introduction to algorithms 6.046j/18.401j/sma5503 lecture 1 prof. charles e. leiserson

52
Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Upload: evangeline-barrett

Post on 31-Dec-2015

261 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Introduction to Algorithms

6.046J/18.401J/SMA5503

Lecture 1Prof. Charles E. Leiserson

Page 2: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Welcome to Introduction toAlgorithms, Fall 2001

Handouts

1. Course Information

2. Calendar

3. Registration (MIT students only)

4. References

5. Objectives and Outcomes

6. Diagnostic Survey

Page 3: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Course information

1. Staff 8. Website2. Distance learning 9. Extra help3. Prerequisites 10.Registration (MIT

only)4. Lectures 11.Problem sets5. Recitations 12.Describing algorithms6. Handouts 13.Grading policy7. Textbook (CLRS) 14.Collaboration policy

▲Course information handout

Page 4: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Analysis of algorithms

The theoretical study of computer-program

performance and resource usage.

What’s more important than performance?

• modularity • user-friendliness

• correctness • programmer time

• maintainability • simplicity

• functionality • extensibility

• robustness • reliability

Page 5: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Why study algorithms andperformance?

• Algorithms help us to understand scalability.

• Performance often draws the line between what

is feasible and what is impossible.

• Algorithmic mathematics provides a language

for talking about program behavior.

• The lessons of program performance generalize

to other computing resources.

• Speed is fun!

Page 6: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

The problem of sorting

Input: sequence <a1, a2, …, an> of numbers.

Output: permutation <a'1, a'2, …, a'n> such

that a'1 ≤ a'2 ≤ … ≤ a'n

Example:

Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

Page 7: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Insertion sort

Page 8: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

Page 9: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

Page 10: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

Page 11: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

Page 12: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

Page 13: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

Page 14: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

Page 15: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

Page 16: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

Page 17: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

Page 18: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

2 3 4 6 8 9 done

Page 19: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Running time

• The running time depends on the input: an

already sorted sequence is easier to sort.

• Parameterize the running time by the size of

the input, since short sequences are easier to

sort than long ones.

• Generally, we seek upper bounds on the

running time, because everybody likes a

guarantee.

Page 20: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Kinds of analyses

Worst-case: (usually)

• T(n) = maximum time of algorithm

on any input of size n.

Average-case: (sometimes)

• T(n) = expected time of algorithm

over all inputs of size n.

• Need assumption of statisticaldistribution of inputs.Best-case: (bogus)

• Cheat with a slow algorithm thatworks fast on some input.

Page 21: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Machine-independent time

What is insertion sort’s worst-case time?

• It depends on the speed of our computer:

• relative speed (on the same machine),

• absolute speed (on different machines).

BIG IDEA:

• Ignore machine-dependent constants.

• Look at growth of T(n) as n → ∞ .

“Asymptotic Analysis”

Page 22: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Θ-notation

Math:

Θ(g(n)) = { f (n) : there exist positive constants c1, c2, and n0 such that 0 ≤ c1 g(n)

≤ f (n) ≤ c2 g(n) for all n ≥ n0 }

Engineering:

• Drop low-order terms; ignore leading constants.

• Example: 3n3 + 90n2 – 5n + 6046 = Θ(n3)

Page 23: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Asymptotic performance

When n gets large enough, a Θ(n2) algorithmalways beats a Θ(n3) algorithm.

• We shouldn’t ignore asymptotically slower algorithms, however.• Real-world design situations often call for a careful balancing of engineering objectives.• Asymptotic analysis is a useful tool to help to structure our thinking.

Page 24: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Insertion sort analysis

Worst case: Input reverse sorted.

[arithmetic series]

Average case: All permutations equally likely.

Is insertion sort a fast sorting algorithm?

• Moderately so, for small n.

• Not at all, for large n.

Page 25: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merge sort

MERGE-SORT A[1 . . n]

1. If n = 1, done.

2. Recursively sort A[ 1 . . n/2 ] and A[ n/2 +1 . . n ] .

3. “Merge” the 2 sorted lists.

Key subroutine: MERGE

Page 26: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted

20 1220 12

13 1113 11

7 97 9

2 12 1

Page 27: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted

20 1220 12

13 1113 11

7 97 9

2 12 1

11

Page 28: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted

20 12 20 1220 12 20 12

13 11 13 1113 11 13 11

7 9 7 97 9 7 9

2 1 2 2 1 2

11

Page 29: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted

20 12 20 1220 12 20 12

13 11 13 1113 11 13 11

7 9 7 97 9 7 9

2 1 2 2 1 2

1 1 2 2

Page 30: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted

20 12 20 12 20 1220 12 20 12 20 12

13 11 13 11 13 1113 11 13 11 13 11

7 9 7 9 7 97 9 7 9 7 9

2 1 2 2 1 2

1 21 2

Page 31: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted arrays

20 12 20 12 20 1220 12 20 12 20 12

13 11 13 11 13 1113 11 13 11 13 11

7 9 7 9 7 97 9 7 9 7 9

2 1 2 2 1 2

1 1 2 2 7 7

Page 32: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted arrays

20 12 20 12 20 12 20 1220 12 20 12 20 12 20 12

13 11 13 11 13 11 13 1113 11 13 11 13 11 13 11

7 9 7 9 7 97 9 7 9 7 9 9 9

2 1 2 2 1 2

1 1 2 2 7 7

Page 33: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted arrays

20 12 20 12 20 12 20 1220 12 20 12 20 12 20 12

13 11 13 11 13 11 13 1113 11 13 11 13 11 13 11

7 9 7 9 7 97 9 7 9 7 9 9 9

2 1 2 2 1 2

1 1 2 2 7 7 99

Page 34: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12 20 12 20 12 20 12 20 12 20 12

13 11 13 11 13 11 13 11 13 1113 11 13 11 13 11 13 11 13 11

7 9 7 9 7 97 9 7 9 7 9 9 9

2 1 2 2 1 2

1 1 2 2 7 9 7 9

Page 35: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12 20 12 20 12 20 12 20 12 20 12

13 11 13 11 13 11 13 11 13 1113 11 13 11 13 11 13 11 13 11

7 9 7 9 7 97 9 7 9 7 9 9 9

2 1 2 2 1 2

1 1 2 2 7 9 7 9 11 11

Page 36: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12 20 1220 12 20 12 20 12 20 12 20 12 20 12

13 11 13 11 13 11 13 11 13 11 13 13 11 13 11 13 11 13 11 13 11 13

7 9 7 9 7 9 97 9 7 9 7 9 9

2 1 2 2 1 2

1 1 22 7 9 7 9 11 11

Page 37: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12 20 1220 12 20 12 20 12 20 12 20 12 20 12

13 11 13 11 13 11 13 11 13 11 13 13 11 13 11 13 11 13 11 13 11 13

7 9 7 9 7 9 97 9 7 9 7 9 9

2 1 2 2 1 2

1 1 22 7 9 7 9 11 11 12 12

Page 38: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12 20 1220 12 20 12 20 12 20 12 20 12 20 12 13 11 13 11 13 11 13 11 13 11 13 13 11 13 11 13 11 13 11 13 11 13 7 9 7 9 7 9 97 9 7 9 7 9 9 2 1 2 2 1 2

1 1 22 7 9 7 9 11 11 12 12

Time = Θ(n) to merge a total of n elements (linear time).

Page 39: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Analyzing merge sort

T(n) MERGE-SORT A[1 . . n]

Θ(1) 1. If n = 1, done.

2T(n/2) 2. Recursively sort A[ 1 . . n/2 ]Abuse and A[ n/2 +1 . . n ] .

Θ(n) 3. “Merge” the 2 sorted lists

Sloppiness: Should be T( n/2 ) + T( n/2 ) ,

but it turns out not to matter asymptotically.

Page 40: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recurrence for merge sort

T(n) = Θ(1) if n = 1;

2T(n/2) + Θ(n) if n > 1.

• We shall usually omit stating the base

case when T(n) = Θ(1) for sufficiently

small n, but only when it has no effect on

the asymptotic solution to the recurrence.

• CLRS and Lecture 2 provide several ways

to find a good upper bound on T(n).

Page 41: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

Page 42: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n)

Page 43: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

T(n/2) T(n/2)

Page 44: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Page 45: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Θ(1)

Page 46: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/2 cn/2

h = lg n

T(n/4) T(n/4) T(n/4) T(n/4)

Θ(1)

Page 47: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn cn

cn/2 cn/2

h = lg n

T(n/4) T(n/4) T(n/4) T(n/4)

Θ(1)

Page 48: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn cn

cn/2 cn/2 cn

h = lg n

T(n/4) T(n/4) T(n/4) T(n/4)

Θ(1)

Page 49: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn cn

cn/2 cn/2 cn

h = lg n

T(n/4) T(n/4) T(n/4) T(n/4) cn

Θ(1)

Page 50: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn cn

cn/2 cn/2 cn

h = lg n

T(n/4) T(n/4) T(n/4) T(n/4) cn

Θ(1) Θ(n)#leaves = n

Page 51: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn cn

cn/2 cn/2 cn

h = lg n

T(n/4) T(n/4) T(n/4) T(n/4) cn

Θ(n)

Θ(1) Θ(n lg n)#leaves = n

Page 52: Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Conclusions

• Θ(n lg n) grows more slowly than Θ(n2).

• Therefore, merge sort asymptotically

beats insertion sort in the worst case.

• In practice, merge sort beats insertion

sort for n > 30 or so.

• Go test it out for yourself!