t , e d

A = d-t-{U~(0~tVl' " ' " 'atVn)}/t=O

= Z ~ ( a t V l ' " ' ' a t V i - l ' ~ tv i ' a tV i+ l ' ' ' ~ t V n ) f / = O i

= ~, ~(Vl,''',Av i, --., v n)

i

= ~ ( V l , ' ' ' , Vn) - %r A

s h o w i n g e

4 . 5 . 4 .

d e t ~ A = t r A . T h i s i s t h e d e s i r e d r e s u l t i n v i e w o f t h e o r e m

C O R O L L A R Y

P r o o f :

w e h a v e f o r

4. 5.1Z. t r ( A B ) = t r ( B A ) f o r A, B C s .

t r : s > IR b e i n g a h o m o m o r p h i s m of L i e a l g e b r a s ,

A, B C ~(V)

t r ( A B - BA) = t r [ A , B ] = [ t r A, t r B] = O ,

t h e l a t t e r b r a c k e t b e i n g the t r i v i a l one i n 1R .

Example 4.5. 13. Let G be a Lie group and

0 - - - -> G > TG -- - -> G > e e

the sequence of example 3. I. 7. It induces a sequence of Lie algebra

h o m o m o r p h i s m s

O ~ L(Ge) > L ( T G ) ~ LG > O

H e r e LG e - ' G e ( s e e e x a m p l e 4. 6. 4 b e l o w ) . S e e 7 . 5 . 6 f o r t h e e x a c t n e s s

of t h i s s e q u e n c e . T h e i n c l u s i o n G ~ TG i n d u c e s a h o m o m o r p h i s m

Page 65: Introduction to Lie Groups and Transformation Groups

- 5 9 -

4. 6. A p p l i c a t i o n s of t he f u n c t o r a l i t y of L.

4. 6 .1 . T h e L i e a l g e b r a of a p r o d u c t g r o u p . L e t G 1, G 2 be Lie

g r o u p s a n d G 1 x G Z t he p r o d u c t g r o u p . T h e c a n o n i c a l p r o j e c t i o n s

Pi : G1 x G 2 > G ( i = 1, 2 ) a r e h o m o m o r p h i s m s of L i e g r o u p s a n d i n d u c e l

L i e a l g e b r a h o m o m o r p h i s m s L(Pi ) : L (G 1 x GZ) > LG.I " L e t e l , e 2 be

t h e i d e n t i t i e s of G 1, G 2 . By t h e o r e m 4 . 5 . 4 , w e h a v e t h e c o m m u t a t i v e

diagram (expressing the naturalit 7 of ~ )

1t

X

G 2

t

LG 2

t h e v e r t i c a l a r r o w s b e i n g i s o m o r p h i s m s . T h e I R - l i n e a r i s o m o r p h i s m

~-- G 1 x (G 1 x G 2 ) e l ' ez e l G 2 e 2

i m p l i e s t h e r e f o r e t h e i s o m o r p h i s m s of I R - v e c t o r s p a c e s

L(G 1 x G2) = LG 1 x LG 2 .

If q i : LGI x L G 2 > LG. (i = I, 2) denotes the canonical projection, 1

this isomorphism is given b y the commutative diagram

Page 66: Introduction to Lie Groups and Transformation Groups

-60 -

L(G 1 (%

x G z) > LX31 x LG z

LG 1 LG 2

We w a n t to t r a n s p o r t t he L i e a l g e b r a s t r u c t u r e of

LG 1 x LG z. For A~ L(G 1

with A.I = L(Pi)A (i = I, 2).

a(A') = (A_[, A'Z) with A~: =

a [ A , A ' ] =

x GZ) we h a v e

S i m i l a r l y f o r A' C L(G 1

L (P i )A ' (i = 1, Z). T h e n

(L(PI)[A, A'] , L(pz)[A, A'] )

L(G 1 x G z) to

a(A) = (L(PI)A, L(pz)A) = (A I, A Z)

x G 2) we have

= ( [ A 1, A:] , [ A z , A~] )

as L(p i) a r e L i e a l g e b r a h o m o m o r p h i s m s . We d e f i n e

[ a(A), a (A ' ) ] = a [ A , A ' ]

w h i c h m e a n s

(1) [(A 1, AZ), (A' 1, AZ) ] = ([A 1, A'I], [A Z, A'Z])

f o r A. , A'. ~ LG. 1 1 1

(i = 1, Z) .

Wi th t h i s d e f i n i t i o n , a is an i s o m o r p h i s m .

L e t m o r e g e n e r a l l y A be a r i n g and O 1, O z A - L i e a l g e b r a s .

C o n s i d e r the p r o d u c t m o d u l e O 1 x O Z w i t h the m a p [ , ]~O 1 x Oz) x ( O 1 x O7)

> O 1 x O 2 d e f i n e d by (1). T h e n O 1 x O z i s a A - L i e a l g e b r a .

D E F I N I T I O N 4. 6. Z. T h e d i r e c t p r o d u c t of two A - L i e a l g e b r a s

O1, 0 2 is t he L i e a l g e b r a O 1 x 0 2 w i t h the m u l t i p l i c a t i o n d e f i n e d by (1).

We can now state

Page 67: Introduction to Lie Groups and Transformation Groups

- 6 1 -

P R O P O S I T I O N 4. 6. 3.

d i r e c t p r o d u c t . T h e L i e a l g e b r a

t o t h e d i r e c t p r o d u c t L G 1 x L G 2

L e t G 1, G z b e L i e g r o u p s a n d G 1 x G 2 t h e

L ( G 1 x GZ) i s c a n o n i c a l l y i s o m o r p h i c

of t h e L i e a l g e b r a s L G 1 a n d L G 2 .

W e r e m a r k t h a t c o m m u t a t i v i t y f o r t h e m u l t i p l i c a t i o n i n a L i e a l g e b r a

m e a n s t h a t [ A 1, AZ] = 0 f o r a n y p a i r A 1, A z . I t i s t h e n c l e a r t h a t t h e

p r o d u c t of c o m m u t a t i v e L i e a l g e b r a s i s c o m m u t a t i v e .

E x a m p l e 4 . 6 . 4 . L( IR n) = LIR x . . . x L]R. B u t w e h a v e a l r e a d y s e e n

t h a t LIR = IR w i t h t h e t r i v i a l L i e a l g e b r a s t r u c t u r e ( e x a m p l e 4. 3. 7).

T h e r e f o r e L(IR n) = ]R n w i t h t h e t r i v i a l L i e a l g e b r a s t r u c t u r e .

Similarly L(T n) = IR n for the additive group ~.n = ~n/~Tn "

4. 6. 5. The relation between LG and RG. Let G be a Lie group,

G ~ the opposite group and I : G > G ~ the isomorphism defined by

l(g) = g-i for g C G.

L E M M A 4. 6 . 6 . I , e - 1Ge

Proof: Consider the map q~: G >G defined by ~(g) = gg-l.

= O : G > G . B u t r b e i n g c o n s t a n t . r g e

r = ( R g _ l ) , + ( L g ) , g = l I , g g g

a n d t h e r e f o r e -I

= - ( i ~ ) , g = _ ( L g _ 1 ) , e o ( R g _ 1 ) , I , g -1 ~ ( R g = l ) * g g

For g = e w e o b t a i n

l , e = - IGe , q . e . d .

Page 68: Introduction to Lie Groups and Transformation Groups

- 6 2 -

R e m a r k . We h a v e s h o w n t h e f o r m u l a

I , = - ( L _ l ) , e ~ ( R g _ l ) , g g g

f o r g g G

T h i s m e a n s t h a t t h e t a n g e n t m a p to t h e m a p I : G > G in e a c h p o i n t i s

a l r e a d y g i v e n by t h e t a n g e n t m a p s of t h e t r a n s l a t i o n s . T h i s c a n be u s e d

to p r o v e t h a t t h e d i f f e r e n t i a b i l i t y of t h e m u l t i p l i c a t i o n G x G

g r o u p m a n i f o l d a l r e a d y i m p l i e s t h e d i f f e r e n t i a b i l i t y of I : G

L e t A

a l g e b r a

b y t h e b r a c k e t [ A 1, A2] =

P R O P O S I T I O N 4 . 6 . 7 .

g r o u p . I d e n t i f y L G w i t h G

i s o m o r p h i s m

> G o n a

> G .

b e a r i n g a n d ~ a L i e a l g e b r a o v e r A �9 T h e o p p o s i t e L i e

i s t h e A - m o d u l e ~ w i t h t h e L i e a l g e b r a s t r u c t u r e d e f i n e d

O [A I,Az] for A I, A ze

L e t G be a L i e g r o u p a n d G ~ t h e o p p o s i t e

a n d L { G ~ w i t h G ~ by t he c a n o n i c a l e

of t h e o r e m 4. 3. 3. T h e n

L(G ~ : (LG) ~

(LG) ~ being the opposite Lie al~ebra of LG.

Proof: After the indicated identification we have L(1) = l•e for

t h e i s o m o r p h i s m I : G > G ~ . T o A. ~ L G (i = 1, 2) c o r r e s p o n d s 1

I, A i = - A i 6 L(G~ To [A I, A2] C LG there corresponds on one e

hand - [A I, AZ]LG and on the other hand also [-A I, -Ag]L(GO) , as

I i s a n i s o m o r p h i s m . T h e r e f o r e

[At' AZ]L{GO ) - [AI, AT]LG

= [A I, AZ](LG)O q . e . d .

Page 69: Introduction to Lie Groups and Transformation Groups

- 6 3 -

C O R O L L A R Y 4. 6 . 8 . L e t G be a L i e g r o u p , LG the L i e a l g e b r a

of l e f t i n v a r i a n t v e c t o r f i e l d s and RG the L i e a l g e b r a of r i g h t i n v a r i a n t

v e c t o r f i e l d s . I d e n t i f y LG a n d RG w i t h G e by t h e c a n o n i c a l i s o m o r p h i s m

of t h e o r e m 4. 3. 3. T h e n

aO = (LG) ~

Proof: We observe that left translations of G

of G ~ and vice versa, so that IX] = R(G ~ and RG =

mentioned identifications, by proposition 4. 6. 7 L(G ~

shows RG = (LG) ~

RG

t h e n

P r o o f :

and t h e r e f o r e

a r e r i g h t t r a n s l a t i o n s

L(G~ After the

= (LG) ~ which

This shows, of course, the existence of a natural isomorphism

e~

= LG. Moreover

COROLLARY 4.6.9. Let G be a Lie group. If G is commutative,

LG is commutative.

The commutativity of G implies RG = LG. But RG = (LG) ~

LG = (LG) ~ , q.e.d.

We shall see in chapter 6 that, for connected G, the converse is

als o true.

Example 4. 6.10. Let V be a finite-dimensional ~t-vectorspace

and consider the natural representation of GL(V) in V. We have seen that

identifying L(GL(V)) canonically with the tangent space at the identity,

we obtain s (V). By corollary 4. 6. 8, RG identified with the tangent

i

space at the identity is ( s (V)) ~

Page 70: Introduction to Lie Groups and Transformation Groups

-64-

4. 7. T h e a d j o i n t r e p r e s e n t a t i o n of a L i e g r o u p .

C o n s i d e r the o p e r a t i o n of G on G by i n n e r a u t o m o r p h i s m s

~Y : G > Au t G ( s e e e x a m p l e 1 .1 .5 ) . T h e f u n c t o r L t r a n s f o r m s t h e

G - g r o u p G in to a G - L i e a l g e b r a L G a c c o r d i n g to p r o p o s i t i o n 1 .1 .9 .

We r e p e a t the d e f i n i t i o n of the i n d u c e d G - o p e r a t i o n on L G : i t i s t he

c o m p o s e d h o m o m o r p h i s m

G ~ > Aut G L > Aut LG

D E F I N I T I O N 4. 7.1. T h e a d j o i n t r e p r e s e n t a t i o n of a L i e Group G

is the r e p r e s e n t a t i o n of G in LG i n d u c e d by the o p e r a t i o n of G on G by

i n n e r a u t o m o r p h i s m s : A d g = L ( [ [ g ) .

PROPOSITION 4. 7. Z. !

L e t G, G ' be L i e ~ r o u p s and p: G > G a

h o m o m o r p h i s m . T h e n L ( p ) : LG !

> LG is a p - e q u i v a r i a n e e w i t h

r e s p e c t to t he a d j o i n t r e p r e s e n t a t i o n s of G, G' in L G , LG

P r o o f : T h e c o m m u t a t i v i t y of the d i a g r a m

!

G P >G

iI ! I

p I G - > G

( s e e a l s o e x a m p l e 1. Z. 3) a n d the f u n c t o r a l i t y of L p r o v e t h e s t a t e m e n t .

C o n s i d e r the c a n o n i c a l i s o m o r p h i s m ~l : G e

> LG of theorem 4.3. 3

p e r m i t t i n g to i n t e r p r e t G e as t he L i e a l g e b r a of G . F r o m t h e o r e m 4 . 5 . 4

it f o l l o w s t h a t the e f f e c t of Ad g : LG > LG on G e i s g i v e n by the m a p

Page 71: Introduction to Lie Groups and Transformation Groups

- 6 5 -

( g g ) * e e

in e x a m p l e 3. Z. 8 is j u s t

: G - - - > G e . T h i s p r o v e s t h a t the o p e r a t i o n of G on Ge d e f i n e d

G and L G . e

t he a d j o i n t r e p r e s e n t a t i o n a f t e r identification of

Another description of the adjoint representation is given in

P R O P O S I T I O N 4. 7. 3. L e t G be a L i e g r o u p ,

t he a d j o i n t r e p r e s e n t a t i o n and A G L G . T h e n

Ad g A = (Rg_l ) CA

P r o o f : A d g A = L ( g g ) A = ( g g ) , A

( [ [ g ) , A = (R _ I ) , ( L g ) , A = ( R g _ I ) , A f o r A G L G . g

Ad : G > Aut LG

by c o m p l e m e n t 4. 5 . 4 . But

T h i s s h o w s t h a t t he o p e r a t i o n of G in G by r i g h t t r a n s l a t i o n s d e f i n e s

a r i g h t o p e r a t i o n of G in LG and the a d j o i n t r e p r e s e n t a t i o n d e s c r i b e s t h e

e f f e c t of t h i s o p e r a t i o n .

Page 72: Introduction to Lie Groups and Transformation Groups

- 6 6 -

C h a p t e r 5. VECTORFIELDS AND 1 - P A R A M E T E R GROUPS OF TRANSFORMATIONS.

T h e L i e a l g e b r a of a L i e g r o u p g i v e s a d e e p i n f o r m a t i o n on t h e g r o u p .

T h e k e y f o r t h e u n d e r s t a n d i n g of t h i s is t he r e l a t i o n b e t w e e n v e c t o r f i e l d s

a n d o r d i n a r y d i f f e r e n t i a l e q u a t i o n s , w h i c h i s s t u d i e d in t h i s c h a p t e r .

5 ,1 . 1 - p a r a m e t e r g r o u l ~ o f t r a n s f o r m a t i o n s .

D E F I N I T I O N 5 . 1 . 1 . A n I R - m a n i f o l d X i s c a l l e d a 1 - p a r a m e t e r

group of transformations.

Let X be a manifold and y:I >X , t --,--~

H e r e I d e n o t e s a n o p e n i n t e r v a l of ]R c o n t a i n i n g 0 .

_ d ~t d t ~ t t h e t a n g e n t v e c t o r of ~ in t h e p o i n t ~/t"

~t' a curve on X.

We denote by

We then have

~t f _ d f ( • t ) f o r e v e r y f ~ C X dt

w h i c h c h a r a c t e r i z e s ~ t "

N o w l e t q~ : IR x X > X , (t , x) " -"~> (P t(x) , be a 1 - p a r a m e t e r g r o u p

of t r a n s f o r m a t i o n s . We s h a l l a l s o s a y f o r t h i s s i t u a t i o n : '~g~ i s a

1 - p a r a m e t e r g r o u p of t r a n s f o r m a t i o n s of X . " D e f i n e f o r e v e r y x ~ X

/t /t (1) Ax - d-i~Ot(x) = 0 - ~ t Ix) =0

A x i s a v e c t o r f i e l d on X . T h e n A ; ( ) x C X

If t ~- '~> $ t

t ~ ~ s t = @t"

r e s p e c t i v e l y , t h e n

i s a 1 - p a r a m e t e r g r o u p of t r a n s f o r m a t i o n s , t h e n a l s o

If A, B a r e t h e v e c t o r f i e l d s i n d u c e d by (Pt ' ~ t

Page 73: Introduction to Lie Groups and Transformation Groups

- 6 7 -

d d B x = ~-: { ~ ( x ) } : :[ Gst(X)/t =- s A ,

t = 0 = 0 x

I n t h i s d e f i n i t i o n of t h e v e c t o r f i e l d c o r r e s p o n d i n g t o a 1 - p a r a m e t e r

g r o u p of t r a n s f o r m a t i o n s , w e h a v e n o t m a d e u s e of t h e f a c t t h a t S t i s

g l o b a l l y d e f i n e d .

D E F I N I T I O N 5 . 1 . Z. L e t ( > 0 , I b e a n o p e n i n t e r v a l ( - ( , E ) of E

IR a n d U a n o p e n s e t o f X . A l o c a l l - p a r a m e t e r g r o u p of l o c a l t r a n s -

f o r m a t i o n s of X d e f i n e d on U i s a m a p qg: I ( x U > X , ( t , x ) ~ Ot (x )

s u c h t h a t

I) f o r a l l t 6; I ( , ~ t

2) i f t , s , t + s 6; I (

: U > s t ( U ) i s a d i f f e o m o r p h i s m ,

a n d x , S s (X ) E; U , t h e n ~ t + s ( X ) = opt ( ~ s ( X ) ) .

E q u a t i o n (1) s t i l l m a k e s s e n s e f o r x 6; U a n d d e f i n e s a v e c t o r f i e l d

A on U , w h i c h i s c a l l e d t h e v e c t o r f i e l d i n d u c e d on U b y q9 t . T h e

p r o p e r t i e s of a l o c a l 1 - p a r a m e t e r g r o u p of l o c a l t r a n s f o r m a t i o n s a r e n o t

u s e d f o r t h i s f a c t , b u t t h e y a l l o w t o p r o v e

P R O P O S I T I O N 5 .1 . 3. L e t

~_roup of t r a n s f o r m a t i o n s of X ,

s u b s e t of X , a n d A t h e i n d u c e d v e c t o r f i e l d on U . T h e n f o r

c u r v e t ~ " ~ > ~ t (x) s a t i s f i e s t h e d i f f e r e n t i a l e q u a t i o n

~: I E x U > X be a local..l-parameter

= (-E,E)C ]R U an open where E > O, I E

x 6; U , the

w i t h t h e i n i t i a l c o n d i t i o n

Ot(x) -- Aot(x )

O o ( X ) -- •

Page 74: Introduction to Lie Groups and Transformation Groups

- 6 8 -

P r o o f : L e t f C C X . T h e n f o r f i x e d x C U

d %t (x)f -- = Lira

s-->O _/_Is { f(~t+s (x)) - f(~t (x))}

L i m s - - > 0

__Is {f( Ss(~t (x))) - f( ~~

= d /

d s / s = 0

= Acpt(x) f , q . e . d .

C O R O L L A R Y 5 . 1 . 4 . L e t ~p, qJ : I ( x U > X b e two l o c a l

. . 1 - p a r a m e t e r g r o u p s of l o c a l t r a n s f o r m a t i o n s d e f i n e d on U . I f t h e y

i n d u c e t h e s a m e v e c t o r f i e l d s on U , t h e y c o i n c i d e .

P r o o f : T h i s i s j u s t t h e u n i q u e n e s s t h e o r e m f o r o r d i n a r y d i f f e r e n t i a l

e q u a t i o n s .

A p p l y i n g t h e e x i s t e n c e t h e o r e m f o r o r d i n a r y d i f f e r e n t i a l e q u a t i o n s ,

w e prove n o w

P R O P O S I T I O N 5 . 1 . 5 . L e t A b e a v e c t o r f i e l d on X . F o r a n y x ~ X

t h e r e e x i s t s a n E > 0 , a n o p e n s u b s e t U o f X a n d a l o c a l 1 - p a r a m e t e r

g r o u p of l o c a l t r a n s f o r m a t i o n s cp : I x U > X , w h i c h i n d u c e s on U E

t h e g i v e n v e c t o r f i e l d .

P r o o f : F o r a f i x e d x C X w e d e f i n e t " ' > ~Pt(x) a s t h e s o l u t i o n o f

the differential equation

~o t (x) = A ~ t ( x )

Page 75: Introduction to Lie Groups and Transformation Groups

-69 -

w i t h i n i t i a l v a l u e r = x .

~ t (~ps(x)) =

such that both sides are defined.

T h e n

a n d

W e now prove

r (x)

W r i t e

f o r s , t , t + s C I E

cat+s(X) = Ctl(t) , ~at(~as(X)) = a z ( t ) .

a l ( t ) = cbt+s(X) = A t+s(X) = A a l ( t )

~ ( t ) = ~ o t ( ~ s ( x ) ) = A t ( O s ( x ) ) -- A a 2 ( t )

(i = 1, Z) a r e s o l u t i o n s of t h e s a m e d i f f e r e n t i a l e q u a t i o n . A s 1

al (O ) = a Z ( O ) : q )s (X) , w e o b t a i n c 1 = a 2 ,

t h a t oPt(x) d e p e n d s d i f f e r e n t i a b l y o n x .

x C U t h e r e f o r e opt(r = ~ _ t ({Pt(x))

opt i s a d i f f e o m o r p h i s m .

p r o v i n g t h e d e s i r e d r e s u l t .

I t r e m a i n s t o s h o w t h a t t h e m a p x - - - - '~ ~ t (x ) i s a d i f f e o m o r p h i s m

: U > cPt(U ) . C e r t a i n l y ~Po i s t h e i d e n t i t y t r a n s f o r m a t i o n . W e k n o w

F o r s u f f i c i e n t l y s m a l l t a n d

= (Po(X) = X , p r o v i n g t h a t

D E F I N I T I O N 5 . 1 . 6 . A v e c t o r f i ~ l d A on X i s c o m p l e t e , i f i t i s

induced by a 1-parameter group of transformations.

Example 5. I. 7. Consider the vectorfield A on ]R which has in

every point a positively oriented vector of length one. Consider the

submanifold (0, l)c JR. Then A r.~strict'ed to (0, I) is not complete.

A criteria for completeness is given in

Page 76: Introduction to Lie Groups and Transformation Groups

-70-

LEMMA 5.1. 7. Let A be a vectorfield on X. Suppose there exists

r > 0 and a local 1-parameter group of local transformations ~0: I xX > X

inducing A. Then ~ has an extension to a 1-parameter group of transforma-

tions and A is therefore complete.

Proof: ~ t is a diffeomorphism f o r It I ~ E. There is only to define

( ~t for It l > f. Write t = k. ~ + r with an integer k and Irl < ~2

-k If k > 0, define __(~ = (r ~ . If k < 0 , define ~t = ((D__ E)

Z z Now ~ ~t satisfies all conditions.

~ ~r

Example 5. I. 8. Let X be a compact manifold. Any vectorfield A

on X is complete.

We remark that the relation between vectorfields and local l-parameter

groups of local transformations described in this section is at the origin

of the denomination of a vectorfield as an infinitesimal transformation.

5.2. 1-parameter groups of transformations and equivariant maps.

Convention on notations. Given a local 1-parameter group of local

transformations on X we denote it ~t and just speak of the induced

vectorfield A on X, without specifying the domains of definition. Also,

for a given vectorfield A on X, we just write %D t for a local 1-parameter

group of local transformations inducing A on some subset of X. The

formulas are valid as soon as they make sense. They make sense in

particular if only l-parameter group of transformations occur.

Page 77: Introduction to Lie Groups and Transformation Groups

-71-

P R O P O S I T I O N 5 . 2 . 1 . L e t

t r a n s f o r m a t i o n s on X, X' , A, A '

!

~t' ~t be local 1-parameter groups of

the induced vectorfields and ~: X >X'

! !

a m a p . _If @ o ~ t = ~ t o ~ f o r a l l t , t h e n A and A a r e ~ - r e l a t e d .

P r o o f : We have

!

Ix) A~; (x) = Ax~t(q~(x))

by d i f f e r e n t i a t i n g w i t h r e s p e c t to t . Or

!

,~tlx) AtiYtlx) = A (~t(x))

w h i c h s h o w s the p r o p o s i t i o n in v i e w of l e m m a 4 . 4 . 3.

It is convenient to call a map ~ : X ----> X' satisfying q~ ~ ~t = ~!t " ~

a n e q u i v a r i a n c e w i t h r e s p e c t to t h e g i v e n l o c a l 1 - p a r a m e t e r g r o u p s of

!

l o c a l t r a n s f o r m a t i o n s ~ t and kD t . T h e p r o p o s i t i o n s a y s t h a t the

i n d u c e d v e c t o r f i e l d s A and A' a r e t h e n ~ 0 - r e l a t e d . T h i s is c h a r a c t e r i s t i c

f o r e q u i v a r i a n t m a p s . P r e c i s e l y we h a v e

P R O P O S I T I O N 5 . 2 . 2 . L e t X, X' be m a n i f o l d s , A, A' v e c t o r f i e l d s

on X, X' r ~ e s p e c t i v e l y , S t $ ' c o r r e s p o n d i n g l o c a l 1 - p a r a m e t e r g r o u p s - - ' t - -

!

of l o c a l t r a n s f o r m a t i o n s and ~0: X > X a m a p . If A and A! a r e

~ 0 - r e l a t e d , t h e n

O 0 ~ ,

t t

I

P r o o f : F o r x C X w r i t e a l ( t ) = @ (q~t(x)) , a z ( t ) = qit(~O(x)) .

T h e n al(O ) = a2(O) = ~0(x). We p r o v e e l = aZ b y s h o w i n g t h a t a l ' ag

s a t i s f y t he s a m e d i f f e r e n t i a l e q u a t i o n . But

Page 78: Introduction to Lie Groups and Transformation Groups

-7Z-

~l(t) = (~q,t(x) AqSt(x) = ~l(t)

!

b y l e m m a 4 . 4 . 3 , a s A a n d A a r e ~ - r e l a t e d a n d

E2.(t ) ' z(t) = A a , q . e . d .

COROLLARY 5. Z. 3. Let X, X' be manifolds and ~: X > X' a

d i f f e o m o r p h i s m . I f A i s a v e c t o r f i e l d on X , s e n e r a t i n $ a l o c a l 1 - p a r a m e t e r

!

~ r o u p of l o c a l t r a n s f o r m a t i o n s q't ' t h e n t h e v e c t o r f i e l d ~ . A o n X

-1 ~ e n e r a t e s t h e l o c a l 1 - p a r a m e t e r g r o u p of l o c a l t r a n s f o r m a t i o n ~ o ~ t ~ q~ "

P r o o f :

A p p l y i n g t h i s t o a n a u t o m o r p h i s m w e o b t a i n

C O R O L L A R Y 5 . 2 . 4 . L e t X b e a m a n i f o l d ,

g e n e r a t i n g a l o c a l 1 - p a r a m e t e r g r o u p of l o c a l t r a n s f o r m a t i o n s

~0 : X > X a d i f f e o m o r p h i s m . T h e n ~ # A = A i f a n d o n l y i f

{~ ~ q/t = q/t ~ (~ f o r a l l t .

I t i s s u f f i c i e n t t o o b s e r v e t h a t A a n d ~ 0 , A a r e r

A a v e c t o r f i e l d on X

~ t and

W e o b s e r v e t h a t t h e p r e c e d i n g i s s t i l l t r u e f o r a l o c a l a u t o m o r p h i s m

of X , i . e . a m a p ~0 : U > X d e f i n e d on a n o p e n s u b s e t of X a n d h a v i n g

a r e s t r i c t i o n b e i n g a d i f f e o m o r p h i s m . ~o#A i s t h e n t o b e i n t e r p r e t e d a s

a v e c t o r f i e l d on a c o n v e n i e n t s u b s e t of X a n d c a n b e d e f i n e d b y t h e

f o r m u l a of l e m m a 4. 2. 8. C o n s i d e r i n p a r t i c u l a r

a u t o m o r p h i s m of X i n t h i s s e n s e . A s qJ ~ S

w e s e e t h a t ( ~ s ) , A = A b y c o r o l l a r y 5 . 2 . 4 .

, which is a local S

~ t = qJt ~ ~ s f o r a l l t ,

This just means that the

velocity field A of the flow St is invariant by the flow, the characteristic

property of a stationary flow.

Page 79: Introduction to Lie Groups and Transformation Groups

-73-

An application of corollary 5. Z. 4 is the following:

LEMMA 5. Z. 5. Let G be a Lie group, A 6 LG and t

l-parameter group of local transformations generated by A.

L o �9 = r o L f o r a l l t , g C G . g t t g

We can now prove

P R O P O S I T I O N 5. Z. 6. L e t G be a L i e ~ r o u p .

a local

Then

E v e r y l e f t i n v a r i a n t

by lemma 5. ~. 5. Defining conversely @ by this formula, we obtain the

desired ~: I E x G > G.

Another consequence of lemma 5.2.5 is

PROPOSITION 5. Z. 7. Let G be a Lie sroup, A ~ LG and q~t the

1-parameter group of transformations generated by A. Then i t = R~(e).

Proof: By lemma 5. ~. 5 a particular case of

I~MMA 5.2.8. Let G be a group (in the sense of algebra). A map

,~: G > G is a right translation (and then necessarily R~) = y) i_~f

and only if

~(g) = (~t ~ Lg)(e) : (Lg o ~t)(e) : Lg(~(e))

v e c t o r f i e l d on G i s c o m p l e t e .

P r o o f : We c o n s i d e r a l o c a l 1 - p a r a m e t e r g r o u p of l o c a l t r a n s f o r m a -

t i o n s ~ t g e n e r a t e d b y A , a n d s h o w t h a t St h a s a n e x t e n s i o n t o a l o c a l

1-parameter group of local transformations ~ : I x G > G for an (

> 0. Then the proposition follows by lernma 5. I. 7. Suppose

: I E x U > G for an E > 0 and a neighborhood U of e ~ G. A

necessary condition for an extension ~: I E x G > G is

Page 80: Introduction to Lie Groups and Transformation Groups

- 7 4 -

L ~ ~ = % o L f o r a l l g 6 G . g g

P r o o f : T h e a s s o c i a t i v i t y s h o w s t h a t t h e c o n d i t i o n i s n e c e s s a r y .

S u p p o s e c o n v e r s e l y L o qJ = ~ o L f o r a l l g 6 G . F o r V C G g g

g ~ ( V ) = q J ( g v ) a n d i n p a r t i c u l a r g ~ ( e ) = ~ (g) , i . e .

~e(g) = R ~ ; g , q . e . d . (e

5. 3. T h e b r a c k e t of t w o v e c t o r f i e l d s .

We g i v e n o w a n i n t e r p r e t a t i o n of t h e b r a c k e t of t w o v e c t o r f i e l d s

( t a k e n f r o m K. N o r n i z u a n d S. K o b a y a s h i [11], p. 15).

W e u s e t h e n o t a t i o n ~ . A f o r a v e c t o r f i e l d A on X a n d a l o c a l

a u t o m o r p h i s m r o f X a s e x p l a i n e d i n 5 . 2 .

P R O P O S I T I O N 5 . 3 . 1 . L e t A a n d B b e v e c t o r f i e l d s on t h e m a n i f o l d

X , and ~ t a l o c a l 1 - p a r a m e t e r g r o u p of l o c a l t r a n s f o r m a t i o n s g e n e r a t e d

by A. Then

1 [A, B] = Lirn ~-[B x - ((~t).B)x] for x S X

x t - - ~ O

LEMMA 5. 3. Z. Le___~t E >0, I E = (-E, ()c]R and f : I E xX > ]R

with f(o, x) = 0 for x C X. Then there exists g : I x X > ]R with

8f f ( t , x) = t g ( t , x ) . M o r e o v e r g ( o , x) = ~ (o , x) .

1

P r o o f : D e f i n e g ( t , x) = -~- ( t s , x ) d s

o

Page 81: Introduction to Lie Groups and Transformation Groups

-75-

LEMMA 5. 3. 3. Let A generate opt. For any f G CX there exists

gt G CX with f o ~t = f + t gt and go = A/.

The function g(t, x) = gt(x) is defined, for each fixed x G X, in

I t [ < r f o r s o m e ~ > O.

Proof: Consider h(t, x) = f(~0t(x) ) - f(x) and apply lemma 5. 3. Z.

Then f o~)t = f + tgt" We have

1 1 (A.f)(x) = L i r a -~ [f((Pt(x)) - f(x)] = L i r a T f(t, x)

t--->0 t-->0

= Lim g(t, x) = go(X) t--->0

P r o o f of p r o p o s i t i o n 5. 3 .1 .

l e m m a 5. 3. 3. S e t x t = ( p : l ( x ) .

L e t f G C X .

Then

T a k e gt 6 C X as in

((~t)$B)x f = (B(f �9 qgt))(xt) = (Bf)(xt)+ t(Bgt)(xt)

a n d

I Lim -[ [B x - ((~t), B)x ] f = t--->0

i Lira -~ [(Bf)(x) - (Bf)(xt) ] t-->0

L i r a (Bgt)(xt) t-->O

= = A (Bf) - Bx(Af) Ax(Bf) - B xgo x

= [A, B] f , q.e.d. X

C O R O L L A R Y 5. 3 . 4 . L e t A a n d B b e v e c t o r f i e l d s on t h e m a n i f o l d

X and ~ t a local 1-parameter group of local transformations generated

b y A . T h e n f o r a n y v a l u e of s ~ I R , x ~ X

Page 82: Introduction to Lie Groups and Transformation Groups

-76 -

= Lira 1 [((~0s),B) ((Os). [A, B] ) 7 x t-->0

- (( ~t+ s), B)x ]

a S

Proof: L e t s em. Then ( ~ s ) , [ A , B] = [ ( ~ s ) . A , ( C ~ s ) . B ] = [ A , ( ~ s ) , B ] ,

( ~ s ) , A = A by t h e r e m a r k a t t h e e n d of 5. Z.

Applying proposition 5. 3. I. , we obtain

1 [A, (~)s),B]x = Lim -[[((~s),B)x - ((~t),(~s),B)x]

t--->0

i [((~s) * _ (( ),B)x] Lim -[ B)x ~t+s " t-->0

P R O P O S I T I O N 5 . 3 . 5 . L e t X be a m a n i f o l d , A a n d B v e c t o r f i e l d s

o__n X g e n e r a t i n g l o c a l 1 - p a r a m e t e r ~ r 0 u p s of l o c a l t r a n s f o r m a t i o n s S t a n d

~ t r e s p e c t i v e l y . T h e n ~ t ~ ~ = ~ ~ ~ s s t

f o r e v e r y s a n d t i f a n d

o n l y if [ A , B] : O .

P r o o f : If ~0 t o @ = q~ ~ opt f o r e v e r y s a n d t , ( ~ t ) . B = B S S

by c o r o l l a r y 5 . 2 . 4 . B y p r o p o s i t i o n 5. 3 .1, [ A , B] = O . S u p p o s e c o n v e r s e l y

d - . [ A , B] = O . B y c o r o l l a r y 5. 3 . 4 , - ~ ( (cp t ) .B)x O f o r a n y t . T h e r e -

f o r e (~p t ) .B = B f o r e v e r y t and by c o r o l l a r y 5 . 2 . 4 ~0 t c o m m u t e s w i t h

e v e r y ~ . S

P R O P O S I T I O N 5. 3 . 6 . L e t t he v e c t o r f i e l d s A and D of X g e n e r a t e

l o c a l 1 - p a r a m e t e r g r o u p s of l o c a l t r a n s f o r m a t i o n s ~ t and ~ t r e s p e c t i v e l y .

S u p p o s e [ A , B] = O . T h e n X t = {~t o ~t = ~ t ~ @t is a l o c a l 1 - p a r a m e t e r

group of local transformations and is generated by A + B.

Page 83: Introduction to Lie Groups and Transformation Groups

- 7 7 -

Proof: Proposition 5. 3.5 shows that

group of local transformations. Now

~t(x) = ~t ( ~ t (x))

X is i n d e e d a l oca l 1 - p a r a m e t e r t

+ (r ~'t (x)

= A x t ( x ) + (r ) Bxit(x)

But by p r o p o s i t i o n 5. 3 .5 and c o r o l l a r y 5. 2. 4 (Ot) * B = B .

and

(r Bq't(x) = B(pt(~t(x) ) = BXt(x )

kt(x) = (A + B) Xt(x) , q.e.d.

T h e r e f o r e

5.4. 1-parameter subgroups of a Lie group.

DEFINITION 5.4. I. A l-parameter subgroup a of a Lie group G is

a homomorphism a: ]R > G of Lie groups.

Remark. Let X be a manifold and ~t a 1-parameter group of trans-

formations of X. One would like to consider t ""> (~t as a l-parameter

s u b g r o u p IR > Aut X of Aut X .

of the d i f f e r e n t i a b i l i t y of th i s m a p .

3.2.5.

The trivial homomorphism O : IR

But it does not make sense to speak

See also the remark after example

,>G is a 1 - p a r a m e t e r s u b g r o u p

of G,

Page 84: Introduction to Lie Groups and Transformation Groups

-78-

A non-trivial l-parameter subgroup

an injection, as shown by

Example 5.4.2. The canonical homomorphism ]R > ]R/Z = ~r is

a l-parameter subgroup of "Jr .

Lemma 5.4. 5 below shows that a non-trivial l-parameter subgroup

is an immersion.

Let A be a complete vectorfield on G and ~t

of transformations generated by A. Define

a t = ~0t{e ) for e C G

T h e n a : IR > G and ao = ~0o(e) = e , but a

a: IN >G is not necessarily

t h e 1 - p a r a m e t e r g r o u p

is not necessarily a 1-parameter

s u b g r o u p of G . If A g L G , th i s i s t he c a s e , as s t a t e d in

P R O P O S I T I O N 5 . 4 . 3. L e t G be a L i e g r o u p , A C L G , ~0 t th___e_e

l-parameter subgroup of G generated by A and a: IR > G the map

defined by a t = ~t(e). Then a is a l-parameter subgroup of G.

~t = Rat an.d (Dt is completely described by a

Proof: Applying lemma 5.2.5, we obtain

M o r e o v e r

a t l + t 2 = ~ 0 t l + t z ( e ) = ~ t l ( ~ t z { e ) ) = ( ~ t l o L~0t2(e))(e)

= (L~0t2(e) ~ ~0 t l ) (e) = ~t2(e)~0tl(e) = at 2atl

In view of proposition 5. g. 7 we have @t = Rat " |

T h e s t a t e m e n t ~0 t = Ra t i s o f t en p a r a p h r a s e d in t he l i t e r a t u r e by:

Page 85: Introduction to Lie Groups and Transformation Groups

- 79 -

" t h e i n f i n i t e s i m a l t r a n s f o r m a t i o n g e n e r a t e d b y a l e f t i n v a r i a n t v e C t o r f i e l d

i s a r i g h t t r a n s l a t i o n " .

W e c a l l a t h e 1 - p a r a m e t e r s u b g r o u p of G

s G d e n o t e t h e s e t of 1 - p a r a m e t e r s u b g r o u p s of G .

m a p ~ : LG > s

LEMMA 5.4.4. Let A C LG, a= ~(A)

solution of the differential equation

a t = An t

w i t h i n i t i a l c o n d i t i o n a = e . o

P r o o f : h t = ~ t ( e ) = A t ( e ) = A a t

a = ~ (e) = e , q . e . d . O o

d e f i n e d b y A E L G . L e t

W e h a v e d e f i n e d a

s . T h e n a i s t h~

a n d s h o w s i t s i n j e c t i v i t y .

by proposition 5. I. 3 and

T h i s l e m m a g i v e s a d i r e c t d e s c r i p t i o n of t h e m a p ~ : L G > s

W e s h a l l s e e t h a t ~ i s b i j e c t i v e . F i r s t w e

prove

LEMM A 5.4.5. L e t a ~ s T h e n

a t = ( L a t ) * e h ~ = ( R a t ) * e a ~

t o

P r o o f :

s , w e o b t a i n

d t + s

By d i f f e r e n t i a t i n g = a t a = a a a t + s s s t

= ( ) * a s t s S @ s

w i t h r e s p e c t

a n d f o r s = 0 t h e d e s i r e d r e s u l t .

Page 86: Introduction to Lie Groups and Transformation Groups

- 8 0 -

T H E O R E M 5 . 4 . 6 . L e t G be a L i e g r o u p , L G i t s L i e a l g e b r a a n d

s the set of l-parameter subgroups of G. For any A C LG we define

~'(A) = ct ~ s a s t h e s o l u t i o n of ~ t = A w i t h i n i t i a l c o n d i t i o n ct = e . t o

T h e n ~. : L G > s G i s b i j e c t i v e .

P r o o f : L e t a g s If a= ~'{A) f o r s o m e A ~ L G , t h e n

n e c e s s a r i l y A = ~ w h i c h s h o w s i n j e c t i v i t y of 4 - D e f i n i n g c o n v e r s e l y e o "

A ~ L G a s t h e v e c t o r f i e l d w i t h A = ~ , w e h a v e A a t = (Lct t) tt = tt e o ~ o t

b y l e m m a 5 . 4 . 5, w h i c h s h o w s s u r j e c t i v i t y of ~ .

L e m m a 5 . 4 . 5 s h o w s t h a t w e o b t a i n b y t h e s a m e d e f i n i t i o n a b i j e c t i o n

RG > s G . I n f a c t , t h e t a n g e n t v e c t o r s of t h e c u r v e t , - , ~ a t b e l o n g

a s w e l l t o t h e l e f t a s t o t h e r i g h t i n v a r i a n t v e c t o r f i e l d d e f i n i n g a . T h e

s i t u a t i o n i s d e s c r i b e d p r e c i s e l y b y

P R O P O S I T I O N 5 . 4 . 7. L e t A g L G , a = ~{A) 6 s G a n d g ~ G .

T h e n A - ( g ~ t ) ' t g = 0

P r o o f : L e t ~ t b e t h e 1 - p a r a m e t e r g r o u p of t r a n s f o r m a t i o n s g e n e r a t e d

b y A . T h e n ~ t ( g ) = A ~ t ( g ) f o r a n y g ~ G . N o w b y p r o p o s i t i o n 5 . 4 . 3,

~ t ( g ) = R a t ( g ) = g a t

a n d

~0t(g ) - ( g a t ) ~ .

F o r t = 0 t h i s s h o w s /~p ( g ) = A = ( g a t ) " , q . e . d . o g t = 0

A c o n s e q u e n c e of t h e o r e m 5 . 4 . 6 i s t h e

Page 87: Introduction to Lie Groups and Transformation Groups

-81-

PROPOSITION 5.4. 8. Let I be an open interval of IR containing O

a n d a : I > G a l o c a l h o m o m o r p h i s m of L i e g r o u p s . T h e n t h e r e e x i s t s

a u n i q u e 1 - p a r a m e t e r s u b g r o u p a : n~ > G of G w i t h a / I = a .

P r o o f : L e t A E L G b e d e f i n e d b y a = A a n d ~ = ~ ( A ) . L e m m a o e

5 . 4 . 5 s t i l l a p p l i e s t o a , s h o w i n g ~t t = ( L a t ) . e ct o a n d t h e r e f o r e

ao ~tt A a t = ( L a t ) . e = . B u t a i s a l s o a s o l u t i o n of t h i s d i f f e r e n t i a l

e q u a t i o n . N o w a = ct = e s h o w s I = a , a n d a i s a n e x t e n s i o n of a O O

to a 1-parameter subgroup of G. The uniqueness follows from the fact

that there exists only one 1-parameter subgroup a of G with given d O

As shown by the example of the local isomorphism "IF > IR, there

exists not necessarily an extension of a local homomorphism G !

> G of

Lie groups to a homomorphism (see remark following lemma 4. 5.8). It

f o l l o w s f r o m t h e t h e o r y of t o p o l o g i c a l g r o u p s , t h a t a n e x t e n s i o n e x i s t s , i f

G i s s i m p l y c o n n e c t e d ( s e e a l s o l e m m a 7. Z. 5). P r o p o s i t i o n 5 . 4 . 8 i s a

particularly simple case of this situation.

L E M M A 5 . 4 . 9 . L e t G b e a L i e g r o u p , A a n d B 6 L G , ~ a n d ~ t h e

c o r r e s p o n d i n g e l e m e n t s C s ~ t a n d ~ t h e 1 - p a r a m e t e r g r o u p s of

t r a n s f o r m a t i o n s g e n e r a t e d b y A a n d B r e s p e c t i v e l y . T h e n

~ q = @ ~ ~ t f o r e v e r y t a n d s i f a n d o n l y i f a t ~ s = ~ a f o r ~ t s s s t

e v e r y t and a .

P r o o f : For g C G ,

( ~ t ~ @s )(g) = ( ~ t ~ @s ~ L ) (e ) = ( L g o ~ t ~ @ )(e) b y l e m m a 5. g 5. g s

Page 88: Introduction to Lie Groups and Transformation Groups

-82 -

Now @(e)s = -~s = L ~ s ( e ) and t h e r e f o r e f o r the s a m e r e a s o n

o o @ s ) ( e ) = ( L g o ) ( e ) = ( L o L o r ) ( e ) ( L g opt ~ t ~ L ~ s g 1~ s

t h u s p r o v i n g

( ~ t a ~ @ s ) { g ) : g[5 s t

Similarly

( ~ o ~ t ) ( g ) = g a t [Bs S

T h i s p r o v e s the l e m m a .

C o n s i d e r the e x p r e s s i o n ( ~ t oK s)(g) = g ~ s a t ' w h i c h o c c u r r e d in

the p r o o f . In p a r t i c u l a r (@ t o qJt)(e ) = ~ t a t " If [A , B] = O , by

p r o p o s i t i o n 5. 3. 6 Xt = ~ t o St = qJt o ~ t i s a 1 - p a r a m e t e r g r o u p of

t r a n s f o r m a t i o n s , X t (e) = ~t a t = a t ~t a 1 - p a r a m e t e r s u b g r o u p , and

A + B the c o r r e s p o n d i n g v e c t o r f i e l d . T h e r e f o r e

P R O P O S I T I O N 5 . 4 . 1 0 . L e t A, B C LG and

p o n d i n g 1 - p a r a m e t e r s u b g r o u p s . S u p p o s e [A, B] = O . T h e n

at ~ t = ~ t a t = Nt d e f i n e s a 1 - p a r a m e t e r s u b g r o u p and A + B

c o r r e s p o n d i n g l e f t i n v a r i a n t v e c t o r f i e l d .

a,~ C s the corres-

i s the

Together with proposition 5. 3.5 we obtain from lemma 5.4.9

PROPOSITION 5.4. II. Le__~t A, B ~ LG, @t and ~t the 1-parameter

groups of transformations generated by A and B respectively and a,

the corresponding 1-parameter subgroups of G. Then the following

s t a t e m e n t s a r e e q u i v a l e n t :

Page 89: Introduction to Lie Groups and Transformation Groups

-83-

I) [ A , B ] = O

2) ~ t o ~ = S S

3) at~ s ~s = r t

~ ~ t f o r e v e r y s a n d t

f o r e v e r y s a n d t

We s h a l l s e e i n c h a p t e r 6 t h a t t h e s e c o n d i t i o n s a r e e v e n e q u i v a l e n t

t o a t ~ t = ~ t a t f o r e v e r y t ( s e e p r o p o s i t i o n 6 . 5 . 3 . ) .

Now we consider a homomorphism p : G > G of Lie groups. A

1 - p a r a m e t e r s u b g r o u p a ~ s G g i v e s b y c o m p o s i t i o n w i t h p a n e l e m e n t

!

p o a E s . I f p i s a l o c a l h o m o m o r p h i s m , p o a i s a l o c a l h o m o -

m o r p h i s m ]R > G ' , b u t c a n b y p r o p o s i t i o n 5 . 4 . 8 b e u n i q u e l y e x t e n d e d

t o a 1 - p a r a m e t e r s u b g r o u p of G ' , w h i c h w e a l s o d e n o t e b y p o a . T h e

m a p s : s > s s o d e f i n e d i s c o m p a t i b l e w i t h t h e m a p ~ of

t h e o r e m 5 . 4 . 6. M o r e p r e c i s e l y w e h a v e

PROPOSITION 5.4. iZ. Let G, G' b e Lie ~roups and 9 : G > G'

a local homomorphism. Then the followin$ diasram

L G -- L(p) --:> L G '

s (0) >,s

commutes, where s is the composition with p and ~G' ~G' the

m a p s of t h e o r e m 5 . 4 . 6 .

Proof: For a ~ s G we have ( 9 ~ a)t/t=0 = P *e ~t~ This

m e a n s t h a t t h e d i a g r a m (without t h e d o t t e d l i n e )

Page 90: Introduction to Lie Groups and Transformation Groups

- 8 4 -

P . e i

G > G e

LG L(P)

LG

s s ~ s

c o m m u t e s . L ( 9 ) i s d e f i n e d by f i l l i n g in t he d o t t e d l i n e in t h e u p p e r ha l f .

G b e i n g s u r j e c t i v e , ( in f a c t b i j e c t i v e ) , t h i s p r o v e s t he p r o p o s i t i o n .

D e f i n e t he f o r g e t - f u n c t o r V : s > E n s , a s s i g n i n g to a n y L i e a l g e b r a

i t s u n d e r l y i n g s e t and to a n y L i e a l g e b r a h o m o m o r p h i s m the c o r r e s p o n d i n g

m a p of the u n d e r l y i n g s e t s . P r o p o s i t i o n 5 . 4 . 12 s t a t e s t h e n t h a t

: V o L > s is a n a t u r a l t r a n s f o r m a t i o n , in f a c t a n a t u r a l e q u i v a l e n c e .

5 . 5 . K i l l i n g v e c t o r f i e l d s .

In t h i s s e c t i o n , t h e r e l a t i o n b e t w e e n 1 - p a r a m e t e r s u b g r o u p s of a L i e

g r o u p G and 1 - p a r a m e t e r g r o u p s of t r a n s f o r m a t i o n s of a G - m a n i f o l d X

is s t u d i e d .

L e t X be a G - m a n i f o l d w i t h r e s p e c t to a h o m o m o r p h i s m T : G

and ~: ]R

> Aut X

> G a 1 - p a r a m e t e r s u b g r o u p of G . T h e c o m p o s e d h o m o m o r p h i s m

]R ~ ~ G T ~ Au t X

d e f i n e s a 1 - p a r a m e t e r g r o u p of t r a n s f o r m a t i o n s @ t of X . I n d e e d , the

m a p

Page 91: Introduction to Lie Groups and Transformation Groups

- 8 5 -

IR x X > G x X > X

( t , x ) ~ (a t , x ) - - - ~ > T a ( x ) = ~t(x) t

i s d i f f e r e n t i a b l e .

D E F I N I T I O N 5 . 5 . 1 . T h e K i l l i n ~ v e c t o r f i e l d A on X d e f i n e d bY

a G s G is t h e v e c t o r f i e l d i n d u c e d by the 1 - p a r a m e t e r g r o u p of t r a n s -

f o r m a t i o n s ~ t "

R e m a r k . As a l r e a d y o b s e r v e d in s e c t i o n 5 . 4 , one w o u l d l i k e to

c o n s i d e r t he 1 - p a r a m e t e r g r o u p of t r a n s f o r m a t i o n s ~ t as a 1 - p a r a m e t e r

s u b g r o u p

on Aut X

as i n d i c a t e d a b o v e .

]R > Au t X of A u t X . T h e n ~ t w o u l d d e f i n e a v e c t o r f i e l d

as e x p l a i n e d in 5. 4. As t h i s p r e s e n t s d i f f i c u l t i e s , one p r o c e e d s

T h e d i f f e r e n t i a l e q u a t i o n

~t (x)

d e s c r i b i n g the r e l a t i o n b e t w e e n ~0 t

= A * t (x)

and A* c a n h e u r i s t i c a l l y b e w r i t t e n as

~ t = A~ t

i n t e r p r e t i n g n o w A* as a v e c t o r f i e l d on A u t X . T h i s d e s c r i b e s ,

c o u r s e , A* on ly a l o n g the c u r v e t ~ ~ t on Au t X .

of

E x a m p l e 5 . 5 . 2 . If T: IR > Au t X d e f i n e s a 1 - p a r a m e t e r g r o u p of

t r a n s f o r m a t i o n s T t of X , t h e n t h e K i l l i n g v e c t o r f i e l d A* d e f i n e d by

111% : IR > IR i s j u s t the v e c t o r f i e l d i n d u c e d by T t .

Page 92: Introduction to Lie Groups and Transformation Groups

- 8 6 -

P R O P O S I T I O N 5 . 5 . 3. L e t G o p e r a t e on G

T h e K i l l i n $ v e c t o r f i e l d on G d e f i n e d by a ~ s

v e c t o r f i e l d B 6 RG c h a r a c t e r i z e d by ao = Be "

by l e f t t r a n s l a t i o n s .

i s t h e r i g h t i n v a r . i a n t

P r o o f : T h e 1 - p a r a m e t e r g r o u p of t r a n s f o r m a t i o n s ~ t = L a t on

G i n d u c e s by p r o p o s i t i o n 5 . 4 . 3 a n d t h e o r e m 5 . 4 . 6 ( r e s p e c t i v e l y t h e

a n a l o g u e f o r RG) a r i g h t i n v a r i a n t v e c t o r f i e l d B on G . I t i s c h a r a c t e r i z e d

= h . b y B e o

E x a m p l e 5 . 5 . 4 . L e t p : G > G ' b e a h o m o m o r p h i s m a n d

7 : G > B i j G ' t h e o p e r a t i o n of G o n G ' d e f i n e d by 7 = L �9 g P (g)

S u p p o s e a C s G a n d c o n s i d e r t h e 1 - p a r a m e t e r g r o u p of t r a n s f o r m a t i o n s

of G ' d e f i n e d by a : ~ = = t Lp ( a t ) L(p oa) t .

G' i n v a r i a n t v e c t o r f ~ e l d B ' on c h a r a c t e r i z e d by

It i n d u c e s t h e r i g h t

B', = (p o a)(t)~ = p, ao e t = O e

C o m p o s i n g t h e c o r r e s p o n d e n c e a ~v.~> B ' w i t h t h e c a n o n i c a l m a p R G

we o b t a i n o b v i o u s l y j u s t t h e h o m o m o r p h i s m

!

p:G >G .

Example 5.5.5. Consider a finite dimensional IR -vectorspace V

and the natural representation of GL(V) in V. Let a be a l-parameter

subgroup of GL(V) and v G V.

d e f i n e d by a s a t i s f i e s A* = v O

> s

R(p) : RG >RG' defined by

by l e m r n a 5 . 4 . 5. T h e r e f o r e t h e K i l l i n g v e c t o r f i e l d A* d e f i n e d by t h e

1 - p a r a m e t e r s u b g r o u p a s a t i s f i e s A * -- h v , i . e . i s t h e v e c t o r f i e l d V O

Then the Killing vectorfield A* on V

, where v t = atv. But ~'t = ~ttv = &oat v

Page 93: Introduction to Lie Groups and Transformation Groups

-87-

canonically defined by the endomorphism ~ C s O

W e n o w a p p l y t h e r e s u l t s of s e c t i o n 5. 3 t o K i l l i n g v e c t o r f i e l d s a n d

prove

PROPOSITION 5.5.6. Let X be a G-manifold with respect to a

homomor}~hism 7: G > Aut X, a a 1-parameter subgroup of G and

A # t h e K i l l i n g v e c t o r f i e l d on X d e f i n e d b y a . I f C i s a n a r b i t r a r y

v e c t o r f i e l d on X , t h e n

, : Lim 1 t)~C)x ] [A* c ] x t - > 0 c x - f o r x C X .

P r o o f :

g e n e r a t e d b y A ~ .

5 . 3 . 1 .

C O R O L L A R Y 5 . 5 . 7 .

t h e c o r r e s p o n d i n g r i g h t i n v a r i a n t v e c t o r f i e l d .

f i e l d on G , t h e n

( T o a ) t i s t h e 1 - p a r a m e t e r g r o u p of t r a n s f o r m a t i o n s of X

T h e f o r m u l a i s t h e r e f o r e a p a r t i c u l a r c a s e of p r o p o s i t i o n

Let G be a Lie group, a ~ s and B ~ RG

If C is an arbitrary vector-

1 [B, C] = Lira ?[Cg g t-->0 - ((L%),C)g] f o r g C G .

Proof: Let G operate on G by left translations. By proposition

5.5. 3 B is then the Killing vectorfield defined by a ~ s G with respect

to this operation. Now we are in the situation of proposition 5.5.6. i

Note that in particular for C C RG this formula expresses the bracket

in RG with the aid of L~ . Of course, we have a similar formula for left t

invariant vectorfields. We deduce the following interesting formula:

Page 94: Introduction to Lie Groups and Transformation Groups

-88-

a G

P R O P O S I T I O N 5 . 5 . 8 . L e t G b e a L i e ~ r o u p a n d A, C 6 L G .

s G i s the 1-parameter subgroup defined by A, then

I f

w h e r e Ad : G

P r o o f :

N o w C 6; L G

a_ /

[A, C] = {Ad( at)}-LL C dt = 0

> A u t L G d e n o t e s t h e a d j o i n t r e p r e s e n t a t i o n of G .

A s i n c o r o l l a r y 5 . 5 . 7 , w e f i r s t o b t a i n f o r g C G

1 [A, C]g = t--->0Lim ~-[Cg - ((Rat) ,C)g]

a n d t h e r e f o r e ( L a t l ) , c = C , i . e .

This shows

(R at) ,C = Ad(atl)c

[A, C]g

which can be written

- - dtd {Ad(atl) Cg}/t =0

[ -A, C] = d (Ad(~l) Cg}/ . g dt t=0

B u t t h e s u b g r o u p -I

t ------> a = a t -t c o r r e s p o n d s to t h e v e c t o r f i e l d - A 6 L G ,

s h o w i n g t h u s t h e d e s i r e d r e s u l t . |

We h a v e s u p p o s e d A d : G > A u t L G to be a h o m o m o r p h i s m of L i e

g r o u p s . T h i s f o l l o w s f r o m t h e c o n t i n u i t y of A d ( s e e s e c t i o n 6. 3).

Page 95: Introduction to Lie Groups and Transformation Groups

-89 -

5. 6. The homomorphism ~: RG > DE for a G-manifold X.

T h e k n o w l e d g e of t h e f o l l o w i n g t w o s e c t i o n s i s n o t n e c e s s a r y f o r t h e

understanding of the subsequent developments.

W e s h a l l s h o w t h a t an o p e r a t i o n T: G > A u t X d e f i n e s a h o m o -

morphism v: RG > DE of Lie algebras. First we prove

L E M M A 5.6. I. Let X be a G-manifold, X' !

a G - m a n i f o l d ,

' X' p : G > G a homomorphism and ~0: X > a p-equivariance.

! C o n s i d e r a C s a = p o a E s a n d t h e K i l l i n g v e c t o r f i e l d s

' A # A * , A ' * d e f i n e d b y a , a . T h e n a n d A ' * a r e g ~ - r e l a t e d .

Proof: Let %D q] be the l-parameter groups of transformations t' t

l I I !

= "rat ' ~ t = Td t " of X , X d e f i n e d b y a , a : q~t It is sufficient to

pr OF e

!

~o ~ = ~ o~ t t

in view of proposition 5. Z. i.

Now the p -equivariance of r signifies the commutativity of the

d i a g r a m

T G x X > X

[ I

G' ' w' X ' x X >

As al = 9 o a, the following diagram is also commutative:

Page 96: Introduction to Lie Groups and Transformation Groups

-90 -

axl x

IRxX > G x X

i I

a Xlx, Xf I I IRx - >G xX

C o m p o s i n g t h e s e d i a g r a m s , we o b t a i n t h e c o m m u t a t i v e d i a g r a m

IRxX ~ >X

I I

X' ~I" X' ]Rx )

w h i c h p r o v e s ~ . x~ = x~' t t ~ ~0 " |

We a r e n o w in t he p o s i t i o n to p r o v e t h e f u n d a m e n t a l

T H E O R E M 5 . 6 . Z. L e t G be a L i e g r o u p , X a m a n i f o l d , RG t h e

L i e a l g e b r a of r i g h t i n v a r i a n t v e c t o r f i e l d s on G, and DX the L i e a l g e b r a

of v e c t o r f i e l d s on X . A n o p e r a t i o n v : G > A u t X d e f i n i n g X a_s_s

G - m a n i f o l d i n d u c e s a h o m o m o r p h i s m

v : R G > D X �9

I f B ~ RG a n d a ~ s G the 1 - p a r a m e t e r s u b g r o u p d e f i n e d by

t h e n o-(B) is t he K i l l i n g v e c t o r f i e l d on X d e f i n e d by a .

at = Ba t '

P r o o f : L e t B ~ R G , er(B) 6 D X . We s h o w t h a t B and ~ B ) a r e

p - r e l a t e d u n d e r t he e f f e c t of a m a p p : G > X . T h e t h e o r e m w i l l t h e n

f o l l o w by l e m m a 4. 4. Z.

Page 97: Introduction to Lie Groups and Transformation Groups

-91-

C h o o s e

t h e d i a g r a m

x 6 X a n d define 0

p : G > X by p(g) = Vg(Xo) . T h e n

h g G = > G

I I pl

X g > X

i s c o m m u t a t i v e . C o n s i d e r i n g t h e o p e r a t i o n of G on G by l e f t t r a n s l a t i o n s ,

t h i s m e a n s t h a t p i s a n e q u i v a r i a n c e . L e t Q ~ s T h e c o r r e s p o n d i n g

K i l l i n g v e c t o r f i e l d s on G a n d X a r e p - r e l a t e d b y l e m m a 5 . 6 . 1 . T h e

K i l l i n g v e c t o r f i e l d on G d e f i n e d b y a i s by p r o p o s i t i o n 5 . 5 . 3 t h e e l e m e n t

B ~ R G . B u t t h e K i l l i n g v e c t o r f i e l d on X d e f i n e d b y a i s j u s t ~(B) a n d

t h e r e f o r e B a n d �9 (B) a r e p - r e l a t e d . I

D e n o t e by KX t h e s e t of K i l l i n g v e c t o r f i e l d s on t h e G - m a n i f o l d X .

T h e n KX = 3 r n ~ a n d by t h e o r e m 5 . 6 . 2 KX i s a L i e a l g e b r a .

E x a m p l e 5 . 6 . 3. L e t G o p e r a t e on G by l e f t t r a n s l a t i o n s . By

p r o p o s i t i o n 5 . 5 . 3 t h e L i e a l g e b r a of K i l l i n g v e c t o r f i e l d s i s RG and t h e

h o m o m o r p h i s m o-: R G > R G t h e i d e n t i t y 1 R G .

E x a m p l e 5 . 6 . 4 . L e t p : G > G ' b e a h o m o m o r p h i s m a n d

e I T: G > B i j G ' t h e o p e r a t i o n of G o n d e f i n e d by Tg - L p ( g } .

B y e x a m p l e 5 . 5 . 4 t h e L i e a l g e b r a of K i l l i n g v e c t o r f i e l d s i s a s u b a l g e b r a

of R G ' a n d t h e h o m o m o r p h i s m R ( p ) : R G > R G ' t h e h o m o m o r p h i s m

of t h e o r e m 5 . 6 . 2 .

Page 98: Introduction to Lie Groups and Transformation Groups

- 9 2 -

E x a m p l e 5 . 6 . 5 . L e t V b e a f i n i t e - d i m e n s i o n a l ] R - v e c t o r s p a c e a n d

c o n s i d e r the n a t u r a l r e p r e s e n t a t i o n of G = G L ( V ) in V. We i d e n t i f y R G

and IX] w i t h G e b y t h e c a n o n i c a l i s o r n o r p h i s m s . W e k n o w f r o m

p r o p o s i t i o n 4. 3. 8 t h a t t h e n L G = s B u t b y c o r o l l a r y 4 . 6 . 8 , w e a l s o

h a v e RG = (LG) ~ T h e r e f o r e RG = ( s (V)) ~ a f t e r i d e n t i f i c a t i o n w i t h G e

N o w w e s e e f r o m e x a m p l e 5 . 5 . 5 , t h a t t he h o m o m o r p h i s m ~: R G > KV

O in t h i s c a s e i s j u s t t h e c a n o n i c a l m a p ( s (V)) > D r , a s s i g n i n g t o a n y

e n d o m o r p h i s m A ~ s (V) the v e c t o r f i e l d A* ---- . ~ V �9

c o n s e r v e s t h e b r a c k e t , i s s e e n d i r e c t l y as f o l l o w s .

Then their bracket in (s (V)) ~ is

T h a t t h i s map

L e t A I, A 2 6 s

AzA 1 - ARA I. On the other hand

* * d A* )(v)A* _ (d * )(v) * [A 1, A2 ] = (iv 2 v Iv dvAl A2

v v v

b y t he s a m e f o r m u l a a s in e x a m p l e 4. 3. 8.

Bu t

d , , * * = A A = A2AIV ( d-vA2v)lV)Al v 2 v i v

and t h e r e f o r e

[A~, A 2 ] = (A2A 1 AIA2)v , q.e.d. v

R ( v ) : R G

�9 : R G

one (s 0

C o n s i d e r m o r e g e n e r a l l y a r e p r e s e n t a t i o n of t he L i e g r o u p G in V.

T h e h o m o m o r p h i s m 7 : G > G L ( V ) i n d u c e s a h o m o m o r p h i s m

0 > R(GL(V)) = (s (V)) and the induced homornorphism

> DV is just the composition of this homomorphism with the

> DV d e s c r i b e d b e f o r e .

Page 99: Introduction to Lie Groups and Transformation Groups

- 9 3 -

W e o b s e r v e t h a t t h e g e n e r a l s i t u a t i o n f o r a G - m a n i f o l d X i s i n s o m e

s e n s e s i m i l a r t o t h a t o f e x a m p l e 5 . 6 . 5 . T h e o p e r a t i o n T: G > A u t X

i n d u c e s b y c o m p o s i t i o n w i t h t h e n a t u r a l h o m o m o r p h i s m ( i t ' s e v e n a n

i s o m o r p h i s m ) a r e p r e s e n t a t i o n G > A u t C X of G in C X . T h e t r o u b l e

i s t h a t C X i s v e r y b i g a n d one c a n n o t j u s t s p e a k of t h e d i f f e r e n t i a b i l i t y

of t h i s m a p . B u t i f w e d o n ' t c a r e a b o u t t h i s , w e c a n v i e w t h e i n d u c e d

h o m o m o r p h i s m R G > D X ~- > OX i n t o t h e L i e a l g e b r a of o p e r a t o r s

on X a s t h e r e p r e s e n t a t i o n of R G i n C X i n d u c e d b y t h e r e p r e s e n t a t i o n

of G i n C X , e x a c t l y a s i n e x a m p l e 5 . 6 . 5 .

T h e L i e a l g e b r a of K i l l i n g v e c t o r f i e l d s on a G - m a n i f o l d i s b y d e f i n i t i o n

a L i e a l g e b r a of c o m p l e t e v e c t o r f i e l d s . I t i s n a t u r a l t o a s k i f a n y f i n i t e

d i m e n s i o n a l L i e a l g e b r a of c o m p l e t e v e c t o r f i e l d s on a m a n i f o l d X c a n b e

i n t e r p r e t e d a s t h e L i e a l g e b r a of K i l l i n g v e c t o r f i e l d s c o r r e s p o n d i n g t o t h e

o p e r a t i o n of s o m e L i e g r o u p G on X . W e d i s c u s s t h e p a r t i c u l a r c a s e of

a c o m m u t a t i v e L i e a l g e b r a . S e e R . P a l a i s [ 13 ] f o r a p o s i t i v e a n s w e r

t o o u r q u e s t i o n i n g e n e r a l .

L e t a c o m m u t a t i v e L i e g r o u p G o p e r a t e on X . A s T : R G > KX

i s a s u r j e c t i ve h o m o m o r p h i s m , t h e L i e a l g e b r a K X of K i l l i n g v e c t o r f i e l d s

is commutative.

We prove a converse

PROPOSITION 5.6.6.

Lie alge_bra of complete vectorfields on X.

Let K be a finite dimensional, commutative

T h e n t h e r e i s a n o p e r a t i o n

Page 100: Introduction to Lie Groups and Transformation Groups

- 9 4 -

of t h e a d d i t i v e g r o u p of K on X , s u c h t h a t t h e L i e a l g e b r a K i s t h e L i e

a l g e b r a of K i l l i n g v e c t o r f i e l d s of t h i s o p e r a t i o n .

P r o o f : C o n s i d e r t h e a d d i t i v e s t r u c t u r e on K , m a k i n g i t a L i e

g r o u p w i t h L i e a l g e b r a K . We d e f i n e an o p e r a t i o n of K on X as f o l l o w s .

L e t A ~ K and ~0 t t h e 1 - p a r a m e t e r g r o u p of t r a n s f o r m a t i o n s of X g e n e r a t e d

be p r o v e d .

v: K - - - > A u t X . We by A . T h e n we s e t 7 A = ~0 ~ , d e f i n i n g t h u s a m a p

s h o w 7 to be a h o m o m o r p h i s m .

L e t A, B ~ K g e n e r a t e ~ t ' ~ t r e s p e c t i v e l y . T h e n by p r o p o s i t i o n

5. 3. 6, X t = ~ t " ~t i s t h e 1 - p a r a m e t e r g r o u p of t r a n s f o r m a t i o n s g e n e r a t e d

by A + B . T h e r e f o r e TA+ B = X1 = ~1 �9 ~1 = v A o 7 B , as w a s to

We o b s e r v e t h a t 7 t A = ~O t . N o w t h e 1 - p a r a m e t e r s u b g r o u p of K

c o r r e s p o n d i n g to A is t ~ - - - > tA and t h e r e f o r e t h e c o r r e s p o n d i n g K i l l i n g

vectorfield A $ on X satisfies

A* d { }/ x = d-i T tA (x) "t

d = - (x) = A �9

=0 dt ~Pt =0 x

T h i s s h o w s t h a t t he h o m o m o r p h i s m of t h e o r e m 5 . 6 . Z i s j u s t t h e i d e n t i t y

in t h i s c a s e . T h i s f i n i s h e s t h e p r o o f .

T h e h o m o m o r p h i s m ~: RG > DX d e f i n e d f o r a G - m a n i f o l d X

t h e o r e m 5 . 6 . Z r e f l e c t s p a r t i c u l a r p r o p e r t i e s of t he o p e r a t i o n 7 : G

N a m e l y

P R O P O S I T I O N 5 . 6 . 7 . L e t 7: G > Aut X d e f i n e X as a

G-manifold and ~: RG > DX be t h e i n d u c e d homomorphism.

i n

> Au t X .

Page 101: Introduction to Lie Groups and Transformation Groups

- 9 5 -

(i) I f ~" i s i n j e c t i v e ( i . e . a n e f f e c t i v e o p e r a t i o n , t h e n ~ i s i n j e c t i v e .

( i i ) If ~ i s a f r e e o p e r a t i o n , t h e n a K i l l i n g v e c t o r f i e l d i s e i t h e r

e v e r y w h e r e z e r o o r n o w h e r e z e r o .

P r o o f : L e t B ~ RG a n d r 6 ~ G t h e c o r r e s p o n d i n g 1 - p a r a m e t e r

s u b g r o u p . T h e n ( ~ ' B ) ~ t ( x ) = ~%(x) , w h e r e t ~ t = T'0{t "

(i) S u p p o s e G'B = O .

q" b e i n g i n j e c t i v e , T '~ t

B = O .

D

T h e n ~ t ( x ) = O a n d ~ t ( x ) = x f o r e v e r y x a n d t .

= e a n d B = ~ = O , i . e . = 1 i m p l i e s r t e X O

( i i ) X

f o r e v e r y t ( x f i x e d ) b e c a u s e of t h e u n i q u e n e s s of t h e s o l u t i o n of

q t ( x ) = ( s w i t h ~o(X) = x . 'l" b e i n g f r e e , ~ t ( x ) = " ~ t

f o r s o m e x i m p l i e s ~ = e a n d a s b e f o r e B = O a n d ~" B = O . t

t h a t a f r e e o p e r a t i o n i s i n j e c t i v e , s o b y (i) B = O a n d 0" B = O a r e

S u p p o s e ( ~ B ) = 0 f o r s o m e x ~ X . T h e n ~o(X) = 0 a n d ~ t ( x ) = x

( X ) ----" X

( R e m e m b e r

e q u i v a l e n t s t a t e m e n t s . )

N o t e t h a t t h e i n j e c t i v i t y of %" : RG > DX d o e s n o t i m p l y t h e

i n j e c t i v i t y of T : G > A u t X .

E x a m p l e 5 . 6 . 8 . A h o m o m o r p h i s m ~ : G !

> G i n d u c e s a n o p e r a t i o n

G I "r = L o ~ of G on ( s e e e x a m p l e 5 . 6 . 4 ) a n d t h e i n d u c e d h o m o m o r p h i s m

�9 " i s j u s t R { ~ ) �9 R G > R G ' . R ( ~ ) c a n be i n j e c t i v e w i t h o u t T = L o

b e i n g i n j e c t i v e . I t i s s u f f i c i e n t t o e x h i b i t a n o n - i n j e c t i v e ~ : G > G

w i t h i n j e c t i v e ~ , : Ge > G'e " e

T h e c a n o n i c a l h o m o m o r p h i s m

IR > I R / Z = l r i s s u c h a c a s e .

Page 102: Introduction to Lie Groups and Transformation Groups

-96-

R e m a r k . L e t us d i s c u s s the r e s u l t s of t h i s s e c t i o n f r o m t h e h e u r i s t i c

po in t of v i e w a l r e a d y m e n t i o n e d s e v e r a l t i m e s , c o n s i d e r i n g Aut X a s a

L i e g r o u p . T h i s i s an e f f e c t i v e o p e r a t i o n on X and d e f i n e s t h e r e f o r e by

~ w

5 . 6 . 7 an i n j e c t i o n R ( A u t X) ~> D X . I t i s n a t u r a l to t h i n k t h a t t he i m a g e

is t h e s e t of a l l c o m p l e t e v e c t o r f i e l d s on X .

a L i e a l g e b r a , w h i c h d e s t r o y s m a n y h o p e s .

Bu t t h i s s e t is n o t n e c e s s a r i l y

O t h e r w i s e one w o u l d d e c r e t e

t h i s a l g e b r a to be R ( A u t X ) . In c a s e X is c o m p a c t , t h e r e is h o w e v e r no

p r o b l e m , e v e r y v e c t o r f i e l d b e i n g c o m p l e t e . Now a n y o p e r a t i o n T: G > Au t X

c a n be t h o u g h t to d e f i n e a h o m o m o r p h i s m R ( v ) : RG > R ( A u t X ) . T h e n

the h o m o m o r p h i s m ~: RG > DX of t h e o r e m 5 . 6 . Z i s j u s t the c o m p o s i t i o n

= r176 R(T).

Exercise 5.6.9. Let G be a commutative group operating on the

manifold X and KX be the Lie algebra of Killing vectorfields on X. Show

that every element of KX is invariant under the action of G on KX.

5. 7. Killin~ vectorfields and equivariant maps.

We shall study the compatibility with equivariant maps of the

homomorphism ~: RG > DX defined in section 5.6 for a left operation.

It is clear that considering a right operation of G on X, one obtains

similarly a homomorphism 0-: LG

We prove first the

LEMIV~A 5. 7. I. Let X, X'

> DX.

f

be manifolds, {P: X > X a map and

A, A I' , A, A z' pairs of <~-related vectorfields on X, X' . _If ~0 is

Page 103: Introduction to Lie Groups and Transformation Groups

-97 -

r I

surjective, then A I = A 2 .

Proof: ~p is injective, because ~P~fl = O fz or fl * ~ = fz * ~

i m p l i e s f l = f2 i f q~ i s s u r j e c t i v e . B u t by d e f i n i t i o n of ~ 0 - r e l a t e d n e s s ,

w e h a v e c o m m u t a t i v e d i a g r a m s

C X ~ C X

A I i C X < C X

(i = i , z)

!

Injectivity of (0 $ clearly implies /~ = A Z

P R O P O S I T I O N 5. 7 . 2 . L e t X b e a G ~ w i t h r e s p e c t t o a

r i g h t o p e r a t i o n G ~ ' G ,~ I": > Aut X, X a - m a n i f o l d w i t h r e s p e c t t o a

right operation 7': G'~ > A u t X ' , p : G > G' a homomorphism and

cp : X > X' a__ p-equivariant map. Consider the induced homomorphisms

I I ! I

: L G > K X e . . . - > D X , �9 : L G > K X ~ D X of t h e o r e m 5 . 6 . Z.

I f e i t h e r G o p e r a t e s e f f e c t i v e l y on X o1" q~ i s s u r j e c t i v e , t h e r e i s a

u n i q u e m a p ~/: K X > K X ' m a k i n g c o m m u t a t i v e t h e d i a g r a m

(5" LG > KX

I I L ( P ) "y[

~ t I I

LG > KX

and this map is a homomorphism of Lie algebras.

Page 104: Introduction to Lie Groups and Transformation Groups

-98-

P r o o f : L e t A G L G . By p r o p o s i t i o n 5 . 6 . 1 , the v e c t o r f i e l d s

A* = ~(A) and oJ(L(p)A) are ~0-related.

Suppose first that G operates effettively on X, i.e. that

7: G ~ > Aut X is injective. By proposition 5.6. 7, o" is then also

injective. For A* 6 KX there is therefore a unique A C LG with

�9 (A) = A*. We define y(A*) = ~'(L(p)A).

Suppose now that (~ is surjective and let A 6 IX3.

and ~'(L(p)A)

defined by A ~ .

As A* = ~(A)

are (P-related, by lemma 5.7. I, o"(L(p)A) is uniquely

We can therefore define N as before.

and

l_f ~: X > X' is a

diagram commute s.

T h e u n i q u e n e s s of y f o l l o w s f r o m the s u r j e c t i • i t 7 of ~ : LG > KX

Y is a h o m o m o r p h i s m by l e m m a 4 . 4 . Z, q. e. d.

C O R O L L A R Y 5. 7. 3. L e t t he s i t u a t i o n be as in p r o p o s i t i o n 5 . 7 . Z.

p - e q u i v a r i a n t d i f f e o m o r p h i s m , t h e n t h e f o l l o w i n ~

LG > KX g > DX

LG' > KX'~ > DX'

Proof: If C ~ DX, then C and r are

~,/KX = Y , q.e.d.

We w a n t to a p p l y t h i s to t h e d i f f e o m o r p h i s m

by a r i g h t - o p e r a t i o n T: G ~

O - r e l a t e d .

7g_ I : X

> Aut X. First we remark

T h e r e f o r e

> X d e f i n e d

Page 105: Introduction to Lie Groups and Transformation Groups

- 9 9 -

L E M M A 5. 7 . 4 . T g _ l : X---> X i_~s

Proof: The diagram

T -I X g L)

I

T -1 X g >

g - equivariant. g

X

I i T

X

c o m m u t e s f o r Y 6 G : T g ~ T - I = v OT g(Y) g g yg-1

B y c o r o l l a r y 5. 7. 3 t h e r e f o r e w e h a v e

P R O P O S I T I O N 5 . 7 . 5 . L e t X b e a G ~ w i t h r e s p e c t t o a

r i g h t o p e r a t i o n v : G ~ > A u t X a n d if: IX] > K X > D X t h e i n d u c e d

h o m o m o r p h i s m of t h e o r e m 5 . 6 . Z. T h e n t h e f o l l o w i n g d i a g r a m c o m m u t e s .

g-1 = "r.yg-1 = .rg_l o "ry

Adg

LG ~ >KX e" > DX

f r (

LG ~ > KX < > D X

W e j u s t r e m e m b e r t h a t A d g = L ( g g ) . F u r t h e r i t i s c l e a r t h a t

(T - 1 ) , = a g g d e f i n e s D X a s G - L i e a l g e b r a , v b e i n g a r i g h t o p e r a t i o n .

We o b t a i n t h e r e f o r e

T H E O R E M 5. 7 . 6 . L e t X b e a G ~ w i t h r e s p e c t t o a

G ~ homomorphi sm T : > Aut X. Consider the adjoint representation_

--of G __in LG and the operation of G __~ DX defined by ag = ( Tg_l), �9

Then the induced homomorphism ~: LG > DX is an equivariance.

Page 106: Introduction to Lie Groups and Transformation Groups

- I 0 0 -

F o r A 6

t he f o r m u l a

LG and the c o r r e s p o n d i n g A $ = ~(A) w e h a v e t h e r e f o r e

( V g _ l ) , A *

T g

T h i s s h o w s in p a r t i c u l a r t h a t

K i l l i n g v e c t o r f i e l d s .

E x a m p l e 5. 7. 7.

c o m m u t a t i v i t y of t he d i a g r a m

= ~ ( A d g A ) .

t r a n s f o r m s K i l l i n g v e c t o r f i e l d s in

L e t G o p e r a t e on G by r i g h t t r a n s l a t i o n s . The

LG

Adg I

LG

> DG

I ~ (Rg -1) ,

> DG

e x p r e s s e d by t h e t h e o r e m is j u s t p r o p o s i t i o n 4. 7. 3,

F o r e f f e c t i v e o p e r a t i o n s , �9 i s a n i n j e c t i o n by p r o p o s i t i o n 5 . 6 . 7 .

T h e c o m m u t a t i v e d i a g r a m

LG

A d g I

L G

0" > DX

P

0" > DX

s h o w s t h a t

a d j o i n t r e p r e s e n t a t i o n of G .

L E M M A 5. 7. 8. T h e h o m o m o r p h i s m

if a n d on ly if t h e h o m o m o r p h i s m a: G

a: G > Au t DX c a n be i n t e r p r e t e d a s an e x t e n s i o n of t he

G ~ 7: > A u t X is i n j e c t i v e

> Aut DX d e f i n e d by

Page 107: Introduction to Lie Groups and Transformation Groups

- I 0 1 -

(1 g

(Vg_l) * is injective.

Proof: a is the composition

G I > G T #

> Au t X > Aut DX

g ~ . . . . . . . . ~ > g-1 ~ r -1 ~ ' ~ ~ ( V - l ) , g g

a n d

a n d on ly if "r i s i n j e c t i v e , q. e . d.

R e m a r k . F o r a l e f t - o p e r a t i o n

a c o m m u t a t i v e d i a g r a m

I is b i j e c t i v e .

* is i n j e c t i v e , b e c a u s e r C Aut X w i t h ~ , = 1DX i m p l i e s ~0,x = 1Tx(X }

= 1 x . T h e r e f o r e a is i n j e c t i v e i f a n d o n l y i f * o v i s i n j e c t i v e i f

T: G > Au t X w e h a v e s i m i l a r l y

RG v > DX

f f

cr

RG > DX

w h e r e g = ( T ) , a n d ~ is t h e r e f o r e an e q u i v a r i a n c e w i t h r e s p e c t to t h e g g

( l e f t ) o p e r a t i o n s of G on RG and D X . L e t us t a k e up a g a i n o u r h e u r i s t i c

v i e w p o i n t of l o o k i n g at A u t X as a L i e g r o u p .

f r o m t h e l e f t on X , d e f i n i n g a h o m o m o r p h i s m

( s e e r e m a r k a t t he e n d of s e c t i o n 5 . 6 ) .

Aut X o p e r a t e s n a t u r a l l y

: R ( A u t X) > DX

As j u s t o b s e r v e d , f o r ~0 C Aut X

we h a v e a c o m m u t a t i v e d i a g r a m

Page 108: Introduction to Lie Groups and Transformation Groups

-102-

R(Aut X)

t R%tt

R ( A u t X)

O"

. ~

O"

> DX

r

> DX

b e i n g an i n j e c t i o n , w e s e e t h a t (p~ : DX - - ~ DX i s a n e x t e n s i o n of

R ( % ) , w h i c h i s t h e a d j o i n t r e p r e s e n t a t i o n of A u t X in R ( A u t X ) . B y t h e

a r g u m e n t i n t h e p r o o f of l e m m a 5 . 7 . 8 w e s e e t h a t A u t X > R u t D X ,

s e n d i n g ~ t o ~ , , i s i n j e c t i v e . T h i n i s i n a c c o r d a n c e w i t h l e m m a 5. 7. 8,

r b e i n g a n i n j e c t i o n .

Page 109: Introduction to Lie Groups and Transformation Groups

C h a p t e r

-103-

6. T H E E X P O N E N T I A L M A P O F A L I E G R O U P

T h e r e l a t i o n b e t w e e n 1 - p a r a m e t e r s u b g r o u p s of a L i e g r o u p G

a n d i n v a r i a n t v e c t o r f i e l d s on G s t u d i e d in s e c t i o n 5 . 4 i s u s e d to d e f i n e

a m a p exp : G e -- G , w h i c h t u r n s out to h a v e w o n d e r f u l p r o p e r t i e s .

6. l,

we i d e n t i f y LG wi th G e

e .

D E F I N I T I O N 6.1 . 1,

m a p d e f i n e d by

exp A

and w r i t e A E G e

D e f i n i t i o n a n d na tura l i t~r of exp . In the f o l l o w i n g , f o r c o n v e n i e n c e ,

f o r a t a n g e n t v e c t o r at

The exponential map e x p : G e - * G is t he

-- a 1 f o r A ~ G e

w h e r e a i s the 1 - p a r a m e t e r s u b g r o u p of

to t h e o r e m 5 . 4 . 6 . Wi th o u r c o n v e n t i o n

L e t a E s a nd d e f i n e fo r a t

c l e a r l y ~ ~ s a n d m o r e o v e r we h a v e

G d e f i n e d by A a c c o r d i n g

A = h 0 ,

~s = a s t " T h e n

L E M M A 6 . 1 . 2 . ~0 = th0 "

P r o o f : F o r f ~ CG we h a v e

d f(l~s) [ = ~sf(Cts t ) [ = th0 f ' ~0f = " ~ s = 0 s = 0

q, e. d.

This shows that exp(tA) = a t .

PROPOSITION 6. I. 3. exp((tl+tz)A )

Proof: a is a homomorphism. |

- e x p ( t l A ) � 9 e x p ( t z A )

Page 110: Introduction to Lie Groups and Transformation Groups

- 1 0 4 -

T h e p r o p o s i t i o n 5 . 4 . 1 0 s h o w s t h a t f o r

[ A , B ] = 0 we h a v e t h e f o r m u l a

A , B ~ G w i t h e

e x p ( t ( A + B ) ) = exp( tA)" e x p ( t B )

a n d in p a r t i c u l a r f o r t = 1

e x p ( A + B ) = e x p A . e x p B , s h o w i n g

P R O P O S I T I O N 6 . 1 . 4. I f t h e L i e a l g e b r a L G o f G i.~s

c o m m u t a t i v e , t h e n e x p : G e -~ G i s a h o m o m o r p h i s m o f t h e a d d i t i v e

v e c t o r g r o u p G e i n t o G .

T o j u s t i f y t h e n o t a t i o n e x p , l e t u s c o n s i d e r t h e

a n d G

LG w i t h

a ~ s

t h i s c a s e

E x a m p l e 6 .1 . 5. L e t V be a f i n i t e d i m e n s i o n a l ~ - v e c t o r s p a c e

- G L ( V ) . In p r o p o s i t i o n 4 . 3 . 8 we h a v e s e e n t h a t i d e n t i f y i n g

G e , we h a v e LG = s N o w l e t A ~ s a n d

t h e c o r r e s p o n d i n g 1 - p a r a m e t e r s u b g r o u p , We s h o w t h a t in

(2O

e x p ( t A ) = a t = e t a = Z n"~', ( t A ) l n

nffi0

T o p r o v e t h i s , c o n s i d e r ~t = e t a = Zoo 1 n--0 ~ ( tA )n T h e n

~t = XOO n ( t A ) n - l A a n d ~0 1V B u t a l s o h t n=0 n-~. = ~t A = " = a t a 0 = a t A

a n d a 0 = i V , T h e r e f o r e a = ~ , a s b o t h s a t i s f y t h e s a m e d i f f e r -

e n t i a l e q u a t i o n w i t h t h e s a m e i n i t i a l c o n d i t i o n , q. e . d.

C o n s i d e r in p a r t i c u l a r V -" ~ . T h e n G L ( V ) " R * , t h e

m u l t i p l i c a t i v e g r o u p of r e a l n u m b e r s d i f f e r e n t f r o m z e r o , T h e L i e

a l g e b r a o f ~ * i s ~t w i t h t h e ( o n l y p o s s i b l e ) t r i v i a l L i e a l g e b r a

Page 111: Introduction to Lie Groups and Transformation Groups

- 1 0 5 -

s t r u c t u r e .

m a p .

T h e m a p e x p : ~ -~ l~* i s j u s t t he o r d i n a r y e x p o n e n t i a l

We now s h o w t h e n a t u r a l i t y of e x p , i . e .

P R O P O S I T I O N 6.1 . 6. L e t p: G -~ G ' be a l o c a l h o m o m o r p h i s m .

T h e n t h e f o l l o w i n g d i a g r a m ( t a k e n in t h e s e n s e of l o c a l m a p s ) i s c o m m u t a t i v e .

P ~ G e .> C~

e e

G P > G'

P r o o f : L e t A ~ G e . I f a t = e x p ( t A ) i s t h e c o r r e s p o n d i n g !

s u b g r o u p of G , t h e n (p �9 a)(t)" It = 0 = p* ~0 = p~' 1 - p a r a m e t e r A e e "

T h e r e f o r e

a n d f o r t = 1

e x p ( t p , e A )

e x p ( p , A) e

A s an a p p l i c a t i o n ,

"- p ( e x p ( tA))

= p ( e x p A ) , q . e . d .

we o b t a i n

C O R O L L A R Y 6 . 1 . 7 . F o r g E G , A E LG

-1 e xp ( A dg A) = g exp A g .

we h a v e

of LG

P r o o f : Adg

wi th G e

= L(~g) by d e f i n i t i o n . N o t e t h a t a f t e r i d e n t i f i c a t i o n

the a d j o i n t r e p r e s e n t a t i o n o p e r a t e s in G e .

Page 112: Introduction to Lie Groups and Transformation Groups

-106-

A n o t h e r a p p l i c a t i o n of p r o p o s i t i o n 6.1. 6 is the fo l lowing .

C o n s i d e r a f i n i t e - d i m e n s i o n a l F t - v e c t o r s p a c e V . The L i e a l g e b r a

of GL(V) is by p r o p o s i t i o n 4 . 3 . 8 e q u a l to s . Now the h o m o -

m o r p h i s m det : GL(V) -~ l~* i n d u c e s by p r o p o s i t i o n 4 .5 .11 the Lie

a l g e b r a h o m o m o r p h i s m t r :~(V) -~ ~t . The n a t u r a l i t y of the e x p o n e n t i a l

m a p p i n g p r o v e s

C O R O L L A R Y 6.1. 8. F o r any A ~ s

det e x p A -- e x p t r A

The i m a g e of the map e x p : G e -~ G is c o n t a i n e d in G o , the

c o n n e c t e d c o m p o n e n t of the i d e n t i t y of G . T h e f o l l o w i n g e x a m p l e

shows tha t exp n e e d not be s u r j e c t i v e e v e n f o r c o n n e c t e d G .

E x a m p l e 6.1. 9. Le t SL(2, •) be the g r o u p of 2 - r o w e d

q u a d r a t i c m a t r i c e s wi th d e t e r m i n a n t 1 . It i s a c o n n e c t e d L ie g roup .

We show that t h e r e is an e l e m e n t in SL(2, ~t) wh ich is not a s q u a r e � 9

T h i s wi l l i m p l y tha t exp is not s u r j e c t i v e .

Le t g E SL(2, R ) and c o n s i d e r i t s c h a r a c t e r i s t i c p o l y n o m i a l

de t (X3"d- g) = X 2 X t r g + det g w h e r e t r g d e n o t e s the t r a c e

of g . Now det g = 1 and t h e r e f o r e , by a t h e o r e m of l i n e a r

2 a l g e b r a , g - t r g . g + ; I d -- 0

ob ta in t r g2 2 = ( t r g ) - 2 > - 2

Z

C o n s i d e r the e l e m e n t

L =

�9 A p p l y i n g the t r a c e func t ion , we

D

of SL(2, i t) .

Page 113: Introduction to Lie Groups and Transformation Groups

A s t r s < -2 , t h e e q u a t i o n

- 1 0 7 -

2 ~ - g h a s no s o l u t i o n .

R e m a r k .

t r a n s f o r m a t i o n s

C o n s i d e r i n g (Pt

to w r i t e a s f o r L i e g r o u p

r = e x p tA*

V i e w n o w , a s b e f o r e , a n o p e r a t i o n o f

C o n s i d e r a m a n i f o l d X a n d a 1 - p a r a m e t e r g r o u p o f

r o f X g e n e r a t e d b y a v e c t o r f i e l d A* o n X .

a s a 1 - p a r a m e t e r s u b g r o u p of A u t X , i t i s s u g g e s t i v e

G o n X a s a h o m o m o r p h i s m

G T > A u t X

a n d l e t a ~ s a n d

T h e n by d e f i n i t i o n

A ' b e t h e K i l l i n g v e c t o r f i e l d d e f i n e d b y a .

~- = e x p tA* a t

o r i f A ~ G e w i t h a t - e x p t A

T e x p tA = e x p tA*

T h i s e x p r e s s e s j u s t t h e c o m m u t a t i v i t y o f t h e d i a g r a m

G o- :> KX e

e x ~ I e x p

G r > A u t X

w h e r e 6: G e -*KXa- .DX i s t h e h o m o m o r p h i s m i n d u c e d by t h e o p e r a t i o n

G -~ A u t X . In t h e u p p e r r i g h t , we c a n n o t w r i t e DX , b e c a u s e o n l y

t h e c o m p l e t e v e c t o r f i e l d s a r e s e n t i n t o A u t X b y t h e e x p o n e n t i a l m a p .

e x p i s t h e r e f o r e , e v e n in t h i s e a s e , a n a t u r a l t r a n s f o r m a t i o n (o f s u i t a b l y

Page 114: Introduction to Lie Groups and Transformation Groups

-I08-

d e f i n e d functors) .

6, Z. exp is a l o c a l d i f f e o m o r p h i s m at t he i d e n t i t y . We show now

P R O P O S I T I O N 6 . 2 . 1 . T h e t a n g e n t l i n e a r m a p

induced by exp: G e -. G .is the identity map.

exp, , 0: G e -~ G e

Proof: For A ~ G we have e

exp~ 0 A = exP, tAA It=O =

d exp ( tA) i =-gt-

t

d (tA)} {exP*tn t-0

;0

-" A , q . e , d ,

By the inverse function theorem we therefore have

THEOREM 6.2.2. There is an openneighborhood N O of

in G e and an open ..neighborhood N e of e in G such that

exp: N O -. N e .is an analytic diffeomorphism.

O

We d e n o t e by l o g : N e - . N O

d e f i n e s a c h a r t o f G at e .

t h e i n v e r s e m a p , T h e m a p log

D E F I N I T I O N 6. Z. 3. A c a n o n i c a l c h a r t of G i s a p a i r

(N e, log) of a n o p e n n e i g h b o r h o o d N e of e in G a n d a d i f f e o -

m o r p h i s m

e x p / N 0 .

log: N e - . l o g ( N e ) -- N O ~ G e w h i c h i s a n i n v e r s e of

Page 115: Introduction to Lie Groups and Transformation Groups

-109-

An i m m e d i a t e a p p l i c a t i o n of t h e o r e m 6 . 2 . 2 is the fo l lowing

PROPOSITION 6. Z. 4, Let

c o n n e c t e d c o m p o n e n t of the identity,.

G O is c o m m u t a t i v e .

G be a Lie ~roup and G O the

If LG is c o m m u t a t i v e , t h e n

Proof : The i m a g e of exp c o n t a i n s an open n e i g h b o r h o o d U

of e in G . Any two e l e m e n t s in U c o m m u t e , as e x p : G e - . G

is a h o m o m o r p h i s m by p r o p o s i t i o n 6 .1 .4 . But U g e n e r a t e s G O ,

so that any two e l e m e n t s of G O c o m m u t e ,

T o g e t h e r with c o r o l l a r y 4 .6 , 9 we have t h e r e f o r e

G

T H E O R E M 6 . 2 . 5 . Let

is c o m m u t a t i v e if and only if

G be a c o n n e c t e d Lie ~roup.

LG ks c o m m u t a t i v e .

T h e n

LEMMA 6 . 2 . 6 , Let p : G -~ G' be a h o m o m o r p h i s m .

L(p): LG -~ LG' is i n j e c t i v e ( s u r j e c t i v e ) if and only if p•g is i n j e c t i v e

( s u r j e c t i v e ) for every, g ~ G ,

P roo f : p(g~/) = p(g)p(~/) i m p l i e s s ~/--e p , o (Lg ) , lg e

(Lp(g) )*e ' P~'e and psg = (Lp(g ) ) . e , ~ p - e ~ ( L g ~ e , q . e . d .

PROPOSITION 6 . 2 . 7 , Let G be a c o m m u t a t i v e c o n n e c t e d

Lie group . T h e n exp: L G - . G is s u r j e e t i v e .

P roof : We have s e e n in 6.1. 4 that for c o m m u t a t i v e LG

exp: LG -. G is a h o m o m o r p h i s m . Let G' be the i m a g e , Now

Page 116: Introduction to Lie Groups and Transformation Groups

- I I 0 -

e x p , 0 i s t h e i d e n t i t y m a p a n d t h e r e f o r e e x p , A

i s o m o r p h i s m f o r e v e r y A E LG . T h e r e f o r e

( and c l o s e d ) s u b g r o u p of G , i . e . G' = G .

�9 by6, Z.6, an

G' is an open

(N e,

exp

C o n s i d e r a l o c a l h o m o m o r p h i s m

log} be a c a n o n i c a l c h a r t o f G .

, we h a v e f o r g @ N e

p : G -. G' . L e t

B y t h e n a t u r a l i t y 6 , 1 . 6 of

( * ) p(g) = e x p ( L ( p ) i o g g)

T h i s n e c e s s a r y c o n d i t i o n d e t e r m i n e s p / N e by L(p) a n d h a s t he

f o l l o w i n g a p p l i c a t i o n s ,

P R O P O S I T I O N 6 . 2 . 8 . L e t Pi: G -~ G' (i : 1, 3) be l o c a l

h o m o m o r p h i s m s , If t h e i n d u c e d a l g e b r a h o m o m o r p h i s m s

L(Pi ) : LG -. LG ' (i : 1, 2) c o i n c i d e , t h e n t h e r e e x i s t s a n o p e n

n e i g h b o r h o o d U o f e in G , on w h i c h P l a n d P2 c o i n c i d e .

P r o o f : T a k e U = N e a s t he d o m a i n of a c a n o n i c a l c h a r t

of G . T h e n ( * ) s h o w s p l (g ) = p2(g) f o r g E U .

C O R O L L A R Y 6, 2, 9. Let G

Pi: G - G' (i = I, 2) h o m o m o r p h i s m s ,

be c o n n e c t e d a n d

If L(Pl) : L(p2) {

o.{

t h e n Pl : PZ

P r o o f : A n y n e i g h b o r h o o d of e g e n e r a t e s

T h i s c o r o l l a r y of 6 . 2 . 8 i s e x p r e s s e d by s a y i n g t h a t t he

f u n c t o r L: s s i s f a i t h f u l on t he s u b c a t e g o r y of c o n n e c t e d L i e

g r o u p s a n d g l o b a l h o m o m o r p h i s m s .

Page 117: Introduction to Lie Groups and Transformation Groups

- l l l -

A n a p p l i c a t i o n o f t h i s l a s t r e s u l t i s t h e

k e r A d

P R O P O S I T I O N 6 . 2 . 1 0 . L e t G b e c o n n e c t e d . T h e n

- Z G , w h e r e Z G i s t h e c e n t e r o f G .

L ( ~ g )

q . e . d .

P r o o f : B y d e f i n i t i o n A d = L o ~ , B u t a s s e e n b e f o r e ,

--- 1LG i m p l i e s ~g = 1G . T h e r e f o r e k e r A d -- k e r ~"

N o w c o n s i d e r t h e p r o b l e m of c o n s t r u c t i n g a l o c a l h o m o -

m o r p h i s m G --G' i n d u c i n g a g i v e n L i e a l g e b r a h o m o m o r p h i s m

LG - - L G ' . R e m e m b e r t h a t t h e i s o m o r p h i s m L qr -~ L ~ is

n o t i n d u c e d b y a n y h o m o m o r p h i s m ~ -- R , s o we o n l y c a n e x p e c t

t h e e x i s t e n c e o f a l o c a l h o m o m o r p h i s m w i t h t h e d e s i r e d p r o p e r t y .

-- Z G ,

P R O P O S I T I O N 6 . 2 . 1 1 , L e t G, G'

h: LG -* LG ' a L i e a l g e b r a h o m o m o r p h i s m .

a c a n o n i c a l c h a r t a t e

l o c a l h o m o m o r p h i s m

f o r m

be L i e g r o u p s . . a n d

L e t (N e , l o g ) be

in G . T h e r e s t r i c t i o n to N o f a e

G - - G' i n d u c i n g h i s n e c e s s a r i l ~ r o f t h e

p = e x p ~ h o l o g : N e - > G'

I f L G a n d LG ' a r e c o m m u t a t i v e , t h e n 9: N e -~G' d e f i n e d b y

t h i s f o r m u l a i s a l o c a l h o m o m o r p h i s m i n d u c i n g h.

P r o o f : W e h a v e a l r e a d y s e e n t h a t t h e r e s t r i c t i o n o f a l o c a l

h o m o m o r p h i s m G --G' t o N e i s n e c e s s a r i l y o f t h i s f o r m , By

6.1~ 4 f o r c o m m u t a t i v e L G e x p i s a h o m o m o r p h i s m G e -- G , s o

t h a t l o g i s a l s o a l o c a l h o m o m o r p h i s m G --G e . T h e r e f o r e p

i s a h o m o m o r p h i s m , L e t L(p ): L G -- LG ' b e t h e i n d u c e d h o m o m o r p h i s m .

Page 118: Introduction to Lie Groups and Transformation Groups

It i s c l e a r t h a t P * e " G e -~ Ge

T h e r n a p p:N e -~G'

h: L G -~ L G ' i s a l o c a l h o m o m o r p h i s m G -~ G '

w i t h o u t s u p p o s i n g L G a n d LG ' c o m m u t a t i v e ,

o f t h i s r e q u i r e s a d e e p e r a n a l y s i s o f t h e s i t u a t i o n ,

-112-

i s j u s t h . T h i s s h o w s L(p ) - h , I

d e f i n e d b y a L i e a l g e b r a h o m o m o r p h i s m

i n d u c i n g h e v e n

B u t a d i r e c t p r o o f

S e e a l s o t h e c o m m e n t s

in s e c t i o n 6 . 4 , a f t e r p r o p o s i t i o n 6, 4 . 2 , We s h a l l c o n s t r u c t in C h a p t e r

7, by a d i f f e r e n t m e t h o d , a l o c a l h o m o m o r p h i s m G -~ G' i n d u c i n g a

g i v e n L i e a l g e b r a h o m o m o r p h i s m

t h i s w i l l p r o v e t h a t t h e p : N e -~ G'

l o c a l h o m o m o r p h i s m ,

h: LG -~ LG ' ( s e e 7 . 2 . 3 ) . B y u n i c i t y ,

d e f i n e d in p r o p o s i t i o n 6 . 2 , 11 i s a

S u p p o s e t h a t a L i e g r o u p G E x e r c i s e 6 . 2 . 1 2 . o p e r a t e s

e f f e c t i v e l y on t h e m a n i f o l d X w i t h r e s p e c t t o 1": G -* A u t X , a n d

l e t KX be t h e L i e a l g e b r a o f K i l l i n g v e c t o r f i e l d s o n X , S h o w

t h a t g ~ G s a t i s f i e s ( V g ) . A = A f o r e v e r y A ~ KX i f a n d

o n l y i f g i s in t h e c e n t r a l i z e r o f t h e i d e n t i t y c o m p o n e n t G O in G .

6 . 3 , U n i c i t ~ o f L i e g r o u p s t r u c t u r e , We b e g i n by p r o v i n g t h e f o l l o w i n g

i m p o r t a n t

P R O P O S I T I O N 6 . 3 , l, L e t G be a L i e g r o u p a n d a: R -~ G

a h o m o m o r p h i s m in t h e a l g e b r a i c s e n s e , w h i c h i s c o n t i n u o u s . T h e n

t h e r e e x i s t s a n A E L G , s u c h t h a t a t = e x p tA a n d h e n c e a i s

a n a l y t i c , i . e . a 1 - p a r a m e t e r s u b g r o u p of G .

P r o o f : L e t (U, l og ) b e a c a n o n i c a l c h a r t o f

n e i g h b o r h o o d of e i n G w i t h VV c U ,

G a n d V a

Page 119: Introduction to Lie Groups and Transformation Groups

-113-

2 2 L e t g ~ V . T h e n g ~ VV c U a n d l o g g , l o g g

a r e d e f i n e d . C o n s i d e r t h e 1 - p a r a m e t e r s u b g r o u p o f G t - - - - ~ > e x p ( t l o g g) .

F o r t = 1 in p a r t i c u l a r e x p log g = g . g2 i s o n t h i s 1 - p a r a m e t e r

s u b g r o u p a n d g2 = e x p ( 2 log g ) . O n t h e o t h e r h a n d , g2 = e x p l o g g2 ,

2 2 1 g2 a s g ~ U . T h e r e f o r e l o g g = 2 l o g g o r g = e x p ( - ~ l o g ) ,

2 w h i c h m e a n s t h a t g i s u n i q u e l y d e t e r m i n e d b y g .

N o w c o n s i d e r t h e c o n t i n u o u s h o m o m o r p h i s m a: R -~ G . T h e r e

e x i s t s a n E > 0 s u c h t h a t a t E V f o r e v e r y t w i t h It l ..< E �9

W e c a n s u p p o s e ~ = 1 ( o t h e r w i s e c h a n g e t h e p a r a m e t e r t b y Xt

s u c h t h a t t h e n e w p a r a m e t e r i s d e f i n e d f o r a b s o l u t e v a l u e s < 1 ) .

D e f i n e a 1 = g ~ V . N o w e x p ( ~ l o g g) i s a s q u a r e r o o t o f g

in V , b y t h e p r e c e d i n g t h e r e f o r e t h e u n i q u e o n e . T h i s s h o w s

a l / z = e x p ( l og g ) , o r w i t h l o g a l = A a l s o l og a l / 2 = -~ A .

1 B y i t e r a t i o n o n e o b t a i n s l o g a ( l / Z n ) = ~'~ A a n d b y a d d i t i o n

tog a/n \- --P--- A f o r 0 < p _-- < 2 n 2 n = ,

p G I N *

T h i s s h o w s

0 < r < 1

l o g a r = r A f o r e v e r y d y a d i c r a t i o n a l r w i t h

a n d b y c o n t i n u i t y l o g a t = tA . T h i s p r o v e s a t = e x p tA . I

T o g e n e r a l i z e 6 . 3 . 1 to a r b i t r a r y h o m o m o r p h i s m s , we s h a l l m a k e

u s e o f

L E M M A 6, 3 . 2 . L e t G b e a L i e g r o u p . S u p p o s e G e i s a

d i r e c t p r o d u c t M • N o f v e c t o r s u b s p a c e s M, N. T h e n t h e m a p

r N ~ G d e f i n e d b y ~ ( A , B ) = e x p A e x p B f o r A E M ,

B C N i s a l o c a l d i f f e o m o r p h i s m a t 0 .

Page 120: Introduction to Lie Groups and Transformation Groups

-114-

P r o o f : In v i e w of the i n v e r s e f u n c t i o n t h e o r e m , we o n l y h a v e

to show tha t r M~( N -~ G e is an i s o m o r p h i s m . Now

~) = m ~ ( e x p / M • e x p / N ) , w h e r e m d e n o t e s t he m u l t i p l i c a t i o n

m : G • G -~ G . T h e r e f o r e f o r ( X , Y ) E M ~ , N we h a v e

r ( X , Y ) = m . 0 ( e , e ) ( exPa0X 'exP$0 Y) = exP~0X + exPa0Y

= X + Y ,

a s e x p . 0 = i d e n t i t y by 0 . 2 . 1 .

l e m m a is p r o v e d .

H e n c e ~$0 i s t he i d e n t i t y and the

R e m a r k . T h e l e m m a g e n e r a l i z e s of c o u r s e to the c a s e of a

d e c o m p o s i t i o n G e = M 1 ~ . . . X M n

s p a c e s M i c G e .

f o r a f i n i t e n u m b e r of v e c t o r -

We a l s o s t a t e t he f o l l o w i n g

L E M M A 0, 3 . 3 . Le t G, G' be L i e g r o u p s and p : G -~ G'

a h o m o m o r p h i s m in t he a l g e b r a i c s e n s e , I f p i s d i f f e r e n t i a b l e

( a n a l y t i c ) a t e , t h e n p i s e v e r y w h e r e d i f f e_ ren t i ab le ( a n a l y t i c ) .

P r o o f : C l e a r f r o m p~ Lg = Lp(g)0 p o |

We a r e now a b l e to p r o v e

T H E O R E M 6 . 3 . 4 . L e t G , G ' be L i e g r o u p s and p : G -~ G'

a h o m o m o r p h i s m of g r o u p s in t h e a l g e b r a i c sen_se, w h i c h i s c o n t i n u o u s .

T h e n p i s a n a l y t i c , i . e . a h _ o m o m o r p h i s m of L i e g r o u p s .

Page 121: Introduction to Lie Groups and Transformation Groups

-115 -

Proof: L e t A ~ G �9 e

T h e c o r r e s p o n d e n c e t ~--~>p (exp tA)

i s a c o n t i n u o u s h o m o m o r p h i s m lit -~ G , H e n c e t h e r e e x i s t s a n

A' ~ G' such that p(exp tA) = exp tA' e �9

define

Then

Now le t A i ( i = l , . . , , n = d i m G) be a b a s e of Ge , a n d

A'. a s t he v e c t o r in G' w i th p ( e x p tAi) = exp tA'. t e l "

rl n P( i= l exp t iA i ) = II n e x p t.A'. i=l t t '

Now the m a p ~ : IR n - , G d e f i n e d by ~(t 1, t n ) - I I n e x p t . A , �9 " " ' i=l I t

is a local diffeomorphism at 0 by the remark following 6, 3. Z.

T h e r e f o r e t h e r e e x i s t s a n e i g h b o r h o o d V of e in G s u c h t h a t

n e v e r y g C V m a y be w r i t t e n in t h e f o r m g - I I i _ l e x p t iA i , w i th

�9 H n t i d e p e n d i n g a n a l y t i c a l l y of g T h e f o r m u l a p( i=l exp t iA i )

= l'l n exp t.A'. now s h o w s t h a t p i s a n a l y t i c a t t h e n e u t r a l e l e m e n t . i:l t

T h e r e f o r e p i s a n a l y t i c by 6 . 3 . B.

: G -~ G' R e m a r k . T h e m a p P* e e e

P~'Ai~'e = A: f o r i = l , n ~. s �9 �9 , �9

i s j u s t g i v e n by

C O R O L L A R Y 6 . 3 . 5 � 9 L e t G, G' b e L i e g r o u p s � 9 If

a s t o p o l o g i c a l g r o u p s , t h e n G = G' a s L i e g r o u p s .

G = G I

P r o o f : If G - G' a s t o p o l o g i c a l g r o u p s , t he i d e n t i t y m a p

i s a h o m e o m o r p h i s m , a n d t h e r e f o r e a d i f f e o m o r p h i s m b y 6, 3 . 4 � 9

T h i s s h o w s t h a t t he L i e a l g e b r a of a L i e g r o u p i s in f a c t a

p r o p e r t y of t h e u n d e r l y i n g t o p o l o g i c a l g r o u p � 9

T h i s r a i s e s t h e q u e s t i o n : w h i c h t o p o l o g i c a l g r o u p s c a n be

t u r n e d i n to L i e g r o u p s , i, e . h a v e a n a n a l y t i c s t r u c t u r e c o m p a t i b l e

w i th the g r o u p s t r u c t u r e a n d s u c h t ha t the c o r r e s p o n d i n g t o p o l o g y

Page 122: Introduction to Lie Groups and Transformation Groups

-116-

coincides with the given one ?

It has been proved by A. M. Gleason, Ann. of Math. 56

(1952), 193-212, that a topological group G which is locally com-

pact, locally connected, metrisable and of finite dimension, is a

Lie group.

6.4. Application to fixed points on G-manifolds. As an application

we give, in this section, a characterization of fixed points on a

G-manifold by the Lie algebra of Killing vectorfields. We begin with

the following

L E M M A 6 . 4 . 1 . L e t X be a m a n i f o l d . A a v e c t o r f i e l d

a n d r a l o c a l 1 - p a r a m e t e r g r o u p of l o c a l t r a n s f o r m a t i o n s ~ e n e r a t e d

b_~ A . A p o i n t x E X is a f i x p o i n t of ever~r t r a n s f o r m a t i o n @t

= 0 if a n d onl~r if A x

Proof: ~ 0 t ( x ) = x f o r e v e r y t i m p l i e s ~t(x)[ t___0-0 a n d

t h e r e f o r e A x -- 0 . C o n v e r s e l y , l e t Ax = 0 . T h e n t h e d i f f e r e n t i a l

e q u a t i o n ~ t (x ) -- A t(x ) h a s t h e s o l u t i o n (;.t(x) = x f o r e v e r y t ,

a n d the s o l u t i o n i s u n i q u e .

E x a m p l e 6 . 4 . 2 . On the t w o - s p h e r e S 2 e v e r y v e c t o r f i e l d h a s

a z e r o . T h e r e f o r e e v e r y 1 - p a r a m e t e r g r o u p of t r a n s f o r m a t i o n s h a s a

f i x p o i n t .

M o r e g e n e r a l l y , le t X be a c o m p a c t m a n i f o l d . T h e v a n i s h i n g

of t h e E u l e r - P o i n c a r ~ c h a r a c t e r i s t i c % i X ) is n e c e s s a r y a n d s u f f i c i e n t

f o r t he e x i s t e n c e of a v e c t o r f i e l d w i t h o u t z e r o s . ( R e m e m b e r t h a t

Page 123: Introduction to Lie Groups and Transformation Groups

-117-

v e c t o r f i e l d m e a n s d i f f e r e n t i a b l e v e c t o r f i e l d ) . T h e r e f o r e e v e r y

1 - p a r a m e t e r g r o u p of t r a n s f o r m a t i o n s of a c o m p a c t m a n i f o l d X

wi th ~,,(X) ~ 0 h a s a f i x p o i n t .

P R O P O S I T I O N 6 . 4 . 3 . L e t t h e c o n n e c t e d L i e g r o u p G

o p e r a t e on X ~ v: G -~Aut X a n d le t KX be the L i e a l g e b r a

of K i l l i n g v e c t o r f i e l d s on X . A po in t x r X i s G - i n v a r i a n t

if a n d o n l y if A* = 0 f o r e v e r y A* ~ KX. X

P r o o f : S u p p o s e x G - i n v a r i a n t . F o r a n y a ~ s we

h a v e v iX) - X a n d t h e r e f o r e A* = 0 f o r t he c o r r e s p o n d i n g a t x

K i l l i n g v e c t o r f i e l d on X . S u p p o s e c o n v e r s e l y A* = 0 f o r x

e v e r y A* E K X , B y l e m m a 6 . 4 . 1 , f o r e v e r y a ~ s we h a v e

t h e r e f o r e TatiX ) = x . exp b e i n g a l o c a l d i f f e o m o r p h i s m , t h e r e

i s a n o p e n n e i g h b o r h o o d U of e in G s u c h t h a t VgiX) = x

f o r g ~ U . A s G is c o n n e c t e d , U g e n e r a t e s G a n d

VglX) = x f o r e v e r y g ~ G . |

C o n s i d e r in p a r t i c u l a r a f i n i t e - d i m e n s i o n a l E - v e c t o r s p a c e

V a n d a r e p r e s e n t a t i o n T : G -~ G L i V ) of t h e c o n n e c t e d L i e g r o u p

G in V . A p o i n t v ~ V is G - i n v a r i a n t i f a n d o n l y i f

ASv = 0 f o r e v e r y A* ~ KV o Btlt , by e x a m p l e 5 . 5 . 5 t he K i l l i n g

v e c t o r f i e l d A* c o r r e s p o n d i n g to a E s is d e f i n e d by

A* = v.~ h0V.re . T h e r e f o r e v E V is G - i n v a r i a n t i f a n d o n l y i f v

A ) v = 0 f o r e v e r y A E G C o n s i d e r i n g the i n d u c e d r e p r e s e n t - (T , e e �9

a t i o n L i T ) : L G - ~ s of LG in V , we s e e t h a t v ~ V i s

G - i n v a r i a n t i f a n d o n l y if ( L ( v ) A ) v = 0 f o r e v e r y A ~ LG .

Page 124: Introduction to Lie Groups and Transformation Groups

-I18-

T h i s m o t i v a t e s t h e f o l l o w i n g

V a

V ,

(A)v

D E F I N I T I O N 6 . 4 . 4 . L e t /k be f i e l d , M a A - L i e a l g e b r a ,

A - v e c t o r s p a c e a n d o-: M -~ s a r e p r e s e n t a t i o n of M in

A n e l e m e n t v ~ V i s c a l l e d i n v a r i a n t o r M - i n v a r i a n t if

= 0 f o r e v e r y A ~ M .

We h a v e t h e r e f o r e

P R O P O S I T I O N 6 . 4 . 5 . L e t V be a f i n i t e d i m e n s i o n a l

~-vectorspace, G a c o n n e c t e d L i e g r o u p , "r:G -. G L ( V ) a

r e p r e s e n t a t i o n of G i n V a n d L(T): LG -" s t h e i n d u c e d

r e p r e s e n t a t i o n of L G in V . A n e l e m e n t v ~ V i s G - i n v a r i a n t

i f a n d o n l y i f i t i s L G - i n v a r i a n t .

We a p p l y n o w p r o p o s i t i o n 6 . 4 . 3 f o r t h e c a s e o f a c o m m u t a t i v e

G a n d p r o v e

P R O P O S I T I O N 6 . 4 . 6 . L e t X be a m a n i f o l d . T h e f o l l o w i n g

c o n d i t i o n s a r e e q u i v a l e n t .

(1) F o r a n y n - d i m e n s i o n a l c o m m u t a t i v e , c o n n e c t e d L i e g r o u p

G a n d anY__opera t ion T : G -* A u t X t h e r e i s a G - i n v a r i a n t p o i n t x

(Z) A n y o p e r a t i o n o f t h e a d d i t i v e g r o u p • n o n X h a s a

X .

f i x p o i n t .

(3) For any n-tuple

[Ai, Aj] = 0 ( i , j = 1 , . . . , n )

for i = I .... , n .

A 1 , . . , , A n of c o m p l e t e v e c t o r f i e l d s w i t h

t h e r e e x i s t s a p o i n t x ~ X w i t h A. t

X

= 0

Page 125: Introduction to Lie Groups and Transformation Groups

-119-

on X wi th

a d d i t i v e g r o u p

5 . 6 . 6 t h e r e i s a n o p e r a t i o n of

Proof: (i) =>(2) is clear.

(2) ---->(3) L e t A1,

[Ai, A j ] = 0 f o r

K g e n e r a t e d by

K

. . . , A n be c o m p l e t e v e c t o r f i e l d s

i, j = 1 , . . . , n . C o n s i d e r t he

A 1 �9

o n

� 9 A n . B y p r o p o s i t i o n

X , s u c h t h a t the c o m m u t a t i v e

L i e a l g e b r a K is t he a l g e b r a of K i l l i n g v e c t o r ' f i e l d s of t h i s o p e r a t i o n .

K i s i s o m o r p h i c to t he a d d i t i v e g r o u p R k f o r s o m e k < n .

T h e o p e r a t i o n of K on X

a d d i t i v e g r o u p ~ n on X

Now by p r o p o s i t i o n 6 . 4 . 3 ,

p a r t i c u l a r A. = 0 f o r l x

(3) =>(1).

i n d u c e s t h e r e f o r e a n o p e r a t i o n of t he

�9 w h i c h h a s a f i x p 0 i n t

x i s a z e r o f o r a n y A

i = l . . . . , n �9

L e t G be a n - d i m e n s i o n a l c o m m u t a t i v e ,

x by h y p o t h e s i s .

K a n d in

[Ai, A j

i, j = 1, . . . . n. B y h y p o t h e s i s , t h e r e e x i s t s a c o m m o n z e r o

X f o r t h e s e v e c t o r f i e l d s . T h e n x i s a z e r o f o r a n y K i l l i n g

T : G - ~ A u t X a n o p e r a t i o n of G on X

the L i e a l g e b r a of K i l l i n g v e c t o r f i e l d s . We h a v e d i m KX < n .

] = 0

c o n n e c t e d L i e g r o u p G,

a n d KX

L e t A 1 , � 9 n be a s y s t e m of g e n e r a t o r s of i KX. T h e n

f o r

x

a n d by p r o p o s i t i o n 6�9 4 . 3 x is G ~ i n v a r i a n t . | v e c t o r f i e l d

If one (and h e n c e a n y ) of t h e c o n d i t i o n s in p r o p o s i t i o n 6, 4 . 6 i s

s a t i s f i e d f o r a c e r t a i n n , t h e n it i s c l e a r l y a l s o s a t i s f i e d f o r e v e r y

m < n .

T h e u n d e r l y i n g m a n i f o l d of a c o m m u t a t i v e L i e g r o u p G of

d i m e n s i o n n c l e a r l y d o e s n ' t s a t i s f y a n y of t h e c o n d i t i o n s of t h e

p r o p o s i t i o n 6 . 4 . 6 . T h e o p e r a t i o n of G O on G by t r a n s l a t i o n s

h a s no f i x p o i n t s a n d a n y n - t u p l e of i n v a r i a n t v e c t o r f i e l d s A 1, . . . , A n

Page 126: Introduction to Lie Groups and Transformation Groups

- 1 2 0 -

s a t i s f i e s [Ai , A j ] = 0 w i t h o u t a n y one of t h e v e c t o r f i e l d s h a v i n g

a z e r o .

E x a m p l e 0 . 4 . 7 . C o n s i d e r t h e t w o - s p h e r e S 7 F o r n= l

t he c o n d i t i o n (3) of p r o p o s i t i o n 6 . 4 . 6 j u s t s a y s t h a t e v e r y v e c t o r f i e l d on

S 2 h a s a z e r o , w h i c h i s a c o n s e q u e n c e of X.(S z) ~ 0 . F o r

n = 2, t he c o n d i t i o n (Z) w a s s h o w n to be s a t i s f i e d by E . L . L i m a ,

P r o c . A M S , Vol . 15 (1964), p. 138-141.

6 . 5 . T a y l o r ' s f o r m u l a . In t h i s s e c t i o n we m a k e e s s e n t i a l u s e of

t h e a n a l y c i t y of G . We r e c a l l t h a t in t h i s c h a p t e r we i d e n t i f y

LG wi th G e .

P R O P O S I T I O N 0 . 5 . 1 . Le t_ f ~ CG be a f u n c t i o n a n a l y t i c

a t g E Gj a n d A E LG . T h e n t h e r e e x i s t s a n ~ > 0 s u c h t h a t

O0 tn

f (g exp tA) = ~ [ A n f ] ( g ) fo_r Itl <

n--0

P r o o f :

T h i s p r o v e s

(,)

F i r s t � 9 l e t f ~ CG . B y p r o p o s i t i o n 5 . 4 . 7

[Af ] (g ) = - - ~ f ( g e x p tA) t - 0

] [ A n f ] ( g ) = f(g exp tA t = 0

f o r n = 1. We p r o v e ( * ) f o r a r b i t r a r y n by i n d u c t i o n .

Page 127: Introduction to Lie Groups and Transformation Groups

-121-

[An+If](g) = [An(Af)](g) = (Af)(g exp tA)

= f(g exp tA exp uA t=0 u=0

= [(~v)n ~v f(g exp VAgv=0

t=0

with t + u = v, showing thus ( * ) ,

If f i s now a n a l y t i c at g , t hen t h e r e e x i s t s a n r > 0

such tha t fo r It I <

cO

f ( g e x p t A ) = ~ tn --6!-.

n = 0

[(+)~ t] f(g exp tA t -'0

(3O

- t n . q . e . d .

n=0

We app ly t h i s to p r o v e the

P R O P O S I T I O N 6 . 5 . Z. Le t O(t 3) deno te a v e c t o r in

such tha t fo r an E > 0 t- ~ O(t 3) i s bounded and a n a l y t i c for

T h e n for A , B E LG and s u f f i c m n t l y s m a l l t

t z (i) exp tA exp tB = exp [t(A+B) + -'Z" [A, B] + O(t3)}

(ii) exp tA exp tS exp (-tA) = exp [tB + tZ[A,B]+ O(t3)]

(iii) exp (-tA) exp (-tB) exp tA exp tB

LG

Itl

= exp [tZ[A,B]+ O(t3)]

< E

Pr oo f : Le t f be a n a l y t i c a t e .

[Anf](e) ; f (exp tA t - -O

We have shown

Page 128: Introduction to Lie Groups and Transformation Groups

- 1 2 2 -

We ob ta in t h e r e f o r e

d n d m [AnBmf](e) "[(~[~") ('~) f(exp tA exp s B ) ] t-O s--O

The T a y l o r s e r i e s fo r f(exp tA exp sB) is t h e r e f o r e

t n f(exp tA exp sB) = ~ --nT

n , m > 0

m s [ A n B m f ] ( e )

and for t = s

(1) f (exp tA exp tB) = /. n,m >0

tn+m [AnBmf](e)

The c o e f f i c i e n t of t

the c o e f f i c i e n t of t 2

is {[Af](e) + [Bf](e)} ,

[ l-~.-[A2f](e) + [ABf](e) + is ~ [ B Z f ] ( e ) }

On the o the r hand , by t h e o r e m 6 . 2 . 2 for s u f f i c i e n t l y s m a l l t

e x p t A exp tB = exp Z(t)

with Z: I -~G e , I an open i n t e r v a l of

a n a l y t i c a t O , Z(O) = 0 . T h e n

Z(t) = tZ 1+ t 2 Z z + O(t 3)

E c o n t a i n i n g 0 , Z

fo r f ixed Z l , Z 2 @ G e .

Take any func t ion f which i s l i n e a r in a c a n o n i c a l c h a r t

at e o T h e n it i s a n a l y t i c at e and

Page 129: Introduction to Lie Groups and Transformation Groups

-123-

(z) f( e x p tA exp tB) = f (exp{ tZ 1 + tZZz + O(t3)})

= f ( e x p [ t Z 1 + tZZz }) + O' (t 3) (30

= ~= i [(tZ I+ tZzz)nf](e) + O'(t 3) 0-~.

O' (t) b e i n g a r e a l n u m b e r s u c h t h a t f o r a n E

i s b o u n d e d a n d a n a l y t i c f o r It[ < E .

i s

T h e c o e f f i c i e n t of t i s [ Z l f ] ( e )

[[Z2f](e) + ~-[Z~f](e)} .

C o m p a r i n g t h i s w i th t he c o e f f i c i e n t of

we o b t a i n

> 0 i O' t- 7 (t)

t h e c o e f f i c i e n t of t z

t a n d t z in (1) ,

[Zlf](e ) = [(A+B)f}(e)

1 [Zzf](e) = [ ~[A, B]f}(e)

T h i s b e i n g t r u e f o r a n y f u n c t i o n f

c a n o n i c a l c h a r t a t e , we h a v e t h e r e f o r e

T h i s s h o w s

exp tA exp tB

Z 1 = A+B

1 Z z = TEA, B]

t 2 = eXp Z(t) = exp [t(A+B) +-,2-

( i i ) i s o b t a i n e d by (i) a s f o l l o w s

w h i c h i s l i n e a r i n a

[A,B] + O(t3)}

i.e. (i)

Page 130: Introduction to Lie Groups and Transformation Groups

exp tA exp tB exp( - tA)

-124-

t [ A , B ] + O(tZ)}l ) exp ( - tA) = exp(t[(A + B ) + ~--

t z = exp(t([ }l-A)+ --2-[[ ]I' -A]+ O(t3)) t 2 t 2

= exp ((tB + - T [ A , B]) + -~--[A, B] + O(t3))

exp (tB + t2[A, B] + O(t3))

( i i i ) is shown s i m i l a r l y by

exp( - tA) exp ( - tB ) exp tA exp tB = exp (t{-(A+B) + ,B] +O(t 2 ,

exp(t[(A+B) + ~[A, B] + O(t2)]l )

t 2 - exp(t([ ]2 + [ }1 )+2 --[[ }2"[}1 ]+O( t3 :

= exp (t2[A, B] + O(t3)) , q . e . d .

R e m a r k . Le t N O

such tha t the r e s t r i c t i o n e x p / N 0 : N O

one can def ine a c o m p o s i t i o n

A o B = l o g ( e x p A �9

if e x p A �9 exp B

N O fo r which O

c o m p o s i t i o n , exp

N e

be an open n e i g h b o r h o o d of O in G e

-. N is a d i f f e o m o r p h i s m . T h e n e

exp B) f or A , B ~ N O

�9 T h i s d e f i n e s a ( p a r t i a l ) c o m p o s i t i o n law in

i s an iden t i t y . In fac t , by the v e r y d e f i n i t i o n of t h i s

i s an i s o m o r p h i s m of N O with N e equ ipped

with the c o m p o s i t i o n i n h e r i t e d f r o m G . Now look at the f o r m u l a (i)

of p r o p o s i t i o n 6 . 5 . 2 . It can be r e w r i t t e n ( for a r b i t r a r y A, B g LG

and s u f f i c i e n t l y s m a l l t ) a s

o tB = (tA + tB)+ 1-~-[tA, tB] + O(t 3) . tA I -

Page 131: Introduction to Lie Groups and Transformation Groups

-125-

The fundamental fact can be proved that (for sufficiently small t)

the term O(t 3) also is expressable by operations in LG on A, B .

This means that the composition law in the neighborhood N e of e in

G is completely determined by the Lie algebra LG. The formula (i)

of 6 . 5 . 2 j u s t g i v e s t h e f i r s t t w o t e r m s of t h i s d e v e l o p m e n t .

M o r e o v e r o n e c a n s h o w t h a t a L i e a l g e b r a h o m o m o r p h i s m

h: LG -~ LG ' i s a h o m o m o r p h i s m w i t h r e s p e c t t o t h e c o m p o s i t i o n d e f i n e d

in N O . T h i s i n c i d e n t a l l y s h o w s t h a t t h e m a p p : N e -~G' d e t e r m i n e d

by h: L G -~ L G ' a c c o r d i n g to p r o p o s i t i o n 6 . 2 . 9 i s in f a c t a l o c a l

h o m o m o r p h i s m G -~ G' i n d u c i n g h: L G -~ L G ' ,

We a p p l y p r o p o s i t i o n 6, 5 . 2 to p r o v e

PROPOSITION 6.5.3.

conditions are equivalent

( i ) [ A , B ] = 0

(hi) e x p sA e x p tB

( i i i ) e x p tA e x p tB

L e t A, B ~ LG . T h e n t h e f o l l o w i n g

= e x p t B e x p sA f o r e v e r y s a n d t

= e x p tB e x p tA f o r e v e r y t .

P roof: (i) ---> (ii) by proposition 5.4. II. (ii) ---->(iii) is trivial.

To see (iii) --->(i) observe that (iii) implies by proposition 6.5, 2

t 2 t 2 e x p [ t ( A + B ) + - ~ [ A , B ] + O ( t 3 ) ] = e x p { t ( B + A ) + " z - [ B ' A ] + O ( t 3 ) ]

for sufficiently small t . This implies [A, B] = [B,A] and

[ A , B ] = 0 .

The condition (i) and (iii) of proposition 6.5, Z also imply the

following convenient formulas.

Page 132: Introduction to Lie Groups and Transformation Groups

-IZ6-

C OROLLARY 6 . 5 . 4 . Unde r the c o n d i t i o n s of p r o p o s i t i o n

6 . 5 . Z , one h a s

t } (i) e x p t ( A + B ) exp tA e x p t B exp - 2 - . [ A , B ] + O(t 3) ; e x p t A e x p t B e x p O ( t z)

(it) exp [ t Z ~ , B ] ] - exp ( - tA) exp ( - tB) exp tA exp tB exp O(t 3) .

P r o o f : (i) fo l lows f r o m

exp ( - tA) exp ( - tB) exp t(A + B) = exp ( t [ - ( A + B) + ~ [ 'A ,B] + O(t2)]) exp t(A + B)

t 2 = exp (t([ } + ( A + B ) ) + -.2-[{ } , A + B ] + O(t3))

t 2- = exp (T[A, B] + O(t3)) .

(ii) fo l lows f r o m

exp (-tB) exp (-tA) exp tB exp tA exp(tZ[A, B])= exp [tZ[B,A] + O(t3)]exp [tZ[A, B]]

= exp O(t 3) .

The f o r m u l a (i) shows tha t the c u r v e t - - , -~>exp tA exp tB h a s

the s a m e t angen t v e c t o r at e than the 1 - p a r a m e t e r subg roup

t ~-~-~> exp t(A + B) . F r o m p r o p o s i t i o n 5 . 4 . 1 0 it fo l lows tha t the t e r m

O(t 3) i s v a n i s h i n g fo r A , B with [ A , B ] = 0 o

The f o r m u l a (ii) d e s c r i b e s [A, BJ as the t angen t v e c t o r at e

of the c u r v e t ,-,~> exp (-~/'tA) exp ( - ~ B ) exp~rtA e ~ p ~ B .

A n o t h e r c o n s e q u e n c e of 6 . 5 . Z u s e f u l for l a t e r a p p l i c a t i o n is

the fo l lowing

COROLLARY 6 . 5 . 5 . Let A, B ~ LG . T h e n for any

t E ~t we have

Page 133: Introduction to Lie Groups and Transformation Groups

-127-

l t (i) e x p t ( A + B ) = l im exp H

n ~ ( x )

(ii) exp [ t2[A, B] } - l im n ~ c o

n

A exp "H B

t t t t exp(--~tnA) exp(-~B) exp ~A exp~B} n2

P roof :

6 . 5 . 2 fo r f ixed t

t A exp t exp ~

and t h e r e f o r e

exp ~

Let t ~ ~ and n

t (A B = exp

t}n A exp ~ B - exp

s u f f i c i e n t l y g r e a t . By p r o p o s i t i o n

+ B ) + 2nZ[A, B] + O

t (A+ B ) +'2"~ [A, B] + O

thus showing (i) . To see (ii) it s u f f i c e s to o b s e r v e tha t by 6 . 5 . 2

2 2 l n l t ~ exp - exp - ~ e x p ~ A e x p ~ B = exp n- 2 - [ A , B ] +

- exp [ t 2 [ A , B ] + O(1)} .

Page 134: Introduction to Lie Groups and Transformation Groups

C H A P T E R 7.

-iZ8-

S U B G R O U P S AND S U B A L G E B R A S

7.1. L i e s u b g r o u p s . B e f o r e d e f i n i n g the n o t i o n of L i e s u b g r o u p s , we

p r o v e

L E M M A 7.1. 1. L e t

i n ) e c t i v e h o m o m o r p h i s m .

i s i n j e c t i v e .

H , G be L i e ~ r o u p s a n d L:H-~ G an

T h e n the i n d u c e d h o m o m o r p h i s m L(~): LH -~ LG

P r o o f : L e t a i

w i th L a a 1 = L o a 2 .

t h e m a p s163 -~ s

s h o w s t h e i n j e c t i v i t y of L(r , q . e . d .

N o t e t ha t by l e m m a 6 . 2 . 6 e v e r y t a n g e n t l i n e a r m a p

i s i n j e c t i v e .

s = 1, Z) be 1 - p a r a m e t e r s u b g r o u p s of H

b e i n g i n j e c t i v e , a 1 = a 2 . T h e r e f o r e

i n d u c e d by r i s i n j e c t i v e . By 5 . 4 . lZ, t h i s

C * h : H h ~ Gc(h)

A s u b g r o u p H of D E F I N I T I O N 7.1, Z. Le t G be a L ie g r o u p .

G i s a L i e s u b g r o u p of G if

(i) H i s a L i e g r o u p

( i i ) t he i n j e c t i o n I,: He,.-, G i s a n a l y t i c .

L e t H be a L i e s u b g r o u p of G By l e m m a 7, 1. 1 a n d t he r e m a r k

f o l l o w i n g it , t h e p a i r (H, L) i s a s u b m a n i f o l d of G / a c c o r d i n g to t he

D E F I N I T I O N 7.1. 3. Le t G be a m a n i f o l d . A s u b s e t H of

G i s a s u b m a n i f o l d of G if

(i) H i s a m a n i f o l d

( i i ) t he i n j e c t i o n L:H ~--~ G i s a n i m m e r s i o n , i . e . t d i f f e r e n t i a b l e

and L . h : Hh -" G~(h) i n j e c t i v e fo r any h ~ H .

Page 135: Introduction to Lie Groups and Transformation Groups

- 1 2 9 -

L e t H b e a s u b g r o u p o f

l o c a l l y t h e a n a l y t i c s t r u c t u r e o f

t h a t t h e g r o u p o p e r a t i o n s in H

s u b g r o u p of G .

N o t e t h a t a 1 - p a r a m e t e r s u b g r o u p

if a n d o n l y i f a i s i n j e c t i v e .

L e t

: He--. G

i d e n t i f y

H b e a L i e s u b g r o u p of

i n d u c e s a n i n j e c t i v e m a p

LH w i t h a s u b a l g e b r a o f

G . I f H i s a s u b m a n i f o l d o f G,

H i s i n d u c e d f r o m t h a t o f G , s o

a r e a n a l y t i c . H i s t h e r e f o r e a L i e

a:lR -~ G i s a L i e s u b g r o u p

G . B y 7 .1 . 1, t h e i n j e c t i o n

Lit,): LH -~ LG. We c a n t h e r e f o r e

L G a n d w r i t e L(~): LH~--. LG .

L E M M A 7 . 1 . 4 . L e t H be a L i e s u b g r o u p of

e x p : H e - * H i s t h e r e s t r i c t i o n of e x p : G e - ~ G .

G . T h e m a p

P r o o f : A f t e r t h e c a n o n i c a l i d e n t i f i c a t i o n s , t h i s i s j u s t t h e n a t u r a l i t y

6 .1 . 6 o f t h e e x p o n e n t i a l m a p ,

P R O P O S I T I O N 7, 1. 5. L e t

o_f G . LH 1 - 2 , t h e n

( i -- 1 , 2 )

H 1 = H 2 �9

be c o n n e c t e d L i e s u b g r o u p s

P r o o f : T h e r e i s a n o p e n n e i g h b o r h o o d o f e in H 1 w h i c h i s a l s o

a n o p e n n e i g h b o r h o o d o f e in H Z ( t a k e a c a n o n i c a l c h a r t a t e a n d

u s e 7 . 1 . 4 . ) .

We u s e w i t h o u t p r o o f t h e f o l l o w i n g

L E M M A 7.1 . 6. L e t X , Y be m a n i f o l d s r

a n d ~a-X -* Y a d i f f e r e n t i a b l e m a p w i t h ~p(X) c

6 : X --, S i s c o n t i n u o u s , i t i s d i f f e r e n t i a b l e .

S a s u b m a n i f o l d o f Y

S . I f t h e i n d u c e d m a p

Page 136: Introduction to Lie Groups and Transformation Groups

-130-

L E M M A 7.1. 7. L e t G be a L i e g r o u p a n d H a L i e s u b g r o u p .

T h e n LH = [A ~ L G / t ~ exp tA i s a c o n t i n u o u s m a p ~ - ~ H } .

P r o o f : A

m a p ]R-~ H .

a c o n t i n u o u s m a p

a n d t h e r e f o r e

LH i m p l i e s t h a t t ~ e x p t A i s a d i f f e r e n t i a b l e

S u p p o s e c o n v e r s e l y A ~ LG wi th t,-,--~> exp tA

-~ H , T h i s m a p is d i f f e r e n t i a b l e by l e m m a 7, 1.6

A E LH .

P R O P O S I T I O N 7.1, 8. Le__t H 1 , H 2 b e two L i e s u b g r o u p s of

I f H 1 a n d H 2 c o i n c i d e a s t o p o l o g i c a l g r o u p s , t h e y c o i n c i d e a s L i e

g r o u p s .

G ,

P r o o f : 7. l, 7 c h a r a c t e r i z e s t he L i e a l g e b r a by a i d of t he t o p o l o g i c a l

s t r u c t u r e al one . B y 7 . 1 . 5 , H10= H20 " T h e i d e n t i t y m a p H 1--, H z

i s t h e r e f o r e a n i s o m o r p h i s m ,

T h i s i s of c o u r s e a l s o a c o n s e q u e n c e of 6 . 3 , 5, but we h a v e p r e f e r r e d

a s i m p l e , d i r e c t p r o o f ,

We s t a t e now

T H E O R E M 7.1, 9. L e t G be a L i e g r o u ~ . If H is a L i e s u b -

g r o u p of G , t h e n t h e L i e a l g e b r a of H i s a s u b a l g e b r a of LG .

E a c h s u b a l g e b r a of LG i s t he L i e a l g e b r a of a u n i q u e c o n n e c t e d L i e

s u b g r o u p of G ,

of

P r o o f : T h e r e o n l y r e m a i n s to s h o w , t h a t f o r a g i v e n s u b a t g e b r a ~-~

LG t h e r e e x i s t s a c o n n e c t e d L i e s u b g r o u p H of G wi th LH = ~ ,

Page 137: Introduction to Lie Groups and Transformation Groups

-131-

S u p p o s e t h e r e e x i s t s s u c h a L i e s u b g r o u p H . T h e n exp(~) ~ H

M o r e o v e r exp ~ f c o n t a i n s a n o p e n n e i g h b o r h o o d of e in H a n d

t h e r e f o r e g e n e r a t e s H .

T h i s p e r m i t s c o n v e r s e l y to d e f i n e H a s the s u b g r o u p g e n e r a t e d

by exp ~ . T h e p r o b l e m i s to m a k e H a s u b m a n i f o l d of G , We

do not show t h i s h e r e , but s k e t c h i n s t e a d a n o t h e r p r o o f ( s e e C h e v a l l e y

[ 3 ] , p. 109, t h e o r e m 1), m a k i n g u s e of t he e x i s t e n c e t h e o r e m f o r i n t e g r a l

m a n i f o l d s of a n i n v o l u t i v e f i e l d of v e c t o r s p a c e s on a m a n i f o l d .

L e t H be a L i e s u b g r o u p of G . T h e n the le f t c o s e t s of G

m o d u l o H a r e t he m a x i m a l i n t e g r a l m a n i f o l d s of t he f i e l d of v e c t o r s p a c e s

W on G d e f i n e d by the t a n g e n t s p a c e s of t h e c o s e t s . Now g i v e n c o n -

v e r s e l y a s u b a l g e b r a ~ c LG one c a n r e c o n s t r u c t t he f i e l d of v e c t o r s p a c e s

W . Wg is n a m e l y the v e c t o r s p a c e { A g / A ~ } ~ b e i n g a s u b a l g e b r a ,

W is t h e n i n v o l u t i v e , L e t H be t he m a x i m a l i n t e g r a l m a n i f o l d of W

p a s s i n g t h r o u g h e . To s e e t h a t H is a s u b g r o u p of G , f i r s t o b s e r v e

t h a t the f i e l d of v e c t o r s p a c e s W i s i n v a r i a n t by l e f t t r a n s l a t i o n s . T h e r e -

f o r e t h e m a x i m a l i n t e g r a l m a n i f o l d s a r e j u s t p e r m u t e d a m o n g t h e m s e l v e s

by lef t t r a n s l a t i o n s .

If conversely

a = { g / L ~l ~ g m a n i f o l d of

Now if h C H, t h e n L 1 h = e , so h"

L g _ I H = H f o r g E G , t h e n g ~ H ,

= H} a n d H is a s u b g r o u p of G , H

G, we s e e t h a t H is a L i e s u b g r o u p of G ,

L h _ l H = H 0

T h e r e f o r e

b e i n g a s u b -

E x e r c i s e 7 .1 , 10. L e t X be a G - m a n i f o l d a n d H a L i e s u b -

g r o u p of G . T h e n X is a H - m a n i f o l d . S u p p o s e v : G -~ A u t X

Page 138: Introduction to Lie Groups and Transformation Groups

-132-

t o be a n e f f e c t i v e o p e r a t i o n o f G on X a n d l e t S be a s u b a l g e b r a

o f t h e L i e a l g e b r a KX o f K i l l i n g v e c t o r f i e l d s . T h e n t h e r e i s a u n i q u e

c o n n e c t e d L i e s u b g r o u p H

H d e f i n e s a n o p e r a t i o n on

v e c t o r f i e l d s .

o f G s u c h t h a t t h e r e s t r i c t i o n o f T to

X w i t h S a s L i e a l g e b r a o f K i l l i n g -

7, 2. E x i s t e n c e of l o c a l h o m o m o r p h i s m s , We b e g i n w i t h

L E M M A 7 . 2 , 1. L e t

g r o u p s . I f L(p) : LG -. L G '

i s o m o r p h i s m .

p: G -~ G' be a l o c a l h o m o m o r p h i s m of L i e

i_s a n i s o m o r p h i s m , t h e n p i s a l o c a l

P r o o f : I f L(p) i s a n i s o m o r p h i s m , t h e r e e x i s t s o n a n o p e n

n e i g h b o r h o o d o f e ' in G a l o c a l i n v e r s e m a p # o f p : G - ~ G ' .

p b e i n g a l o c a l h o m o m o r p h i s m , ~ i s n e c e s s a r i l y a l o c a l h o m o m o r p h i s m

a n d p t h e r e f o r e a l o c a l i s o m o r p h i s m . |

E x a m p l e 7, 2 . 2 , I f G i s c o m m u t a t i v e , e x p : LG -. G i s a

h o m o m o r p h i s m by 6 .1 . 4, N ow L ( e x p ) = 1LG: LG -, LG a n d e x p

m o r e o v e r s u r j e c t i v e by 6 . 2 . 7 , T h i s i s s u f f i c i e n t to d e t e r m i n e t h e

s t r u c t u r e o f c o m m u t a t i v e c o n n e c t e d L i e g r o u p s ( s e e s e c t i o n 7 . 3 ) ,

i s

We h a v e a l r e a d y p r o v e d in 6 . 2 . 1 1 t h e e x i s t e n c e o f a l o c a l h o m o m o r p h i s m

p: G -. G ' i n d u c i n g a g i v e n h o m o m o r p h i s m h: L G -. LG ' f o r c o m m u t a t i v e

g r o u p s . We p r o v e i t n o w in t h e g e n e r a l c a s e .

Page 139: Introduction to Lie Groups and Transformation Groups

-133-

T H E O R E M 7 . 2 . 3 . Le t G , G ' be L ie g r o u p s and h: LG -. LG'

a h o m o m o r p h i s m of Lie a l g e b r a s . T h e n t h e r e e x i s t s a l o c a l h o m o m o r p h i s m

p : G -* G' with L(p) = h .

Note tha t by 6 .2 .11 , on the d o m a i n of a c a n o n i c a l c h a r t p m u s t

n e c e s s a r i l y c o i n c i d e with exp o h o log.

of

Le t

P r o o f : Le t k = { ( A , h ( A ) ) / A ~ LG} . T h e n k is a s u b a l g e b r a

LG x LG' e q u i p p e d with the L ie a l g e b r a s t r u c t u r e of de f i n i t i on 4 . 6 . 2 .

K be the c o n n e c t e d L ie s u b g r o u p of G x G' with Lie a l g e b r a k .

If p: G x G' -* G is the n a t u r a l p r o j e c t i o n , c o n s i d e r the h o m o m o r p h i s m

X - p / K : K - . G . L ( k ) : k - * LG is the m a p g i v e n by L(k) (A,h(A) ) = A

and t h e r e f o r e an i s o m o r p h i s m , By l e m m a 7 . 2 . 1 , k i s a l o c a l i s o -

m o r p h i s m with l o c a l i n v e r s e D: G -~ K , M o r e o v e r L(/z)A = (A ,h (A) )

for A E LG . The c o m p o s i t i o n of D :G -0 K wi th the p r o j e c t i o n

G X G' -, G' g i v e s a l o c a l h o m o m o r p h i s m p: G -. G' . By c o n s t r u c t i o n

L(p)(A) = h(A) for A r LG, i.e. L(p) = h , q.e,d.

T o g e t h e r wi th t h e u n i c i t y p r o p e r t y of 6. Z. 8, the t h e o r e m e x p r e s s e s

tha t L is a c o m p l e t e l y fa i th fu l f u n c t o r on L ie g r o u p s and l o c a l h o m o -

m o r p h i s m s to L ie a l g e b r a s a n d L i e a l g e b r a h o m o m o r p h i s m s .

To be ab le to s p e a k s t r i c t l y of u n i c i t y , we s h a l l c o n s i d e r g e r m s of

l o c a l h o m o m o r p h i s m s , i . e . we s h a l l i d e n t i f y h o m o m o r p h i s m s c o i n c i d i n g

on a n e i g h b o r h o o d of the i den t i t y .

We have a l r e a d y s e e n in 4 . 5 . 6 tha t a l o c a l i s o m o r p h i s m of Lie g roups

Page 140: Introduction to Lie Groups and Transformation Groups

-134-

i n d u c e s an i s o m o r p h i s m of Lie a l g e b r a s , T h i s is a t r i v i a l c o n s e q u e n c e of

the f u n c t o r i a l i t y of L , We a r e now ab le to show

T H E O R E M 7 . 2 . 4 , Two L i e ~ r o u p s G and G' a r e locall~r

i s o m o r p h i c if and only if the Lie a l g e b r a s LG and LG' a r e i s o m o p r h i c .

P r o o f : If h: LG -. LG' is an i s o m o r p h i s m , t h e r e e x i s t s by 7, 2 .3

a loca l h o m o m o r p h i s m p:G-- , G' induc ing h , and p [s a loca l

i s o m o r p h i s m by 7 .2 .1 , q . e . d,

T h i s t h e o r e m is the m o s t i m p o r t a n t fact we have p r o v e d up to now.

It t e l l s e x a c t l y which type of i n f o r m a t i o n o n e c a n hope to ob ta in by the Lie

a l g e b r a of a Lie group . Note tha t e . g . t h e o r e m 6 .2 , 5 is an e a s y c o n -

s e q u e n c e of 7, 2 .4 , To c o m p l e t e the s tudy o n e w o u l d l ike to know if e v e r y

f i n i t e - d i m e n s i o n a l Lie a l g e b r a o v e r R is o c c u r i n g as the Lie a l g e b r a of

s o m e Lie group. Th i s is in fact so, but we s h a l l not p rove th i s h e r e . A

p r o o f i s ob ta ined by the fo l lowing t h e o r e m due to Ado: E v e r y f in i te d i m e n s i o n a l

JR-Lie a l g e b r a ~ is i s o m o r p h i c to a s u b a l g e b r a of the Lie a l g e b r a

~ ( n , I~) of GL(n, IR) for s o m e n . The c o n n e c t e d s u b g r o u p of

GL(n, ~ ) c o r r e s p o n d i n g to th i s s u b a l g e b r a i s a Lie g roup with Lie a l g e b r a

i s o m o r p h i c to ~ .

T h i s shows by the way, that any Lie g roup is l o c a l l y i s o m o r p h i c to

a Lie s u b g r o u p of a g roup GL(n, ~ ) fo r s o m e n .

A n o t h e r point to p r e c i s e is the r e l a t i o n b e t w e e n loca l h o m o m o r p h i s m s

and (g loba l ) h o m o m o r p h i s m s . Let p: G -~ G' be a loca l h o m o m o r p h i s m .

If G is c o n n e c t e d , we know by 6. Z. 9 that t h e r e is at m o s t one e x t e n s i o n

Page 141: Introduction to Lie Groups and Transformation Groups

- 1 3 5 -

to a g l o b a l h o m o m o r p h i s m G -* G' . We s h a l l m a k e u s e of t h e f o l l o w i n g

l e m m a on t o p o l o g i c a l g r o u p s .

LEM1VLk 7 . 2 . 5 . L e t G be a c o n n e c t e d , local l~r c o n n e c t e d a n d

s i m p l y c o n n e c t e d t o p o l o g i c a l g r o u p , G' a n a r b i t r a r y t o p o l o g i c a l g r o u p

a n d p: G ~ G' a l o c a l h o m o m o r p h i s m (of t o p o l o g i c a l g r o u p s ) . T h e n

t h e r e e x i s t s a u n i q u e e x t e n s i o n of p to a h o m o m o r p h i s m 9 : G -. G' .

P r o o f :

a t o p o l o g y on

e on w h i c h

of n e i g h b o r h o o d s i s d e f i n e d by N(g , g ' , W) = [ (x, x ' )Jx = wg, x '

w h e r e W is a n o p e n n e i g h b o r h o o d of e in G wi th W

s h o w t h a t the p r o j e c t i o n p : G N G ' -~ G i s a c o v e r i n g of G .

w -,~-,-~> (wg, p (w)g ' ) i s a h o m e o m o r p h i s m W -~ N(g, g', V~ �9 If

c o n n e c t e d , t h e r e f o r e N(g, g' ,W)

h o m e o m o r p h i s m : N(g , g' ,W) -~ W g

the N ( g , g ' , W ) wi th g' ~ G' .

of t h i s u n i o n . T h e r e f o r e G ~ G'

L e t "~ d e n o t e t h e c o n n e c t e d c o m p o n e n t of (e , e ' ) in G x G ' , T h e n

(G, p / G ) i s a c o v e r i n g s p a c e of G a n d p / G a h o m e o m o r p h i s m , G

b e i n g s i m p l y c o n n e c t e d . L e t /~ be the i n v e r s e a n d d e f i n e p = qo/~ ,

w h e r e q : G ~ G' --. G' i s t he c a n o n i c a l p r o j e c t i o n . If v E V , t h e n

p'(v) = p(v) , a n d p i s a n e x t e n s i o n of p .

ks a h o m c m o r p h i z m . B y d e f i n i t i o n of p , f o r

7 ( v g ) = p(v)'~(g) = "~(v) '~(g) . F o r v i ~ V

U n i q u e n e s s is c l e a r . T o p r o v e the e x i s t e n c e , we d e f i n e

G X G ' . L e t V ~ G be a c o n n e c t e d n e i g h b o r h o o d of

p i s d e f i n e d � 9 If I~, g. ) ~ G ~ c G ' , a f u n d a m e n t a l s y s t e m

= p ( w ) g ' , w w } ,

c V . We

T h e m a p

W is

i s c o n n e c t e d a n d p / N ( g , g' ,W) a

�9 p ' l ( w g ) is t he d i s j o i n t u n i o n of

N(g, g ' , W) a r e o p e n c o n n e c t e d s u b s e t s

i s l o c a l l y c o n n e c t e d a n d p a c o v e r i n g .

It r e m a i n s to s h o w t h a t p

v E V a n d g ~ G we h a v e

by i n d u c t i o n

Page 142: Introduction to Lie Groups and Transformation Groups

-136-

i vi)g) = (H i'p(vi))~(g ) and in particular

Therefore "~((l'[ i vi)g ) = y(II i vi)~(g ) . As

"p is therefore a homomorphism.

Y(n i v i) : n i Y(v i)

V generates G

T o g e t h e r wi th l e m m a 6 . 3 . 3 fo l lows

P R O P O S I T I O N 7. Z. 6.

L ie group, G' . .

m o r p h i s m .

--- G I p:G-~

Let G be a c o n n e c t e d and s i m p l y c o n n e c t e d

an a r b i t r a r y Li e g r o u p and p: G -~ G' a l o c a l h o m o -

T h e n t h e r e e x i s t s a un ique e x t e n s i o n of p to a h o m o m o r p h i s m

Note tha t we h a v e p r o v e d in p r o p o s i t i o n 5 . 4 . 8 a p a r t i c u l a r c a s e of

t h i s p r o p o s i t i o n .

C O R O L L A R Y 7 . 2 . 7 . Le t G, G'

a h o m o m o r p h i s m of L ie a l g e b r a s . If G

then t h e r e e x i s t s a u n i q u e h o m o m o r p h i s m

If, m o r e o v e r . G' is c o n n e c t e d and s i m p l y c o n n e c t e d , and

i s o m o r p h i s m , t hen p is an i s o m o r p h i s m .

be Lie groups and h: LG -- LG'

is connected and simply connected,

p:G-~G' with L(p) -- h

h an

P r o o f : To a h o m o m o r p h i s m h: LG -~ LG' t h e r e e x i s t s by t h e o r e m

7 . 2 . 3 a l o c a l h o m o m o r p h i s m p : G - * G' i n d u c i n g h . If G is

c o n n e c t e d and s i m p l y c o n n e c t e d , p can , by 7. Z. 6, be e x t e n d e d u n i q u e l y

to a h o m o m o r p h i s m .

Suppose now a l s o G' c o n n e c t e d and s i m p l y c o n n e c t e d . If h

i s an i s o m o r p h i s m , i t s i n v e r s e k is i n d u c e d by a h o m o m o r p h i s m

k: G' -~ G . Now L(kop) = ILG and by unicity Z.ap = i G . Similarly

Page 143: Introduction to Lie Groups and Transformation Groups

-137-

p o X = 1G, a n d p i s a n i s o m o r p h i s m , q . e . d .

A s a n a p p l i c a t i o n , c o n s i d e r a c o m m u t a t i v e L i e g r o u p G . ]By

6 .1 . 4 t h e m a p exp : LG -. G i s a h o m o m o r p h i s m . I t i s i n d u c e d by t h e

i s o m o r p h i s m 1LG: L G -. L G o f L i e a l g e b r a s . C o r o l l a r y 7. Z. 7 s h o w s

P R O P O S I T I O N 7 . 2 . 8 .

s i m p l e r c o n n e c t e d L i e ~ r o u p ,

If G i s a c o m m u t a t i v e , c o n n e c t e d a n d

exp : L G -. G i s a n i s o m o r p h i s m .

R e m a r k . We m e n t i o n h e r e ~ w i t h o u t p r o o f ; t h e e x i s t e n c e of a

u n i v e r s a l c o v e r i n g g r o u p f o r a n y c o n n e c t e d L i e g r o u p . M o r e p r e c i s e l y

l e t G b e a c o n n e c t e d L i e g r o u p . T h e n t h e r e i s a c o n n e c t e d a n d s i m p l y

c o n n e c t e d L i e g r o u p G a n d a h o m o m o r p h i s m a n d l o c a l i s o m o r p h i s m

~ : G -. G s u c h t h a t (G, cO) i s a c o v e r i n g m a n i f o l d o f G . (G, ~) h a s

t h e f o l l o w i n g u n i v e r s a l p r o p e r t y . F o r a n y c o n n e c t e d a n d s i m p l y c o n n e c t e d

L i e g r o u p H a n d h o m o m o r p h i s m

p : H - * ~ w i t h r o p = p .

If' G i s a c o m m u t a t i v e c o n n e c t e d L i e g r o u p , t h e p a i r

i s t h e u n i v e r s a l c o v e r i n g g r o u p of G .

N o w le t G be a c o n n e c t e d L i e g r o u p ,

a n d p: G -. G' a l o c a l h o m o m o r p h i s m . L e t

9- H -* G t h e r e i s a u n i q u e h o m o m o r p h i s m

( L G , e x p )

G' a n a r b i t r a r y L i e g r o u p

( ~ ~) be t h e u n i v e r s a l

c o v e r i n g g r o u p o f G . T h e n t h e l o c a l h o m o m o r p h i s m

h a s b y 7 . 2 . 6 a u n i q u e e x t e n s i o n to a h o m o m o r p h i s m @: G -~ G'

G ' i s c o n n e c t e d a n d (G', r ) a u n i v e r s a l c o v e r i n g g r o u p of

e x i s t s a u n i q u e h o m o m o r p h i s m @:G - .G ' w i t h ~ ' o ~ = e,, .

S u p p o s e in p a r t i c u l a r

c o n n e c t e d L i e g r o u p s

p o ~: G -. G '

. If

G' t h e r e

p: G -~ G' to be a l o c a l i s o m o r p h i s m of

G , G ' . T h e p r e c e d i n g s h o w s t h a t ~ : ( ~ - . (~'

Page 144: Introduction to Lie Groups and Transformation Groups

- 1 3 8 -

is a local isomorphism. By corollary 7.2.7, {~ is an isomorphism.

Therefore a local isomorphism of connected Lie groupStnduces an iso-

morphism of the universal covering groups. This means that to every

class of locally isomorphic connected Lie groups there corresponds a

unique Lie group (up to isomorphisms), which is a universal covering

group of any member of the class, Every member of the class is obtained

from this universal covering group by dividing by a discrete normal

subgroup (see section 7,3) . By theorem 7.2.4 there is an injecttve

map of the classes of locally isomorphic Lie groups into the classes of

isomorphic Ft-Lie algebras, By the above mentioned theorem of Ado

this map is bijective. The problem of classifying all possible connected

Lie groups is therefore decomposed in two steps, First find all R-Lie

algebras. Second find all discrete normal subgroups of a simply connected

Lie group.

Consider the restricted problem of classifying all possible commutative

connected Lie groups. A commutative Lie algebra is characterized by its

dimension. The classification problem reduces therefore to find all discrete

subgroups of a simply connected commutative Lie group. By 7. Z. 8 , this

is just the problem of finding the discrete subgroups of a finite-dimensional

Ft-vectorspace. We shall do this in the next section.

7. 3.

Can

of H

D i s c r e t e s u b g r o u p s . Le t G be a L ie g r o u p and H a s u b g r o u p .

H be de f ined a s a L ie s u b g r o u p of G ?

F o r a g iven t opo logy on H (not n e c e s s a r i l y the r e l a t i v e t opo logy

in G), such tha t H is a t o p o l o g i c a l g roup , t h e r e is by 7. 1. 8 at

Page 145: Introduction to Lie Groups and Transformation Groups

-139-

m o s t o n e L i e g r o u p s t r u c t u r e i n d u c i n g t h i s t o p o l o g y a n d m a k i n g H a

L i e s u b g r o u p of G .

T h e e x a m p l e of t h e r ~ t i o n a l s Q ~ ~ s h o w s t h a t i f we t a k e t h e

i n d u c e d t o p o l o g y o n H , t h e r e d o e s n o t n e c e s s a r i l y e x i s t a L i e g r o u p

s t r u c t u r e on H i n d u c i n g t h i s t o p o l o g y a n d m a k i n g H a L i e s u b g r o u p

of G .

We c a n a l w a y s c o n s i d e r H a s a 0 - d i m e n s i o n a l m a n i f o l d , m a k i n g

H a L i e s u b g r o u p of G . T h e L i e a l g e b r a o f a 0 - d i m e n s i o n a l L i e g r o u p

i s 0 , a n d t h e s u b a l g e b r a o f L G c o r r e s p o n d i n g to a 0 - d i m e n s i o n a l L i e

s u b g r o u p t h e r e f o r e 0 . T h e e x a m p l e Q~,~ ~t a g a i n s h o w s t h a t a p a r t

f r o m t h i s t r i v i a l m a n n e r t h e r e i s l p o s s i b l y ~ n o w a y o f t u r n i n g a s u b g r o u p

of a L i e g r o u p i n t o a L i e s u b g r o u p .

D E F I N I T I O N 7 . 3 . 1 . L e t G be a t o p o l o g i c a l g r o u p . A d i s c r e t e

s u b g r o u p H of G i s a s u b g r o u p w h i c h i s a d i s c r e t e s u b s p a c e of G.

W h e n G i s a L i e g r o u p , i t i s n a t u r a l to v i e w a d i s c r e t e s u b g r o u p H

a s a 0 - d i m e n s i o n a l L i e s u b g r o u p of G . N o t e t h a t a d i s c r e t e s u b g r o u p

of a L i e g r o u p G i s a c l o s e d s u b g r o u p ( u s e t h e f a c t t h a t G i s a

H a u s d o r f f s p a c e ) ,

E x a m p l e 7o 3 . 2 .

s u b g r o u p of • n .

We s h o w now

L e t 0 _~ p ~ n . T h e n ~ P i s a d i s c r e t e

P R O P O S I T I O N 7 . 3 . 3 , L e t G, G ' be t o p o l o g i c a l g r o u p s a n d , m

p : G -~ G' a h o m o m o r p h i s m a n d l o c a l i s o m o r p h i s m : The_n t h e k e r n e l o f

Page 146: Introduction to Lie Groups and Transformation Groups

- 1 4 0 -

p i s a d i s c r e t e n o r m a l s u b g r o u p o f G ,

G, G'

k e r p

l a t i o n s b e i n g h o m e o m o r p h i s m s , e v e r y p o i n t o f

k e r p i s d i s c r e t e , |

P r o o f : T h e r e e x i s t s o p e n n e i g h b o r h o o d s N, N' o f e , e ' in

s u c h t h a t p / N : N -, N' i s a h o m e o m o r p h i s m . T h e r e f o r e

N N -- {e} a n d e i s a n i s o l a t e d p o i n t o f k e r p . T h e t r a n s -

k e r p i s i s o l a t e d a n d

C O R O L L A R Y 7 . 3 . 4 .

k e r n e l o f t h e h o m o m o r p h i s m

additive group of LG .

Let G be a commutative Lie group. Th__._e

exp : L G -. G i s a d i s c r e t e s u b g r o u p o f t h e

Proof: The homomorphism exp: LG -. G is by example 7.2. Z a

local isomorphism.

T h i s r a i s e s t h e p r o b l e m of f i n d i n g a l l d i s c r e t e s u b g r o u p s o f t he

a d d i t i v e v e c t o r g r o u p o f a f i n i t e d i m e n s i o n a l • - v e c t o r s p a c e V , E v e r y

s u c h s u b g r o u p i s i s o m o r p h i c t o a g r o u p 2E p, w h e r e p ~ d i m V . M o r e

p r e c i s e l y we s h o w

D

d i m e n s i o n o f t h e s u b s p a c e g e n e r a t e d b~"

l i n e a r l y i n d e p e n d e n t v e c t o r s ,

L E M M A 7 . 3 . 5 . L e t V be a n - d i m e n s i o n a l

a d i s c r e t e s u b g r o u p o f t h e a d d i t i v e v e c t o r g r o u p . . p _< n

D , T h e n t h e r e e x i s t s

v I . . . . . Vp _in V g e n e r a t i n g

P r o o f :

i n d u c t i o n .

E. - v e c t o r s p a c e a n d

L e t be t h e

P

D .

We a s s u m e k n o w n t h e c a s e p = 1 a n d p r o v e t h e l e m m a by

S u p p o s e t h e l e m m a t r u e f o r a l l k < p a n d l e t D g e n e r a t e

Page 147: Introduction to Lie Groups and Transformation Groups

-141-

a p-dimensional subspace U of V . There is a (p-l)-dimensional

subspace A of U generated by e lements of D , Let v I , , . . , Vp_ l

be linearly independent vectors in V generating D N A . Now

D + A[A ~ D/D N A . That this algebraic isomorphism is a topological

i somorphism follows from the fact that these groups are locally compact

and that D + A has a countable base (for a proof we re fe r to corol lary 3, 3

of S. Helgason [ 6 ], p. Ill). Using this, we see that D + A/A is

discrete . Being a subgroup of the l -dimensional vectorspace U/A , the

group D + A/A is generated by an element Vp + A . Then v I �9 . . . . Vp

are linearly independent and generate D .

We a r e now a b l e to d e t e r m i n e the s t r u c t u r e of t he c o m m u t a t i v e

c o n n e c t e d L i e g r o u p s .

T H E O R E M 7 . 3 . 6 . L e t G be a c o m m u t a t i v e c o n n e c t e d L i e g r o u p

of d i m e n s i o n n . T h e n t h e r e i s a n i n t e g e r p , 0 _~ p ~ n , s u c h t h a t

--~ n - p ~ T p O - - E

Proof: The homomorphism exp: LG -~ G is surjective by proposition

6 . 2 . 7 . We h a v e t h e r e f o r e an i s o m o r p h i s m L G / k e r exp ~ G in t he

a l g e b r a i c s e n s e . It i s no t d i f f i c u l t to s e e d i r e c t l y t h a t it i s an i s o m o r p h i s m

of L i e g r o u p s . We o m i t t h i s h e r e ,

g e n e r a l s t a t e m e n t , Now k e r e x p

by l e m m a 7 . 3 . 5 . T h e r e f o r e G

a s we s h a l l p r o v e � 9 in 7, 7 . 6 , a m o r e

Z p f o r s o m e p wi th 0 ~_ p _~ n

E n / z P w h i c h p r o v e s t h e t h e o r e m

Page 148: Introduction to Lie Groups and Transformation Groups

- 1 4 2 -

C O R O L L A R Y 7, 3 . 7 , L e t G be a c o m p a c t c o n n e c t e d L i e g r o u p

o f d i m e n s i o n n . T h e n G = T n .

A s m e n t i o n e d a t t h e e n d of s e c t i o n 7 . 2 , o n e s t e p in t he c l a s s i f i c a t i o n

p r o b l e m f o r L i e g r o u p s c o n s i s t s in f i n d i n g a l l d i s c r e t e n o r m a l s u b g r o u p s

o f a s i m p l y c o n n e c t e d L i e g r o u p . T h i s i s g r e a t l y s i m p l i f i e d by

P R O P O S I T I O N 7, 3 . 8 . Le t H

t h e c o n n e c t e d t o p o l o g i c a l g r o u p G

c e n t e r o f G .

be a d i s c r e t e n o r m a l s u b g r o u p of

T h e n H i s c o n t a i n e d in t h e

P r o o f : L e t h ~ H . T h e m a p G - ~ H d e f i n e d b y g ~ g h g "1

i s c o n t i n u o u s . T h e i m a g e b e i n g c o n n e c t e d , i t m u s t be a p o i n t a n d t h e r e f o r e

e q u a l t o h , q . e . d .

7 . 4 . O p e n s u b g r o u p s , c o n n e c t e d n e s s . L e t G b e a L i e g r o u p a n d

H a s u b g r o u p w h i c h i s a n o p e n s u b s e t of G , H i s a s u b m a n i f o l d a n d

t h e r e f o r e a L i e s u b g r o u p o f G . T h e L i e a l g e b r a o f a n o p e n s u b g r o u p

i s LG, t h e i n j e c t i o n b e i n g a l o c a l i s o m o r p h i s m . T h e r e f o r e a n o p e n s u b -

g r o u p H o f G n e c e s s a r i l y c o n t a i n s G O , a s L H = LG i m p l i e s

H 0 = G O . R e m e m b e r t h a t a n o p e n s u b g r o u p i s n e c e s s a r i l y c l o s e d .

E x a m p l e 7 . 4 . 1 . L e t V be a f i n i t e - d i m e n s i o n a l l : t - v e c t o r s p a c e

a n d de t : G L ( V ) -~ ~ * t h e d e t e r m i n a n t h o m o m o r p h i s m . R * b e i n g n o t

c o n n e c t e d , G L ( V ) i s n o t c o n n e c t e d , O n t h e o t h e r h a n d , a n y t w o b a s e s

o f V w i t h t h e s a m e o r i e n t a t i o n ( a f t e r t h e c h o i c e o f a n o r i e n t a t i o n )

can b e c o n t i n u o u s l y t r a n s f o r m e d o n e i n t o t h e o t h e r b y a u t o m o r p h i s m s o f

Page 149: Introduction to Lie Groups and Transformation Groups

-143-

V. T h i s s h o w s r e a d i l y t h a t d e t - l ( ~ +) i s t he c o n n e c t e d c o m p o n e n t

of the i d e n t i t y in G L ( V ) , w h e r e ~ + : {x ~ ~ * / x > 0] .

L e t H be an o p e n s u b g r o u p of G a n d G / H the s e t of

l e f t c0sets m o d u l o H , A l l l e f t ocsels b e i n g o p e n in G, the q u o t i e n t

t o p o l o g y i s d i s c r e t e a n d G / H c a n be c o n s i d e r e d a s a 0 - d i m e n s i o n a l

m a n i f o l d . If in p a r t i c u l a r H i s a n o r m a l s u b g r o u p of G , t h e n

G / H c a n be c o n s i d e r e d a s a 0 - d i m e n s i o n a l L i e g r o u p � 9

T h i s a p p l i e s to t he c o n n e c t e d c o m p o n e n t of t he i d e n t i t y and

~/-- G / G 0 is a 0 - d i m e n s i o n a l L i e g r o u p .

E x a m p l e 7�9 4 . 2 . L e t G = G L ( V )

of a f i n i t e - d i m e n s i o n a l v e c t o r s p a c e V

7, 4 .1.

A s a n y c o n n e c t e d c o m p o n e n t of G

m a n i f o l d G is d i f f e o m o r p h i c to G O x

c a n o n i c a l d i f f e o m o r p h i s m . A n y s p l i t t i n g

be t he g r o u p of a u t o m o r p h i s m s

�9 T h e n ~ = Z 2 by e x a m p l e

i s d i f f e o m o r p h i c to G O , t he

. T h e r e is , h o w e v e r , no

s: ~ - . G of t he e x a c t s e q u e n c e

e -~G0 -. G -. ~ - . e

d i r e c t p r o d u c t G0xT~ , w h e r e

d e f i n e d by Tr = ~ S ( r f o r

m a n y p a r t i c u l a r c a s e s .

g i v e s r i s e to an i s o m o r p h i s m of G wi th t h e s e m i -

T: ~ -~ Au t G O is the h o m o m o r p h i s m

~ ~ , S u c h a s p l i t t i n g e x i s t s in

E x a m p l e 7 .4 �9 3.

V . T h e r e f l e c t i o n at t he o r i g i n of V t o g e t h e r wi th t he i d e n t i t y of

f o r m s an i s o m o r p h i c i m a g e of Z 2 -" G / G 0 in G �9

In t h e c a s e of a c o m m u t a t i v e g r o u p G , a s p l i t t i n g s: ~ -~ G

the e x a c t s e q u e n c e e -. G O -. G -~ ~ -. e d e f i n e s an i s o m o r p h i s m of

w i th G0 x~/ .

G = GL(V) f o r an o d d - d i m e n s i o n a l ~ - v e c t o r s p a c e

V

of

G

Page 150: Introduction to Lie Groups and Transformation Groups

-144-

E x a m p l e 7, 4 . 4 . Le t V be a f in i te d i m e n s i o n a l

C o n s i d e r a v e c t o r s u b s p a c e U and a v e c t o r a ~ V , a

un ion of U and i t s t r a n s l a t e s by i n t e g e r m u l t i p l e s of

1 R - v e c t o r s p a c e .

U . T h e n the

a is a L ie

g r o u p G in the r e l a t i v e t opo logy of V . U is the c o n n e c t e d c o m -

ponen t of the i d e n t i t y of G and i t s g r o u p of c o n n e c t e d c o m p o n e n t s i s

i s o m o r p h i c to • . The e x a c t sequemce 0 -~ U -*G - ~ -~ 0 h a s an

e v i d e n t s p l i t t i n g h o m o m o r p h i s m s : Z -~ G and G ~ U x Z .

7 . 5 . C l o s e d s u b g r o u p s . We have s e e n tha t d i s c r e t e and open s u b g r o u p s

of a L ie g r o u p G a r e L ie s u b g r o u p s . Both t y p e s of s u b g r o u p s a r e

c l o s e d in G . We s t a t e now m o r e g e n e r a l l y

T H E O R E M 7 .5 , 1. Le t G be a L ie g r o u p and H a s u b g r o u p

o.f G . Suppose H is a c l o s e d s u b s e t of G o T h e n t h e r e e x i s t s

a un ique L i e Group s t r u c t u r e on H such tha t the c o r r e s p o n d i n g t o p o l o g y

is the i n d u c e d topo log F on H and s u c h tha t H is a L i e s u b g r o u p of G

P r o o f :

H

T h e u n i q u e n e s s s t a t e m e n t f o l l o w s f r o m 7.1, 8, Now let

At

G . Le t ~ c LG be d e f i n e d by

A ~ implies

A,B ~ ~ . Then by 6.5.5,

H is closed. Therefore

be a c l o s e d s u b g r o u p of

~ = [A ~ L G / e x p t A ~ H for t e v e r y

We f i r s t p r o v e tha t ~ is a s u b a l g e b r a of ~ . i u

tA ~ by d e f i n i t i o n of ~ , Suppose now

(i), exp t(A+B) g H for e v e r y t ~ l R , a s

A+B ~ ~ , and by 6 . 5 . 5 , ( i i) , e x p t 2 [ A , B ]

s h o w i n g ~ , B ]

H for any t

is t h e r e f o r e a s u b a l g e b r a of LG .

IR,

Page 151: Introduction to Lie Groups and Transformation Groups

- 1 4 5 -

C o n s i d e r now the c o n n e c t e d L i e s u b g r o u p H$ of G wi th

LH'~ = ~ . B y c o n s t r u c t i o n of ~ we h a v e e x p ~ H a n d t h e r e f o r e

H* c H , H* b e i n g g e n e r a t e d by e x p ~ z .

L e t H be e q u i p p e d wi th the r e l a t i v e t o p o l o g y of G . We s h a l l

p r o v e t h a t a n e i g h b o r h o o d V of e in H* is a n e i g h b o r h o o d of

e in H This will prove that H$ is a topological subgroup of

H (using that H~'r H is continuous), and taking V = H~' j moreover .

that H$ ks open in H ( e being an inner point of H$ in H) , Then

H$ = H 0 as topological groups. H 0 is therefore a Lie subgroup of G.

H can now be turned into a submanifold of G with the aid of translations,

It is then clear that the multiplication H ~ H -~ H ,~ill be differentiable.

This is in fact sufficient to see that H is a Lie subgroup of G ,

There remains to show, that a neighborhood V of e in H$ is

a neighborhood of e in H . Suppose V is not a neighborhood of e

in H . We show that this leads to a contradictLon. There exists a

s e q u e n c e c 1 , . . . c k , . . . in H - V wi th K-.co'lim c k = e . L e t M

be a c o m p l e m e n t a r y s u b s p a e e of ~ in LG . B y 6 . 3 . 2 , t h e r e e x i s t

b o u n d e d , o p e n , c o n n e c t e d n e i g h b o r h o o d s U 1 , U 2 of O in M a n d t /

r e s p e c t i v e l y , s u c h t h a t 4 : ( A , B ) ~ e x p A exp B f o r A ~ M , B ~ ~,~

i s a d i f f e o m o r p h i s m of U I • U 2 on to a n o p e n n e i g h b o r h o o d of e in

G

A k

�9 We c a n , t h e r e f o r e , a s s u m e tha t c k = exp A k exp B k wi th \

U 1 , B k E U 2 a n d e x p B k E V . T h e n A k~r 0 a n d l i ra A k

S i n c e A k ~ 0 , t h e r e e x i s t s a n i n t e g e r r k > 0 s u c h t h a t

r k A k ~ U 1 a n d ( r k + l ) A k ~ U 1 . Now U 1 is b o u n d e d , s o we c a n

- - 0 .

a s s u m e , p a s s i n g to a s u b s e q u e n c e , t h a t t h e s e q u e n c e ( r k A k ) c o n v e r g e s

Page 152: Introduction to Lie Groups and Transformation Groups

-146-

t o a l i m i t A ~ U 1 . S i n c e ( r k + l ) A k ~ U 1 a n d A k-~ 0 , A

t h e b o u n d a r y of U 1 , in p a r t i c u l a r A 4 0 .

L e t p, q be a n y i n t e g e r s (q > 0) . T h e n we c a n w r i t e

p r k = q s k + t k , w h e r e s k , t k a r e i n t e g e r s a n d 0 _~ t k < t k

T h e n l i m - - q A k = 0 , so

P r k s k exp-P--A = itkm exp A k = l~m (expAk) q q

q .

w h i c h b e l o n g s to H . B y c o n t i n u i t y exp tA 6 H f o r e v e r y t G

But t h e n A 6 ~ , in c o n t r a d i c t i o n to A ~ U 1 C M a n d A ~ 0 . |

T h e p r e v i o u s l y d i s c u s s e d p a r t i c u l a r c a s e s of 7 . 5 . 1 , w h e r e H

e i t h e r a d i s c r e t e o r a n o p e n s u b g r o u p of G , c o r r e s p o n d to t h e c a s e

w h e r e ~ " is e i t h e r 0 o r e q u a l to LG .

COROLLARY 7 . 5 . Z. L e t G

s u b g r o u p . L e t LH be t he L i e a l g e b r a of

u n i q u e L i e g r o u p s t r u c t u r e d e f i n e d in 7 . 5 . 1 .

i s on

be a L i e g r o u p a n d H a c l o s e d

H wi th r e s p e c t to the

T h e n

LH = [A ~ L G / e x p t A ~ H f o r e v e r y t ~ IR} .

P r o o f : T h e L i e a l g e b r a of H w a s d e f i n e d i n t he p r o o f of 7 . 5 . 1

by t h i s p r o p e r t y ,

R e m a r k .

s u b g r o u p H of G w h i c h h a s c o u n t a b l y m a n y c o m p o n e n t s .

S. H e l g a s o n [ 6 ] , p, 108.

A n i m p o r t a n t c l a s s of c l o s e d s u b g r o u p s of a L i e g r o u p G

k e r n e l s of h o m o m o r p h i s m s s t a r t i n g f r o m G.

T h e c o r o l l a r y 7, 5, Z i s e v e n t r u e f o r a n a r b i t r a r y L i e

S e e

is

a r e t he

Page 153: Introduction to Lie Groups and Transformation Groups

-147-

P R O P O S I T I O N 7 .5 , 3.

L~e g r o u p s . T h e n

= k e r L(p), w h e r e

of L ie a l g e b r a s .

Le_~_t p : G -. G' be a h o m o m o r p h i s m of

k e r p is a L ie subgroup , of G and L ( k e r p)

L(p): LG -~ LG' is the i n d u c e d h o m o m o r p h i s , m

P r o o f :

s u b g r o u p of G. By 7 .5 , Z,

e ' d e n o t i n g the i d e n t i t y of

p(exp tA) = e' fo r e v e r y

k e r p is a c l o s e d s u b g r o u p of G and t h e r e f o r e a Lie

L ( k e r p) = ~A ~ L G / p ( e x p tA) = e' fo r e v e r y t ~ •],

G' . By the n a t u r a l i t y 6, 1. 6 of exp,

t ~ l~ is e q u i v a l e n t to exp(L(p) tA) - e '

fo r e v e r y t ~ Ft . T h i s a g a i n is e q u i v a l e n t to the e x i s t e n c e of an

E > 0 , such tha t L(p)tA = 0 fo r e v e r y I t ] < E . The l a t t e r p r o p e r t y

s i g n i f i e s L(p)A = 0 . T h e r e f o r e L ( k e r p ) = k e r L ( p ) , q. e, d.

T h i s s h o w s in p a r t i c u l a r tha t the k e r n e l of the h o m o m o r p h i s m

L(p): LG -. LG' i s a L ie a l g e b r a . T h i s is of c o u r s e t r u e for the k e r n e l

of any Lie a l g e b r a h o m o m o r p h i s m .

We a l s o would l ike the i m a g e of a h o m o m o r p h i s m of L ie g r o u p s to

be a Lie g roup . I n d e e d we have

P R O P O S I T I O N 7, 5, 4, Le t

g r o u p s . Suppose G c o n n e c t e d ,

and L(im p) -- im L(p), where

m o r p h i s m of L ie a l g e b r a s,

p:G -. G' be a homomorphism of Lie

Then imp is a Lie subgroup of G'

L(p): LG -. LG' is the induced homo-

P r o o f : Le t H be the c o n n e c t e d Lie s u b g r o u p of G' with

LH = i m L(p) . H i s g e n e r a t e d by the e ~ e m e n t s exp (L(p )A) with

A ~ LG . Now p(G) is g e n e r a t e d by the e l e m e n t s p(exp A) with

Page 154: Introduction to Lie Groups and Transformation Groups

- 1 4 8 -

A ~ L G . B u t p ( e x p A ) = e x p ( L ( p ) A ) by 6 , 1 . 6 .

p(G) = H , a s b o t h g r o u p s a r e c o n n e c t e d .

T h e r e f o r e

R e m a r k . T h e r e i s t h e q u e s t i o n , if t h e i n d u c e d m a p ~ : G -. p ( G )

i s a h o m o m o r p h i s m , i. e , a n a l y t i c . T h i s i s i n d e e d s o ( s e e 7 . 7 . 6 ) .

C o n s i d e r n o w a s e q u e n c e o f h o m o m o r p h i s m s of L i e g r o u p s

('V) G' P' " > G P > G "

a n d t h e i n d u c e d s e q u e n c e o f h o m o m o r p h i s m s o f L i e a l g e b r a s

(a) I..P~' L(p').> LG .L(p"),, LG"

P R O P O S I T I O N 7, 5 , 5 . S u p p o s e G' c o n n e c t e d , T h e n t h e

e x a c t n e s s o f (~) i m p l i e s t h e e x a c t n e s s o f (a) .

P r o o f : I f i m p ' = k e r p" , t h e n i m L ( p ' ) = L ( i m p ' )

= L ( k e r p " ) = k e r L ( p " ) by 7 . 5 . 3 a n d 7 . 5 . 4 , q . e . d .

E x a m p l e 7 . 5 . 6 . L e t G be a c o n n e c t e d L i e g r o u p . T h e e x a c t

s e q u e n c e 0 -~ G e --, T G -. G -. e o f L i e g r o u p s i n d u c e s a n e x a c t s e q u e n c e

0 -. G e -. L ( T G ) -~ L G -~ 0 o f L i e a l g e b r a s . N o t e t h a t t h e n a t u r a l s p l i t t i n g

G r T G o f t h e f i r s t s e q u e n c e d e f i n e s a s p l i t t i n g L G - ~ L ( T G ) o f t h e

s e c o n d s e q u e n c e .

O b s e r v e t h a t t h e c o n v e r s e o f p r o p o s i t i o n 7 . 5 . 5 i s n o t t r u e , e v e n

i f a l l g r o u p s a r e c o n n e c t e d .

E x a m p l e 7 . 5 . 7 . L e t p: G -~ G' be a h o m o m o r p h i s m a n d l o c a l

i s o m o r p h i s m , T h e n 0 :> L G L ( P / > LG ' > 0 i s a n e x a c t s e q u e n c e .

Page 155: Introduction to Lie Groups and Transformation Groups

-149-

But e -* G -~ G' -* e' i s not n e c e s s a r i l y exac t , i . e . G

a r e not n e c e s s a r i l y i s o m o r p h i c ,

The fo l lowing p a r t i a l r e s u l t is s o m e t i m e s use fu l .

and G'

PROPOSITION 7 .5 , 8. Le t p: G -~ G' be a h o m o m o r p h i s m of

Lie g roups . Suppose G and G' c o n n e c t e d . T h e n p is s u r j e c t i v e

if and only if L(p): LG -~ LG' is s u r j e c t i v e .

P roof : If p is s u r j e c t i v e ,

m u s t c o i n c i d e with the Lie a l g e b r a

L(p} is s u r j e c t i v e .

Suppose c o n v e r s e l y L(p}

is s u r j e c t i v e by 6 . 2 . 6 for e v e r y

(and h e n c e c losed} s u b g r o u p of

the Lie a l g e b r a L(p}LG of p(G)

LG' of G' , which shows that

s u r j e c t i v e . T h e n p , g : Gg -. G' p(g)

g ~ G. p(G) is t h e r e f o r e an open

G ' , i . e . p ( G ) : O' . |

The cond i t i on that G' is c o n n e c t e d canno t be o m i t t e d , as shown

by the e x a m p l e of the i n c l u s i o n of the c o n n e c t e d c o m p o n e n t of the iden t i ty

into a n o n - c o n n e c t e d Lie g roup , which i n d u c e s an i s o m o r p h i s m of Lie

a l g e b r a s .

The c o r r e s p o n d i n g s t a t e m e n t for i n j ec t i ons is not t r ue , We have

s e e n in 7. I. I tha t an i n j e c t i o n p : G -. G' i n d u c e s an i n j e c t i o n

L(p ): LG -+ LG'

injectivity of

R - ~ .

�9 But the i n j e c t i v i t y of L(p) does not i m p l y the

p , as shown by the e x a m p l e of the c a n o n i c a l h o m o m o r p h i s m

Page 156: Introduction to Lie Groups and Transformation Groups

-15 0-

7 .6 . C l o s e d s u b g r o u p s of the ful l l i n e a r g roup . Let V be a f in i te

d i m e n s i o n a l ~ - v e c t o r s p a c e and GL(V) the g roup of l i n e a r a u t o m o r p h i s m s .

We s h a l l c o n s i d e r s o m e c l o s e d s u b g r o u p s of GL(V) .

Le t ~: VX V -~ 1R be a b i l i n e a r and n o n - d e g e n e r a t e d f o r m on V .

Let H be the subgroup of GL(V) l e av ing r i nva r i an t :

H = {g ~ GL(V) / r gw) = r w) for any v, w ~ V] .

C o n s i d e r for f ixed v, w ~ V the map GL(V) -* G L ( V ) X G L ( V ) -* VXV-*

d e f i n e d by g --~-~>(g, g) --~-,~>(gv, gw) ~----->r gw) . As ~ is con t inuous ,

th i s m a p is con t inuous , T h e r e f o r e the se t

i s c l o s e d in GL(V) . Now

H = N v , w ~ V

S(v, w) = [g ~ GL(V) /# (gv , gw) - r w)}

S(v, w)

T h i s shows that H is a c l o s e d subgroup of GL(V).

We iden t i fy the L ie a l g e b r a of GL(V) with s

4 . 3 . 8 ) . T h e n we have the fo l lowing c h a r a c t e r i z a t i o n of

( s e e p r o p o s i t i o n

LH.

PROPOSITION 7 .6 , 1.

LH = {A C s162 w) + r Aw) = 0 for v ,w ~ V}

P roo f : Let A ~ LH . T h e n e x p t A E H for any t ~ l~ and

r v, exp(tA)w) = r w) for v, w ~ V. D i f f e r e n t i a t i n g with

r e s p e c t to t we obta in for t = 0 , r w ) + r Aw) = 0 .

by

by

by

t E ~ t , which m e a n s

Suppose conversely that A ~ s satisfies this condition. Denote

A* the adjoint linear map of A with respect to ~ , characterized

#(Av, w) - r A* w) = 0. The hypothesis can therefore be expressed

A* = -A . We s h a l l show that (exp tA)* = (exp tA) -1 for e v e r y

e x p t A ~ H for e v e r y t C~ IR . T h i s i m p l i e s

Page 157: Introduction to Lie Groups and Transformation Groups

-15 i-

A E LH .

T h e r e r e m a i n s to s h o w t h a t A*

But t h i s f o l l o w s f r o m t h e e x p r e s s i o n

6 . 1 . 5 .

= - A

exp tA

i m p l i e s ( exp tA)* = (exp tA) -1

oo ( tA) n = Eh=0 n,--Hl--- g i v e n in

E x e r c i s e . D e d u c e a l s o p r o p o s i t i o n 7 . 6 . 1 f r o m 6 . 4 . 5 .

if r

g r o u p of V wi th r e s p e c t to r

a l g e b r a c o n s i s t s of t h e o p e r a t o r s

w i th r e s p e c t to r .

i s m o r e o v e r s y m m e t r i c , t h e g r o u p H i s t h e o r t h o g o n a l

a n d denoter O ( V , ~ ) . T h e L i e

of V w h i c h a r e a n t i s e l f a d j o i n t

E x a m p l e 7 . 6 . Z.

w i th a E u c l i d e a n m e t r i c ~ .

b a s e w i th a p o s i t i v e o r i e n t a t i o n .

a l g e b r a by the d e f i n i t i o n [e l , e 2]

C o n s i d e r a 3 - d i m e n s i o n a 1 l R - v e c t o r s p a c e V

L e t e l , e 2 , e 3 be a n o r t h o n o r m a l

T h e n V c a n be t u r n e d in to a L i e

= e 3 , [ e l , e 3] = - e 2 , [ ez , e 3] = e 1 �9

We i d e n t i f y s w i th the L i e a l g e b r a of G L ( V ) ( s e e 4 . 3 . 8 ) . L e t

a ~ V a n d c o n s i d e r A ~ ~(V) d e f i n e d by A v = [ a , v ] f o r v ~ V .

T h e n ~(Av, w ) + ~(v, Aw) = ~ ( [ a , v ] , w ) + ~ ( v , [ a , w ] ) = 0 , a s i s s e e n

by the i n t e r p r e t a t i o n of ([a, v ] , w) a s t he o r i e n t e d v o l u m e of t he p a r a l l e l e p i p e d

d e f i n e d by a , v, w . T h e r e f o r e

L O ( v , 9) of t h e o r t h o g o n a l g r o u p

m a p ~IW-~ LO(V, ~) d e f i n e d by

f o r e v e r y v ~ V i m p l i e s a = 0

d e f i n e d on V . T h i s m e a n s t ha t 3" is i n j e c t i v e . Bu t bo th

LO(V, ~) h a v e d i m e n s i o n 3 , so ~ is a l i n e a r i s o m o r p h i s m .

v e r i f y t h a t 3: V -~ LO(V, ~) i s a n i s o m o r p h i s m of L i e a l g e b r a s .

A i s c o n t a i n e d in the L i e a l g e b r a

O(V, 9) w i t h r e s p e c t to r . T h e

a --,---,> A i s l i n e a r . But [ a, v] = 0

f o r t h i s p a r t i c u l a r L i e a l g e b r a s t r u c t u r e

V a n d

We f i n a l l y

L e t

Page 158: Introduction to Lie Groups and Transformation Groups

-152-

A iv = [a i , v ] for v ~ V , i

[A1, A 2 ] v = A 1 A z v - A z A l V -

u s i n g the J a c o b i iden t i ty .

We have t h e r e f o r e s e e n that

the g roup O(V, r by the map ~: V -. LO(V, r , de f ined by

w h e r e Av = [ a , v ] for e v e r y v E V .

T o s ee the g e o m e t r i c s i g n i f i c a n c e of the c o r r e s p o n d e n c e

c o n s i d e r the 1 - p a r a m e t e r s u b g r o u p a of O(V , r de f i ned by

= 1, 2 . T h e n

[a 1,[a 2 . v ] ] - [a 2 , [ a 1 ,v ] ] : [ [a 1,a 2 ] , v ]

V is i s o m o r p h i c to the Lie a l g e b r a of

a ~,--,,~> A ,

s a t i s f y i n g ~t = Aat by 5 . 4 . 5 . Let v ~ V

~r t = &t v = A a t v " A v t can be w r i t t e n as ~z t

that the 1 - p a r a m e t e r s u b g r o u p a t of O(V, 9)

and v t =

= [ a , v t] �9

de f ined by

a ~ A ,

A ,

a tv . T h e n

T h i s show s

A is the

= gAg 1 and t h e r e f o r e o-gA

Le t V be a g a i n of a r b i t r a r y f in i te d i m e n s i o n and ~ a n o n - d e g e n e r a t e d

b i l i n e a r and s y m m e t r i c f o r m on V . Suppose ~ p o s i t i v e de f in i t e . By

the s a m e a r g u m e n t as fo r GL(V) ( s e e e x a m p l e 7 .4 .1 ) , one shows tha t the

c o n n e c t e d c o m p o n e n t of the i d e n t i t y is the k e r n e l of the h o m o m o r p h i s m

1 - p a r a m e t e r g roup of r o t a t i o n s of V with r o t a t i o n ax i s a .

O(V, r o p e r a t e s in V by a u t o m o r p h i s m s of the Lie a l g e b r a s t r u c t u r e

d e f i n e d in V . The i s o m o r p h i s m s ~ : V -*LO(V, r d e f i n e s t h e r e f o r e a

r e p r e s e n t a t i o n of O(V , r in LO(V, r . If o-: O(V, r -~ Aut LO(V, r

d e n o t e s th i s r e p r e s e n t a t i o n , t hen o- is d e f i n e d by (O-gA)(v) = [ga, v] for

g ~ O ( V , r a ~ V , A = J(a) and e v e r y v ~ V . T h i s r e p r e s e n t a t i o n

o- is j u s t the ad jo in t r e p r e s e n t a t i o n of O(V, r , b e c a u s e

(O-gA)(v) = [ga, v] = g[a, g ' l v ]

= g ( A ( g ' l v ) ) = (gAg-1)(v) for e v e r y v ~ V

Page 159: Introduction to Lie Groups and Transformation Groups

-15 3-

det: O(V, 4)-~]R* . T h i s g roup is deno ted by SO(V, 4) �9

P R O P O S I T I O N 7 . 6 . 3 .

space , ~ a p o s i t i v e de f in i t e ,

the o r t h o g o n a l g roup of V with r e s p e c t to

of o r t h o ~ o n a l o p e r a t o r s wi th d e t e r m i n a n t 1

SO(V, 47 a r e c o m p a c t .

Le t V be a f in i t e d i m e n s i o n a l l R v e c t o r -

s~ -mmet r i c b i l i n e a r f o r m on V , �9 r

and SO(V, 4) the g roup

. T h e n O(V, ~) and

P roo f : SO(V, 4) i s an open s u b g r o u p of

c l o s e d . Hence it i s s u f f i c i e n t to p r o v e O(V, ~b 7

i s a c l o s e d subg roup of GL(V) .

O(V, ~b) i s a l s o c l o s e d in s �9

O(V, ~b 7 i s bounded in s (V) �9

Now let I I: s be the n o r m

to ~b by

O(V, 4) and t h e r e f o r e

c o m p a c t . Now O(V, 4)

GL(V) be ing an open s u b s e t of ~VT,

It s u f f i c e s t h e r e f o r e to show tha t

on s

= ~(A v,,,, Av) I/z {AI v~oSUp~ V ~(v. v)i/2.

def ined with r e s p e c t

Then any g ~ O(V,r s a t i s f i e s [g[ = 1 and O(V,r i s b o u n d e d i n

s

Let now 4: V ~ V - ~ be a s k e w - s y m m e t r i c b i l i n e a r and n o n - d e g e n e r a t e d

f o r m on V (V of even d i m e n s i o n ) . The s u b g r o u p of GL(V) l e a v i n g

i n v a r i a n t i s the s y m p l e c t i c g roup of V with r e s p e c t to ~ , deno ted

Sp(V, 47 �9 A s t h e r e i s e s s e n t i a l l y a un ique ~ of tha t type , a n y two

s y m p l e c t i c g r o u p s of V a r e i s o m o r p h i c . The L ie a l g e b r a of Sp(V, 47

c o n s i s t s , a c c o r d i n g to 7 .6 .1 , of the o p e r a t o r s of V which a r e a n t t s e l f a d j o i n t

with r e s p e c t to ~ .

Page 160: Introduction to Lie Groups and Transformation Groups

- 1 5 4 -

C o n s i d e r now the h o m o m o r p h i s m

is d e n o t e d by SL(V) .

P R O P O S I T I O N 7, 6 . 4 . Le t V

s p a c e . The se t of o p e r a t o r s wi th t r a c e

Lie a l g e b r a of SL(V) ,

P r o o f : B y 4 . 5 . 1 1 , L ( d e t ) = t r .

L ( k e r det) = L(SL(V)) = k e r t r , q . e . d .

det: GL(V) -~ JR* , The k e r n e l

be a f i n i t e - d i m e n s i o n a l l R - v e c t o r -

0 is a Lie a l g e b r a . It is the

Now 7 . 5 . 3 s h o w s

7 . 7 . C o s e t s p a c e s , f a c t o r g r o u p s .

T H E O R E M 7 . 7 . 1 . Le~t G be a L ie g r o u p and H a c l o s e d s u b -

g roup . Le t G / H be the o r b i t s p a c e of the o p e r a t i o n of H on G by

r i g h t - t r a n s l a t i o n s ( s e e Z. Z. 3). C o n s i d e r the n a t u r a l o p e r a t i o n of G on

G / H ( s e c t i o n 1. 4). T h e n t h e r e e x i s t s a un ique s t r u c t u r e of anal~rtic m a n i -

fold on G / H , i n d u c i n g the quo t i en t topo logy and m a k i n g it a G - m a n i f o l d .

Le t H be equ ipped with the s t r u c t u r e of Lie g r o u p of 7 .5 .1 . Le t

M be a v e c t o r - s u b s p a c e of LG such tha t LG = M @LH . D e n o t e by

p: G -~ G / H the c a n o n i c a l p r o j e c t i o n . T h e n t h e o r e m 7 . 7 . 1 is b a s e d on the

fo l l owing l e m m a , which p r o o f we omi t ( s ee S. H e l g a s o n , [ 6 ] , p . 113) .

LEMMA 7 .7 , 2. T h e r e e x i s t s a n e i g h b o r h o o d U

such tha t e x p / U : U - . exp (U) is a h o m e o m o r p h i s m and

- .p (exp U) is a h o m e o m o r p h t s m onto a n e i g h b o r h o o d of

of 0 in M ,

p/exp(U):exp(U)

p(e) in G / H .

Page 161: Introduction to Lie Groups and Transformation Groups

- 155 -

T h e s t r u c t u r e of a n a l y t i c m a n i f o l d on G / H is t h e n d e f i n e d a s

o f o l l o w s . If N O d e n o t e s the i n t e r i o r of p (exp U) a n d U the

i n t e r i o r of U, t h e n ( e x p / ~ ) -1 o ( p / e x p (~))-1 a :No-* U c M is a c h a r t

at p(e) E G / H . Now G o p e r a t e s by h o m e o m o r p h i s m s on G / H ,

so t h a t t h i s d e f i n e s a l s o c h a r t s a t a n y p o i n t o f G / H . It i s to s h o w

tha t t h e s e c h a r t s a r e c o m p a t i b l e , i . e . d e f i n e a n a n a l y t i c s t r u c t u r e on

G / H , T h e n , by c o n s t r u c t i o n , G o p e r a t e s by a n a l y t i c m a p s on G / H ,

T h e u n i c i t y of t h e a n a l y t i c s t r u c t u r e on G / H a s a n n o u n c e d in 7 . 7 . 1

f o l l o w s f r o m t h e l a s t s t a t e m e n t in

P R O P O S I T I O N 7 . 7 . 3 . L e t X be a G - m a n i f o l d wi th r e s p e c t to

a t r a n s i t i v e o p e r a t i o n T : G ~ A u t X . S e l e c t x 0 ~ X a n d le t H

be t h e i s o t r o p y group of_ x 0 . C o n s i d e r , t h e m a p (p: G / H -. X d e f i n e d

b_~ ~(gH) = Vg(X0) . L e t G / H h a v e t h e a n a l y t i c m a n i f o l d s t r u c t u r e

d e f i n e d a b o v e . T h e n (p is d i f f e r e n t t a b l e . I f ~ i s a h o m e o m o r p h i s m ,

t h e n it i s a d i f f e o m o r p h i s m .

0 P r o o f : We u s e N O a n d U wi th the s a m e m e a n i n g a s b e f o r e

a n d w r i t e B - e x p ( ~ ) . T h e n the h o m e o m o r p h i s m p / B : B -- N O

p e r m i t s d e f i n i n g B a s a s u b m a n i f o l d of G , m a k i n g the i n j e c t i o n

: B r d i f f e r e n t i a b l e o D e n o t e by

Then ~0/N 0 = qlo L o (p/B) -I and ~0

4 : G - ~ X the m a p q~(g )= l "g (X0) ,

i s t h e r e f o r e d i f f e r e n t i a b l e .

Now s u p p o s e ~ to be a h o m e o m o r p h i s m ( s e e r e m a r k b e l o w ) ,

w i l l be a d i f f e o m o r p h i s m i f t he t a n g e n t l i n e a r m a p of r a t a n y po in t

i s an i s o m o r p h i s m , (p b e i n g a n e q u i v a r i a n c e ( s e e 1 .4 .10) , it i s s u f f i c i e n t

Page 162: Introduction to Lie Groups and Transformation Groups

-156-

to p rove th i s for the point x 0 . Now the d e c o m p o s i t i o n r 0 = @oI. o (p /B) "1

s h o w s that it is su f f i c i en t to p r o v e ~ e: Ge -" Tx0(X) to be s u r j e c t i v e . We

s h a l l p r o v e k e r ~*e = He " T h e n r a n k ~ = d i m G - d im k e r ~ e

= d im G - d im H = d im G/H = dim X (the las t equa l i t y b e c a u s e a

h o m e o m o r p h i s m ) , and th i s wi l l f i n i sh the p roof .

T h e r e r e m a i n s to show that k e r @*e = He " H

g roup of x 0 , c l e a r l y HeC ke r @*e " Let c o n v e r s e l y

C o n s i d e r t h e K i l l t n g v e c t o r f i e l d A* on X de f ined by

the c o r r e s p o n d i n g

5 . 6 . 2 . T h e n A

which shows A ~*e

every t ~ ~ .

A ~ R G , i . e . A* = 0-(a)

and A* a r e

= A * = 0 . e x 0

Thus A E H e e

is a

be ing the i so t ropy

A e E k e r @. . e

A e , r e s p e c t i v e l y

in the no t a t i on of t h e o r e m

- r e l a t e d ( s ee the p r o o f of 5 . 6 . 2 ) ,

Then by 6 . 3 . 1 , e x p t A e ~ H for

in view of 7 .5 , 3, q. e. d.

R e m a r k . The map r -~ X de f ined in 7 . 7 . 3

h o m e o m o r p h i s m , if G h a s coun tab ly m a n y c o m p o n e n t s .

cond i t ion , the a r g u m e n t in the p r o o f above shows , for an a r b i t r a r y

G - m a n i f o l d X (with a not n e c e s s a r i l y t r a n s i t i v e o p e r a t i o n ) and

that r --. X is a d i f f e o m o r p h i s m onto the o rb i t of x 0 .

i s in fact a

U n d e r th i s

x 0 ~ X ,

B e f o r e t u r n i n g to the c a s e w h e r e H is a n o r m a l s u b g r o u p of G ,

we give a de f in i t ion .

DEFINITION 7 . 7 . 4 . Let ~ be a Lie a l g e b r a o v e r a r i n g ,~ .

An idea l ~ v of ~ " is a v e c t o r s u b s p a c e of ~ s a t i s f y i n g [A, B] ~: ~ ' ,

for e v e r y A ~ , B E ~ .

If ~ is an i dea l of ~ , the quo t i en t v e c t o r s p a c e ~ / ~ t l is

c a n o n i c a l l y e q u i p p e d with a Lie a l g e b r a s t r u c t u r e , and ~ is the k e r n e l

Page 163: Introduction to Lie Groups and Transformation Groups

-15 7-

of the canonical homomorphism ~ -. ~/~ . Conversely, the kernel

of a Lie algebra homomorphism, with domain ~t~ is an ideal of

~-, and the vectorspace isomorphism of ~/~ with the image is a

Lie algebra isomorphism.

We p r o v e now

P R O P O S I T I O N 7 . 7 . 5 , Le t H be a c l o s e d n o r m a l s u b g r o u p of

t h e L i e g r o u p G . The f a c t o r g r o u p G / H with the m a n i f o l d s t r u c t u r e

d e f i n e d in 7 .7 , 1 i s a L ie {~roup. The c a n o n i c a l h o m o m o r p h i s m

p : G -* G / H i n d u c e s L(p): LG -~ L(G/H) with k e r n e l LH , such that

L G / L H "~- L(G/H)

P r o o f : The f a c t o r g r o u p G / H is a t o p o l o g i c a l g r o u p with r e s p e c t

to the quo t i en t topo logy . C o n s i d e r the un ique m a n i f o l d s t r u c t u r e of

7 . 7 . 1 o n G / H such tha t the m a p

(g, xH) ~ g x H is a n a l y t i c .

o p e r a t i o n s in G / H a r e a n a l y t i c ,

of the m a n i f o l d s t r u c t u r e on G / H ,

a h o m o m o r p h i s m of Lie g r o u p s .

Consider L(p): LG -~ L(G/H) , By

Therefore L(p) induces an isomorphism

Note that if H is a normal subgroup of

the factorgroup is not Hausdorff.

G~g G/H -* G/H given by

There remains to show that the group

which i s i m m e d i a t e . By c o n s t r u c t i o n

p : G -~ G / H is a n a l y t i c , and t h e r e f o r e

7 . 5 . 3 k e r L(p) = L ( k e r p) = LH .

LG/LH "= L(G/H)

G which is not closed,

A s a c o n s e q u e n c e we ob ta in

Page 164: Introduction to Lie Groups and Transformation Groups

-15 8-

PROPOSITION 7 . 7 . 6 . Let p : G -* G' be a h o m o m o r p h i s m of

Lie g r o u p s . Suppose G connec t ed , C o n s i d e r the _canonical m.ap

p : G / k e r p - 'p(G) induced by p , T h e n p ,is an i s .omorphis .m,of

Lie g r o u p s , whe r e G / k e r p is equipped with the Lie g roup s t r u c t u r e

of 7 . 7 . 5 and p(G) with tha t of 7 . 5 . 4 . T h i s show s in p a r t i c u l a r tha t

the map ~ : G - ~ p ( G ) induced by p is a.nal~-tic.

P roo f : C o n s i d e r the c o m m u t a t i v e d i a g r a m

L(p)

L ( G / k e r p)

L G / L ( k e r p )

G / k e r p P > p (G) C----------------> G '

L(p (G)) r > LG'

L(p )LO

T h e r e is at m o s t one map y: L ( G / k e r p) -, L(p(G)) f i l l i ng in, a s L(p)

is s u r j e c t i v e and L(p(G)) -~ LG' is i n j e c t i v e . C o n s i d e r the c a n o n i c a l

i s o m o r p h i s m y: L G / L ( k e r p) -~ L(p)LG induced by L(p): LG -. LG' .

m a k e s the d i a g r a m c o m m u t a t i v e . T h i s p r o v e s tha t ~ is a n a l y t i c at

e . be ing jus t y in c a n o n i c a l c h a r t s . Hence "~ is e v e r y w h e r e a n a l y t i c

M o r e o v e r L(~ " y is an i s o m o r p h i s m and t h e r e f o r e ~ an i s o m o r p h i s m

Page 165: Introduction to Lie Groups and Transformation Groups

-15 9-

of Lie groups. The map ~: G -*p(G) is the compos i t ion "po p of

ana ly t ic h o m o m o r p h i s m s and hence analy t ic ,

Page 166: Introduction to Lie Groups and Transformation Groups

-160-

C H A P T E R 8, G R O U P S O F A U T O M O R P H I S M S

8, 1,

d i m e n s i o n a l

~I x ~I -~ ~I . GL(!il}

v e c t o r s p a c e , Au t tl

T h e n A u t ~I c GL(~I)

T h e a u t o m o r p h i s m g r o u p of a n a l g e b r a . L e t ~I be a f i n i t e

~ - a l g e b r a , i, e. a v e c t o r s p a c e w i th a b i l i n e a r m a p

i s t he g r o u p of a u t o m o r p h i s m s of t h e u n d e r l y i n g

i s t h e g r o u p of a u t o m o r p h i s m s of t he a l g e b r a ~I ,

E x a m p l e 8, 1, 1. ~I a ~ - L i e a l g e b r a .

L E M M A 8 . 1 . 2 . A u t ~I i s a c l o s e d s u b g r o u p of GL(~I) .

P r o o f : L e t A, B ~ !ll a n d c o n s i d e r t he m a p

GL(Ill) -~ GL(~I) x GL(92)-~ ~I X ~I -~ ~1

d e f i n e d by q~---~-~(~,~p)-------->(cpA,~B}--~-~--> ~ A . ~pB , T h e m u l t i p l i c a t i o n

a • ~I-~ 92 b e i n g c o n t i n u o u s (~I i s f i n i t e d i m e n s i o n a l } , t h i s m a p is c o n t i n u o u s .

T h e s e t S ( A , B ) = {r ~ G L ( ~ I ) / ~ A . (pB = ~0(A,B)} i s t h e i n v e r s e i m a g e

of r B) u n d e r t h i s m a p a n d t h e r e f o r e c l o s e d in GL(~I) . Now

Aut(~l) = A, BN~ ~I SCA, B) a n d t h e r e f o r e A u t ill c l o s e d in GL(t l )

B y 7 . 5 . 2 we h a v e t h e r e f o r e

P R O P O S I T I O N 8, 1. 3, L e t 92 be a f in i t e d i m e n s i o n a l R - a l g e b r a ,

T h e n A u t ~I i s a c l o s e d L i e s u b g r o u p of GL( ' l l ) . I t s L i e a l g e b r a

i s c h a r a c t e r i z e d by

b(~I) = [ D E s Au t~ I f o r e v e r y t ~: IR} .

Page 167: Introduction to Lie Groups and Transformation Groups

-161-

H e r e s deno t e s the Lie a l g e b r a of e n d o m o r p h i s m s of the

u n d e r l y i n g v e c t o r s p a c e of ~/ .

D

D E F I N I T I O N 8.1. 4. A d e r i v a t i o n D

s s a t i s f y i n g

D ( A . B ) = D A . B + A, DB

of ~I is an element

for e v e r y A , B ~

P R O P O S I T I O N 8.1. 5.

d e r i v a t i o n s of 9/ ,

The Lie a l g e b r a b(~/) is the se t of

P r o o f : Le t D E ~(~/) . By 8, 1. 3

exp t D ( A . B ) = (exp tD .A) , ( e x p t D . B)

D i f f e r e n t i a t i n g with r e s p e c t to t

D(A. B)

Conversely, let D

Dn(A, B) i+~--n

we ob ta in for

= DA, B + A . DB and

be a d e r i v a t i o n of ~ .

nl DiA. Dj B i; j;

for e v e r y A, B E ~/ ,

t ~ JR,

t = 0

D is a d e r i v a t i o n of ~/ .

B y induc t ion we get

i > 0 , j > 0

( F o r n = 0 t h i s i s t r u e ,

Now, by 6 .1 .5 we h a v e

T h e r e f o r e

exp tD(A. B)

D ~ b e i n g the i den t i t y . )

O0

exp tD =n=~ (tD)nn ~.

CO

= ~ (tD)n (A .B)

n--0

(exp tD. A) . (exp tD. B)

Page 168: Introduction to Lie Groups and Transformation Groups

-162 -

a n d e x p tD E A u t ~ l f o r e v e r y t ~ ~ . B y 8, I. 3 t h i s s h o w s

R e m a r k . T h e f a c t t h a t the s e t o f d e r i v a t i o n s o f ~ is a s u b -

a l g e b r a of t h e L i e a l g e b r a s f o l l o w s a l s o d i r e c t l y a n d i s t r u e

w i t h o u t a n y r e s t r i c t i o n on t h e d i m e n s i o n of ~l . P r o p o s i t i o n 8.1. 5

s u g g e s t s , in t h i s c a s e a l s o , v i e w i n g h e t ~ r i s t i c a l l y t h e L i e a l g e b r a

of d e r i v a t i o n s a s t h e L i e a l g e b r a of t h e g r o u p of a u t o m o r p h i s m s of ~I .

In p a r t i c u l a r , l e t X be a m a n i f o l d a n d CX the 1 R - a l g e b r a

of f u n c t i o n s X-~ ~ . T h e L i e a l g e b r a DX of v e c t o r f i e l d s on X

i s t he L i e a l g e b r a of d e r i v a t i o n s of CX . Now by 4 .1 . 3, A u t X

c a n be i d e n t i f i e d wi th A u t CX . So DX c a n be t h o u g h t of a s t he L i e

a l g e b r a of Au t X , a s we h a v e i n d i c a t e d a t s e v e r a l p l a c e s b e f o r e .

L e t now X be a G - m a n i f o l d wi th r e s p e c t to a n o p e r a t i o n

v : G -. A u t X . It i n d u c e s an o p e r a t i o n 1"* : G -~ A u t CX . C o n s i d e r

t he h o m o m o r p h i s m 0":RG -. DX of 5 . 6 . Z . It c a n be t h o u g h t of b e i n g

t h e h o m o m o r p h i s m of L i e a l g e b r a s i n d u c e d by t h e h o m o m o r p h i s m ~-* ,

r e m a r k s f o r a L i e a l g e b r a ~ , o v e r a r i n g ~ .

A n y e l e m e n t A E ~ ' g i v e s r i s e to a l i n e a r m a p

by the d e f i n i t i o n (ad A) (B) = [A, B] .

T h e ad~oint r e p r e s e n t a t i o n of a L i e a l g e b r a . We b e g i n wi th s o m e

ad A: ~ t -~

L E M M A B. 2.1. ad A i s a d e r i v a t i o n of ~t~ .

Page 169: Introduction to Lie Groups and Transformation Groups

- 16 3 -

Proof : The Jacob i identi ty can be wr i t t en in the fo rm

[A, [Bl, ]32]] = [[A, Bl] , B2] + [B V [.4., B2]]

which proves the desired result.

DEFINITION 8 . 2 . 2 . Let ~ be a Lie a lgeb ra . The i n n e r

der iva t ion of ~ defined by A r ~," is the map ad A : ~ - ~ ~t~ .

Cons ide r the map ad:

of e n d o m o r p h i s m s of ~ - .

s into the Lie a l g e b r a

LEMMA 8 . 2 . 3 .

a l g e b r a s .

ad: ~ -~ s is a h o m o m o r p h i s m of Lie

Proof:

name ly

This is again a consequence of the J acob ian iden t i ty ,

(ad [A1, A2])(B ) = [[-4,1, A 2 ] , B ]

= [ A I , [ A 2 , B ] ] - [ A z , [ A 1 , B ] ]

= ( a d A 1 ~ a d A z ) ( B ) - ( a d A 2

= [ a d A 1 , a d A g ] ( B ) ,

o ad AI)(B )

q.e.d.

We have seen before that a d ( 7 ) c 3(~') , where 3 (~.) is

the Lie a l g e b r a of de r iva t ions of o~ , s u b a l g e b r a of the Lie a l g e b r a

s . We shal l a lso wr i te a d : ~ -. 3(~) for the h o m o m o r p h i s m

induced by ad: g<~-, s .

DEFINITION 8 . 2 . 4 . Let ~ be a Lie a lgeb ra .

a d : ~ - ~ ~(~) is ca l led the adjoint r e p r e s e n t a t i o n of ~

r e p r e s e n t a t i o n of g in r

The h o m o m o r p h i s m

, It is a

Page 170: Introduction to Lie Groups and Transformation Groups

-164-

of

i d e a l of ~ ,

Now let G be a Lie group.

group. The Lie algebra is by 8. I, 4

LG ,

Consider the adjoint representat ion of

By the preceding it induces a homomorphism

T h e i m a g e of t h i s h o m o m o r p h i s m is the s e t of i n n e r d e r i v a t i o n s

, wh ich t h e r e f o r e f o r m s a Lie a l g e b r a .

Le t ~(~'~) deno te the k e r n e l of t h i s h o m o m o r p h i s m . It is an

c a l l e d the c e n t e r of ~ , and is c h a r a c t e r i z e d by

if and on ly if [ A , B ] = 0 fo r a n y B g ~" .

By 8 . 1 . 3 Aut LG is a Lie

the s e t of d e r i v a t i o n s b(LG) of

G in LG, Ad:G -.Aut LG .

L(Ad): LG -~ ~(LG) .

T H E O R E M 8 . 2 . 5 . L(Ad) = ad

P r o o f : Le t A ~ L G . T h e n

L(Ad)A = ~ d {Ad exp tA}t = 0

by de f i n i t i on of L(Ad) .

a d A , q . e . d .

But by 5 . 5 . 8 , the s e c o n d m e m b e r i s j u s t

C O R O L L A R Y 8 . 2 . 6 .

L ( A d G ) = ad (LG) .

Le t G be a c o n n e c t e d Lie g roup . T h e n

Proof: By 7 .5 .4 we have L(AdG) = L( im Ad) = im L(Ad)

= im ad = ad LG, q . e . d .

C O R O L L A R Y 8 . 2 . 7 . Le t G be a c o n n e c t e d Lie g roup . T h e n

the c e n t e r ZG is a L ie s u b g r o u p of G . I t s L ie a l g e b r a is the c e n t e r

of LG .

Page 171: Introduction to Lie Groups and Transformation Groups

- 1 6 5 -

P r o o f : B y 6 . 2 . 1 0 we k n o w t h a t Z G

Z G i s t h e r e f o r e 2 c l o s e d L i e s u b g r o u p o f

L ( Z G ) = L ( k e r A d ) = k e r L (Ad) = k e r a d

c e n t e r o f L G .

N o t e t h a t A d : G ~ A u t L G

G / Z G ~ A d G

= k e r A d . B y 7 . 5 . 3 ,

G w i t h L i e a l g e b r a

. B u t k e r a d i s t h e

i n d u c e s a n i s o m o r p h i s m

o f L i e g r o u p s ( s e e 7, 7 . 6 ) .

C O R O L L A R Y 8 . ~ . B . e x p a d A = A d e x p A f o r A @ LG.

P r o o f : T h i s i s t h e n a t u r a l i t y of e x p .

We s h a l l m a k e u s e o f t h e f o l l o w i n g t w o l e m m a s .

G

V

A v e c t g r s p a c e

P r e c i s e l y : TgW c

f o r e v e r y A @ L G .

L E M M A 8. a. 9. L e t V b e a f i n i t e d i m e n s i o n a l ~ : v e c t o r s p a c e ,

a c o n n e c t e d L i e g r o u p , T: G -. G L ( V ) a r e p r e s e n t a t i o n o f G in

a n d L(v) : L G -. s t h e i n d u c e d r e p r e s e n t a t i o n of L G ha V .

W ~ V i s G - i n v a r i a n t i f a n d o n l y i f i t i s L G - i n v a r i a n t .

W f o r ever~r g E G i f a n d o n l ~ r i f ( L ( v ) A ) W c W

P r o o f : S u p p o s e W c V to be G - i n v a r i a n t a n d l e t A E LG ,

w @ W ,

(L(-r)A)w - ~ T e x p tA

w h i c h t s t h e t a n g e n t v e c t o r o f t h e c u r v e

t ; 0 , a n d t h e r e f o r e (L( ' r )A)w ~? W ,

I t=O w = d {T , e x p tA w I It=0

t ~ T W in W f o r e x p tA

S u p p o s e c o n v e r s e l y W (- V to be L G - i n v a r i a n t , i . e . f o r e v e r y

A ~ L G we h a v e ( L ( T ) A ) W c W o N o w by 6 . 1 . 5 f o l l o w s i m m e d i a t e l y

Page 172: Introduction to Lie Groups and Transformation Groups

-166 -

( exp L(a-)A)W c W . B y t h e n a t u r a l i t y 6 . 1 . 6 of exp t h i s i s e q u i v a l e n t

to Tex p AW ~ W for e v e r y A ~ m . Let g - [g ~ G ] ~ g W ~ W } .

T h e n ~ i s a s u b g r o u p of G . B y the p r e c e d i n g , ~ c o n t a i n s a

n e i g h b o r h o o d of e in G a n d t h e r e f o r e ~ = G .

L E M M A 8. Z, i0. L e t G, G' be L i e ~ r o u p s a n d H, H ' c o n n e c t e d

L ie s u b g r o u p s of G, G' r e s p e c t i v e l y . L e t p: G -. G ' be a h o m o -

morl~h_i_sm. T h e n p(H) c H' i f a n d onl~r i f L ( p ) L H c LH ' .

P r o o f : C l e a r f r o m 7 . 5 . 4 .

L e t ~ be a L i e a l g e b r a . T h e d e f i n i t i o n 7 . 7 . 4 of a n i d e a l o f

c a n be r e s t a t e d by s a y i n g t h a t a v e c t o r s p a c e ~ c ~ is a n i d e a l if a n d

if ~ is a d ~ - i n v a r i a n t . o n l y

L e t G be a L i e g r o u p . We h a v e s e e n in 7 . 7 . 5 t h a t t h e L i e

a l g e b r a of a c l o s e d n o r m a l s u b g r o u p of a L i e g r o u p G is a n i d e a l

of LG . We a r e n o w a b l e to p r o v e

P R O P O S I T I O N 8 . 2 , 11. L e t G be a c o n n e c t e d L i e g r o u p a n d

H a c o n n e c t e d L i e s u b g r o u p of G . T h e n H i s a n o r m a l s u b g r o u p

o f G if a n d o n l y if LH i s a n i d e a l of LG ,

P r o o f : LH is a n i d e a l of LG

i n v a r i a n t . In v i e w of L(Ad) = a d

t h e A d G - i n v a r i a n c e of L B , L e. A d g LH ~ LH f o r e v e r y

Bu t A d g = L(~g) by d e f i n i t i o n , a n d u s i n g 8 . 2 ; 10 we s e e t h a t

A d g LH c LH if a n d o n l y if ~ ( H ) c H . T h e r e f o r e LH

if a n d o n l y if LH i s a d L G -

a n d 8. ~. 9, t h i s i s e q u i v a l e n t to

g E G

i s a n

Page 173: Introduction to Lie Groups and Transformation Groups

ideal of

A d G

-167-

LG if and on ly if ;Yg(H) c H for e v e r y g E G , q . e . d .

COROLLARY 8 .2 .12 . Let G

is a n o r m a l Lie s u b g r o u p of

b e a c o n n e c t e d Lie group. T h e n

(Aut LG)0 .

P roo f : Ad G is c o n n e c t e d and t h e r e f o r e c o n t a i n e d in (Aut LG)0 ,

Now L(Ad) = ad LG by 8 . 2 , 6 . In v iew of 8 . 2 , 1 1 t h e r e is only to show

that ad LG is an i d e a l of L(Aut LG) = ~(LG) , Th i s is t r u e for an

a r b i t r a r y Lie a l g e b r a ~> , Le t n a m e l y D ~ ~ ) , A ~ ~ . T h e n

t h e r e i s to show [D, a d A ] ~ ad ~ . F o r B ~ ~ we have

[D, a d A ] B = D [ A , B ] - [A, DB] = iDA, B] = ( a d D A ) B , which shows

[D, a d A ] = a d D A .

R e m a r k . The g r o u p Ad G is not n e c e s s a r i l y c l o s e d in Aut L G .

8 .3 . The a u t o m o r p h i s m g roup of a Lie g roup . Let G be a Lie g roup

and Aut G the g roup of a u t o m o r p h i s m s (of the Lie g roup s t r u c t u r e ;

h o w e v e r , r e m e m b e r 6 . 3 . 4 ) . The func to r L d e f i n e s a h o m o m o r p h i s m

L : A u t G -, Aut LG into the g roup of a u t o m o r p h i s m s of LG . If G

~s c o n n e c t e d , 6. Z. 9 shows tha t th i s h o m o m o r p h i s m is i n j e c t i v e .

Aut

Aut

by

E x a m p l e 8 .3 .1 .

" l r - . Aut (L"II') = G L ( ~ ) = ~ * is i n j e c t i v e . In f a c t ,

"11" = {12r, -1,]/,} , w h e r e -1T d e n o t e s the m a p induced on

- l ~ ( s e e 8 . 3 . 4 ) .

If

L : A u t G-* Aut LG

C o n s i d e r the L ie g roup "It = ~ t / z . T h e n

-ff

G is c o n n e c t e d and s i m p l y c o n n e c t e d , the h o m o m o r p h i s m

is an i s o m o r p h i s m by 7. Z. 7.

Page 174: Introduction to Lie Groups and Transformation Groups

- 1 6 8 -

E x a m p l e 8 . 3 , 2 . G = ~ . T h e n A u t ~t = ~{* .

M o r e g e n e r a l l y , l e t G

c o n n e c t e d L i e g r o u p . T h e n

A u t G -. Au t LG = G L ( L G )

be a c o m m u t a t i v e c o n n e c t e d a n d s i m p l y

e x p : L G -, G i s an i s o m o r p h i s m by 7 . 2 . 8 .

i s an i s o m o r p h i s m .

L e t G be a c o m m u t a t i v e and c o n n e c t e d L i e g r o u p , A n a u t o -

m o r p h i s m r of G d e f i n e s an a u t o m o r p h i s m L(r of LG . C o n s i d e r

t he h o m o m o r p h i s m exp : LG -* G . T h e n L(r k e r exp c k e r exp

in v i e w of t h e c o m m u t a t i v e d i a g r a m

LG _L(@) > LG

exp i l e x p

G ~ > G

We h a v e p r o v e d h a l f of

P R O P O S I T I O N 8 . 3 . 3 . L e t G be a c o m m u t a t i v e c o n n e c t e d L i e

g r o u p . T h e n the i m a g e of t h e h o m o _ m o r p h i s m L: Au t G -~ G L ( L G )

c o n s i s t s o f the a u t o m o r p h i s m ~ o f LG wi th ~ k e r exp c k e r exp .

P r o o f : We h a v e to s h o w t h a t g i v e n ~ 6 G L ( L G ) wi th

~ k e r exp c k e r exp , t h e r e e x i s t s r 6 Au t G wi th L(~o) = cp

( e x p , ~ ) k e r exp = e i m p l i e s t h a t t h e r e e x i s t s a f a c t o r i z a t i o n

of exp , r t h r o u g h exp a n d c l e a r l y L(cp) = $ .

�9 But

~ : G - * G

Page 175: Introduction to Lie Groups and Transformation Groups

-169-

R e m a r k . T h e r e is a s i m i l a r c h a r a c t e r i z a t i o n of Aut G for

an a r b i t r a r y c o n n e c t e d L ie g roup �9 One h a s on ly to c o n s i d e r the

u n i v e r s a l c o v e r i n g g r o u p ~ and the cove rLng h o m o m o r p h i s m ~ - . G .

P r o p o s i t i o n 8 . 3 . 3 a l l o w s u s to d e t e r m i n e Aut G,

G ~-- L G / k e r exp . We show

a s

P R O P O S I T I O N 8 . 3 . 4 . Le t G = 'it n T h e n A u t G ~" A u t Z n

P r o o f :

Z n T h e n

T h i s s h o w s

We d e n o t e by T.. n a s u b g r o u p of LG i s o m o r p h i c to

T n ~ L G / Z n Now Aut T n = [ ~ G L ( L G ) / ~ ( Z n) c z n ~

Aut"Jr n ~ Aut Z n 0 q . e . d .

Page 176: Introduction to Lie Groups and Transformation Groups

Appendix. Cate_~pries and fu.nctors

-170-

Definition.

(i)

(ii)

A ca t ego ry e cons i s t s of

a c l a s s of objec ts A, B, C, . . . ;

for each pa i r (A,B) of objec ts a set

a r e ca l led m o r p h i s m s f rom A to B

range B (we wri te a : A - . B or

these se t s being pa i rw i se d is jo in t :

[A,B] r] [A',B'] : r

(iii) for each triple (A, B, C)

[A,B] x [B,C]

A

(A,B)

of ob jec t s a map

> [A,C]

(a, 8) ~ ~a

ca l led compos i t ion of m o r p h i s m s ;

(iv) for each object A an e l emen t 1 A

m o rph i s m s;

these data being subjec t to the two ax ioms

(I) If ae [A,B], Be

(Z) If a e[/%,B], then

R e m a r k . The m o r p h i s m 1 A

is un ique ly defined by condi t ion Z.

with thee same p r o p e r t i e s , then 1 A' 1 A

e [A,A],

[B,C], ~ e[C,D], then

al A =a , IBa = a .

[A, B ] , which e l e m e n t s

or with domain A and

a >B for a ~ [ A , B ] )1

( A ' , B ' ) imp l i e s

ca l led ident i ty

whose ex i s t ence is r e q u i r e d by (iv)

Because if l~ is a second m o r p h i s m

=l A, =I A .

Examples . The c a t e g o r y Ens

m o r p h i s m s the maps between se t s with the u sua l compos i t i ons . The

c a t e g o r y ~ of groups is def ined by the groups as objec ts , group

whose ob jec t s a r e the se t s and

Page 177: Introduction to Lie Groups and Transformation Groups

-171-

h o m o m o r p h i s m s as m o r p h i s m s and the u s u a l c o m p o s i t i o n of h o m o m o r p h i s m s .

T a k i n g the t o p o l o g i c a l s p a c e s a s o b j e c t s and the c o n t i n u o u s m a p s

a s m o r p h i s m s wi th the u s u a l c o m p o s i t i o n , we ob t a in the c a t e g o r y

of t o p o l o g i c a l s p a c e s . S i m i l a r l y the c a t e g o r y ~l of d i f f e r e n t i a b l e

m a n i f o l d s is d e f i n e d by t ak ing the d i f f e r e n t i a b l e m a n i f o l d s a s o b j e c t s and

d i f f e r e n t i a b l e m a p s a s m o r p h i s m s .

Le t

a:A -B

6: B ~A

va lenc e

isomorphic :

a: A ~A .

be a c a t e g o r y and A, B o b j e c t s of ~ . A m o r p h i s m

is c a l l e d an e q u i v a l e n c e o r an i s o m o r p h i s m , if t h e r e e x i s t s

wi th ~a = 1 A and a~ = 1 B . If t h e r e e x i s t s a n e q u i -

a : A - ~ B , t hen A and B a r e s a i d to be e q u i v a l e n t o r

A ~ B . An a u t o m o r p h i s m of A is an e q u i v a l e n c e

Def in i t i on : Le t

F:e - e' f r o m ~ to

(i) of an o b j e c t

(ii) of a m o r p h i s m

a:A ~B of ~ ;

and ~' be c a t e g o r i e s .

~' is the a s s i g n m e n t

FA of ~' to e a c h o b j e c t

Fa : FA - . F B of ~'

s u b j e c t to the two c o n d i t i o n s

(i) F(I A) = IFA

(Z) F(~a) = F(~)F(a)

If the c o n d i t i o n (Z) is r e p l a c e d by

(Z~ F(~a) = F(a)F(~),

we s p e a k of a c o n t r a v a r i a n t f u n c t o r F: e - e'

A c o v a r i a n t f u n c t o r

A of ~ ;

to e a c h m o r p h i s m

Page 178: Introduction to Lie Groups and Transformation Groups

-172 -

E x a m p l e s . L e t e be a c a t e g o r y a n d A

O n e c a n d e f i n e a c o v a r i a n t f u n c t o r hA: e -. E n s

hA(X) = ~%,X] f o r a n y o b j e c t X of ~ , h A(cp)(a) = Ca f o r

~p:X-~ X ' , a : A - . X , H e r e we h a v e hA(~) : [A, X] -~ [ A , X ' ] .

S i m i l a r l y we c a n d e f i n e a c o n t r a v a r i a n t f u n c t o r hA: e - . E n s b y

hA(x) = i X , A] f o r a n y o b j e c t X of e a n d hA(~ ) ( a ) = 040

a n o b j e c t o f ~ .

in t he f o l l o w i n g way :

f o r

X' a : X ' -. A H e r e we h a v e hA(~p): iX' A ] -. iX, A ] $ �9 �9 �9

D e f i n i t i o n . L e t

( c o v a r i a n t ) f u n c t o r s f r o m

r f r o m F to G

r -. GX to e a c h o b j e c t X

c o m m u t e s f o r e v e r y ~p:X -, Y

a n d e ' be c a t e g o r i e s a n d F , G:~-~ e '

to ~ ' . A n a t u r a l t r a n s f o r m a t i o n

is the a s s i g n m e n t of a m o r p h i s m

of e , s u c h t h a t the f o l l o w i n g d i a g r a m

CX F X ~ GX

q~y , FY > GY

E x a m p l e . L e t

K - v e c t o r s p a c e s a n d

( a s s i g n i n g to e a c h v e c t o r s p a c e X i t s d u a l s p a c e X '

K - l i n e a r m a p i t s d u a l m a p ) . T h e f u n c t o r D2: K ~ - . K ~

v e c t o r s u b s p a c e o v e r K i t s b i d u a l . T h e e v a l u a t i o n

~x(X)(X' ) = < x, x'~% for

formation E:IK~-. D z ,

K be a c o m m u t a t i v e f i e l d , KI~ the c a t e g o r y of

D: K ~ -. K ~ t h e f u n c t o r d e f i n e d by the d u a l i t y

a n d to e a c h

a s s i g n s to e a c h

x ~ X , x ' ~ X ' d e f i n e s a n a t u r a l t r a n s -

Page 179: Introduction to Lie Groups and Transformation Groups

-173-

N a t u r a l t r a n s f o r m a t t o n s a r e c o m p o s e d in an o b v i o u s way .

A n a t u r a l t r a n s f o r m a t i o n ~: F -* G i s a n a t u r a l e q u i v a l e n c e

if t h e r e e x i s t s a n a t u r a l t r a n s f o r m a t i o n ~: G -* F s u c h tha t

@~ = 1 F , ~@ = 1 G , 1 F a n d 1 G d e n o t i n g t h e i d e n t i c a l n a t u r a l t r a n s -

f o r m a t i o n s F-* F and G -~G r e s p e c t i v e l y .

P r o d u c t a n d s u m s , L e t

i s t e r m i n a l , i f to e a c h o b j e c t

K -. T . H e n c e the o n l y m o r p h i s m T - .T i s

t e r m i n a l o b j e c t s in ~ a r e e q u i v a l e n t .

L e t (Kj) j ~ Z be a f a m i l y of o b j e c t s of ~ i n d e x e d by a s e t

Z . C o n s i d e r the c a t e g o r y P (Kj) w h o s e o b j e c t s a r e i n d e x e d

f a m i l i e s [ q j : Q - . K j / j ~ ~ } of m o r p h i s m s of K wi th a c o m m o n

be a c a t e g o r y , A n o b j e c t T of

K t h e r e i s e x a c t l y one m o r p h i s m

i T , a n d any two

d o m a i n Q , w h i l e a m o r p h i s m

fo r w h i c h q j ' a = qj f o r j

i s a p r o d u c t of t he Kj , t h u s

( q j ) - ~ ( q j ' ) in P ( K j ) i s an a : Q - * Q '

. A t e r m i n a l o b j e c t in P (Kj)

f a m i l y of m o r p h i s m s qj : Q -~ Kj

u n i q u e a : Q - ~ P , T h e p r o d u c t ,

up to an e q u i v a l e n c e in 9 (Kj)

P

D E F I N I T I O N � 9 A p r o d u c t of (Kj) j ~ [y i s an o b j e c t P of

t o g e t h e r wi th m o r p h t s m s pj: P - . Kj f o r j ~ Z , s u c h t h a t any

c a n be w r i t t e n a s qj = p ja f o r a

l ike any t e r m i n a l o b j e c t , i s u n i q u e

In p a r t i c u l a r , t h e p r o d u c t - o b j e c t

i s u n i q u e up to an e q u i v a l e n c e in ~ .

L e t R be a c a t e g o r y , A n o b j e c t S of R i s i n i t i a l , i f to

e a c h o b j e c t K t h e r e i s e x a c t l y one m o r p h i s m S -~ K . H e n c e the

Page 180: Introduction to Lie Groups and Transformation Groups

-174-

only morphism

va lent.

S --. S in 1 and any two in i t ia l ob jec ts a r e equi-

Let (Kj)j s g

g . C o n s i d e r the c a t e g o r y ~ ( K j )

~9k:K j - ~ R / j s } o f m o r p h i s m s of

a m o r p h i s m ( p j ) - , ( p j ' ) in ~ ' ( K j )

apj : pjl for

o f t h e K j , thus

be a family of objects of ~ indexed by a set

whose objects are indexed families

with common range R, while

is an a:R--R' for which

j g ;~ . An initial object in this category is a sum

DEFINITION, A sum of

toge the r with m o r p h i s m s 0-j: Kj

f ami ly of m o r p h i s m s 9 j :Kj - R

unique a :S-~ R .

(Kj)j g g is an object S of

- S for j ~ ~Y o such that any

can be wr i t t en a s a~j = pj for a

The sum is unique up to an equiva lence in ~ (Kj) , in p a r t i c u l a r ,

the s u m - o b j e c t is unique up to an equiva lence in ~ .

Page 181: Introduction to Lie Groups and Transformation Groups

B IB LIOGRA PHY

-175 -

[1] Bruhat , F . , A lg~bres de Lie et groupes de Lie, Textos de

Mathemat i ca , Univ, do Reci fe , Vol. 3 (1961).

EZ] Bruhat , F , , L e c t u r e s on Lie groups and r e p r e s e n t a t i o n s of

loca l ly compact groups. Tata Inst i tute of fundamenta l r e s e a r c h ,

Bombay, 1958,

[3] Cheva l ley , C . , Theory of Lie Groups, Vol, I, P r i nce ton Univ.

P r e s s , P r ince ton , N. J. (1946).

E4] Cohn, P, M. , Lie Groups, C a m b r i d g e Univ, P r e s s , C a m b r i d g e

(1957).

[5 ] Graeub, W., L ie sche Gruppen und aff in zusammenh~ngende

Mannigfa l t igkei ten , Acta Math, 106 (1961), 65-111.

[61 Helgason, S. , D i f f e r en t i a l geome t ry and s y m m e t r i c spaces ,

A c a d e m i c P r e s s (1962).

[7] Hof/man, K. H, , Einfi~hrung in die Theor ie der Liegruppen,

Te i l I. V o r l e s u n g s a u s a r b e i t u n g , Math. Jns t , Universit'~tt

Ti lbingen (1963),

ES] Koszul , J. L . , Exposes sur les spaces homog~nes sym~t r iques .

I 1 . Soc, Math, S~o Paulo ~959).

[91 L ichnerowicz , A . , G~omet r i e des groupes de t r a n s f o r m a t i o n s ,

Dunod, P a r i s (1958).

El0] Mai s sen , B . , L i e -Gruppen mi t B a n a c h r ~ u m e n a l s P a r a m e t e r r ~ u m e ,

Acta Math, (1962) 229-269.

Page 182: Introduction to Lie Groups and Transformation Groups

-176-

[11] Nomizu, K. and Kobayashi, S., Foundations of differential

geometry, Vol. I . , Interscience, N. Y. (1963).

[1Z] Palais, R. , The classification of G-spaces, Memoirs AMS,

Vol. 36 ( 1 9 6 o ) .

[13J Palais, R. , A global formulation of the Lie theory of t ransformation

groups, Memoirs AMS, Vol. 2Z (1957).

[14] Pontrjagin, L. S . , Topologische Gruppen, VoL II, Teubner

Leipzig (1958).