introduction factorial designs

Upload: yoicemartinapaweka

Post on 02-Jun-2018

220 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/10/2019 Introduction Factorial Designs

    1/41

    1

    Factorial Designs

  • 8/10/2019 Introduction Factorial Designs

    2/41

    2

    5.1 Basic Definitions and Principles

    Study the effects of two or more factors.

    Factorial designs

    Crossed: factors are arranged in a factorial design

    Main effect: the change in response produced by a

    change in the level of the factor

  • 8/10/2019 Introduction Factorial Designs

    3/41

    3

    Definition of a factor effect: The change in the mean response when

    the factor is changed from low to high

    40 52 20 30

    212 2

    30 52 20 4011

    2 2

    52 20 30 401

    2 2

    A A

    B B

    A y y

    B y y

    AB

  • 8/10/2019 Introduction Factorial Designs

    4/41

    4

    50 12 20 401

    2 2

    40 12 20 509

    2 2

    12 20 40 5029

    2 2

    A A

    B B

    A y y

    B y y

    AB

  • 8/10/2019 Introduction Factorial Designs

    5/41

    5

    Regression Model &

    The Associated

    Response Surface

    0 1 1 2 2

    12 1 2

    1 2

    1 2

    1 2

    The least squares fit is

    35.5 10.5 5.5

    0.5

    35.5 10.5 5.5

    y x x

    x x

    y x x

    x x

    x x

  • 8/10/2019 Introduction Factorial Designs

    6/41

    6

    The Effect of

    Interaction on the

    Response SurfaceSuppose that we add an

    interaction term to the

    model:

    1 2

    1 2

    35.5 10.5 5.5

    8

    y x x

    x x

    Interactionis actuallya form of curvature

  • 8/10/2019 Introduction Factorial Designs

    7/41

    7

    When an interaction is large, the corresponding

    main effects have little practical meaning.

    A significant interaction will often mask thesignificance of main effects.

  • 8/10/2019 Introduction Factorial Designs

    8/41

    5.2 The Advantage of Factorials

    One-factor-at-a-time desgin

    Compute the main effects of factors

    A: A+B-- A-B-

    B: A-B-- A-B+

    Total number of experiments: 6

    Interaction effectsA+B-, A-B+> A-B-=> A+B+is

    better???

    8

  • 8/10/2019 Introduction Factorial Designs

    9/41

    9

    5.3 The Two-Factor Factorial Design

    5.3.1 An Example

    alevels for factor A, blevels for factor B and n

    replicates Design a battery: the plate materials (3 levels) v.s.

    temperatures (3 levels), and n = 4: 32factorial design

    Two questions:What effects do material type and temperature have

    on the life of the battery?

    Is there a choice of material that would give

    uniformly long life regardless of temperature?

  • 8/10/2019 Introduction Factorial Designs

    10/41

    10

    The data for the Battery Design:

  • 8/10/2019 Introduction Factorial Designs

    11/41

    11

    Completely randomized design: alevels of factor

    A, blevels of factor B, nreplicates

  • 8/10/2019 Introduction Factorial Designs

    12/41

    12

    Statistical (effects) model:

    is an overall mean, iis the effect of theith level

    of the row factor A, jis the effect of thejthcolumn of column factor B and ()ijis the

    interaction between iand j.

    Testing hypotheses:

    1,2,...,

    ( ) 1, 2,...,

    1,2,...,

    ijk i j ij ijk

    i a

    y j b

    k n

    0)(oneleastat:v.s.,0)(:

    0oneleastat:v.s.0:

    0oneleastat:v.s.0:

    10

    110

    110

    ijij

    jb

    ia

    HjiH

    HH

    HH

  • 8/10/2019 Introduction Factorial Designs

    13/41

    13

    5.3.2 Statistical Analysis of the Fixed Effects

    Model

    a

    i

    b

    j

    n

    k

    ijk

    ij

    ij

    n

    k

    ijkij

    ja

    i

    j

    n

    k

    ijkj

    ib

    j

    i

    n

    k

    ijki

    abn

    yyyy

    n

    yyyy

    an

    yyyy

    bnyyyy

    1 1

    ......

    1

    ...

    .

    .

    1

    .

    ..

    1

    ..

    1

    ..

    ..

    1

    ..

    1

    ..

  • 8/10/2019 Introduction Factorial Designs

    14/41

    14

    2 2 2

    ... .. ... . . ...

    1 1 1 1 1

    2 2

    . .. . . ... .

    1 1 1 1 1

    ( ) ( ) ( )

    ( ) ( )

    a b n a b

    ijk i j

    i j k i ja b a b n

    ij i j ijk ij

    i j i j k

    y y bn y y an y y

    n y y y y y y

    breakdown:

    1 1 1 ( 1)( 1) ( 1)

    T A B AB E SS SS SS SS SS

    df

    abn a b a b ab n

  • 8/10/2019 Introduction Factorial Designs

    15/41

    15

    Mean squares

    2

    1 1

    2

    2

    1

    2

    2

    1

    2

    2

    ))1(

    ()(

    )1)(1(

    )(

    ))1)(1(

    ()(

    1

    ))1/(()(

    1))1/(()(

    nab

    SSEMSE

    ba

    n

    ba

    SSEMSE

    b

    an

    bSSEMSE

    a

    bn

    aSSEMSE

    EE

    a

    i

    b

    j

    ij

    ABAB

    b

    j

    j

    BB

    a

    i

    i

    AA

  • 8/10/2019 Introduction Factorial Designs

    16/41

    16

    The ANOVA table:

  • 8/10/2019 Introduction Factorial Designs

    17/41

    17

  • 8/10/2019 Introduction Factorial Designs

    18/41

    18

    Response: Life

    ANOVA for Selected Factorial Model

    Analysis of variance table [Partial sum of squares]

    Sum of Mean F

    Source Squares DF Square Value Prob > F

    Model 59416.22 8 7427.03 11.00 < 0.0001

    A 10683.72 2 5341.86 7.91 0.0020

    B 39118.72 2 19559.36 28.97 < 0.0001

    AB 9613.78 4 2403.44 3.56 0.0186

    Pure E 18230.75 27 675.21

    C Total 77646.97 35

    Std. Dev. 25.98 R-Squared 0.7652

    Mean 105.53 Adj R-Squared 0.6956

    C.V. 24.62 Pred R-Squared 0.5826

    PRESS 32410.22 Adeq Precision 8.178

    Example 5.1

  • 8/10/2019 Introduction Factorial Designs

    19/41

    19

    DESIGN-EXPERT Plot

    Life

    X = B: Temperature

    Y = A: Material

    A1 A1

    A2 A2

    A3 A3

    A: Material

    Interaction Graph

    Life

    B: Temperature

    15 70 125

    20

    62

    104

    146

    188

    2

    2

    22

    2

    2

  • 8/10/2019 Introduction Factorial Designs

    20/41

    20

    Multiple Comparisons:

    Use the methods in Chapter 3.

    Since the interaction is significant, fix the factorB at a specific level and apply Turkeys test to

    the means of factor A at this level.

    See Page 174

    Compare all abcells means to determine which

    one differ significantly

  • 8/10/2019 Introduction Factorial Designs

    21/41

    21

    5.3.3 Model Adequacy Checking

    Residual analysis: ijijkijkijkijk yyyye

    DESIGN-EXPERT PlotLife

    Residual

    Normal%p

    robab

    ility

    Normal plot of residuals

    -60.75 -34.25 -7.75 18.75 45.25

    1

    5

    10

    20

    30

    50

    70

    80

    90

    95

    99

    DESIGN-EXPERT Plot

    Life

    Predicted

    Residuals

    Residuals vs. Predicted

    -60.75

    -34.25

    -7.75

    18.75

    45.25

    49.50 76.06 102.62 129.19 155.75

  • 8/10/2019 Introduction Factorial Designs

    22/41

  • 8/10/2019 Introduction Factorial Designs

    23/41

    23

    DESIGN-EXPERT Plot

    Life

    Material

    Residuals

    Residuals vs. Material

    -60.75

    -34.25

    -7.75

    18.75

    45.25

    1 2 3

    DESIGN-EXPERT Pl ot

    Life

    Temperature

    Res

    iduals

    Residuals vs. Temperature

    -60.75

    -34.25

    -7.75

    18.75

    45.25

    1 2 3

  • 8/10/2019 Introduction Factorial Designs

    24/41

    24

    5.3.4 Estimating the Model Parameters

    The model is

    The normal equations:

    Constraints:

    ijkijjiijky )(

    ijijjiij

    j

    a

    i

    ijj

    a

    i

    ij

    i

    b

    j

    ij

    b

    j

    jii

    a

    i

    b

    j

    ij

    b

    j

    j

    a

    i

    i

    ynnnn

    ynannan

    ynnbnbn

    ynanbnabn

    )(:)(

    )(:

    )(:

    )(:

    11

    11

    1 111

    0,0,01111

    b

    j

    ij

    a

    i

    ij

    b

    j

    j

    a

    i

    i

  • 8/10/2019 Introduction Factorial Designs

    25/41

    25

    Estimations:

    The fitted value:

    Choice of sample size: Use OC curves to choose

    the proper sample size.

    yyyy

    yyyy

    y

    jiijij

    jj

    ii

    ijijjiijk yy

  • 8/10/2019 Introduction Factorial Designs

    26/41

    26

    Consider a two-factor model without interaction:

    Table 5.8

    The fitted values: yyyy jiijk

  • 8/10/2019 Introduction Factorial Designs

    27/41

    One observation per cell:

    The error variance is not estimable because the

    two-factor interaction and the error can not beseparated.

    Assume no interaction. (Table 5.9)

    Tukey (1949): assume ()ij= r

    i

    j(Page 183)

    Example 5.2

    27

  • 8/10/2019 Introduction Factorial Designs

    28/41

  • 8/10/2019 Introduction Factorial Designs

    29/41

    29

    Degree of freedom:

    Main effect: # of levels1

    Interaction: the product of the # of degrees offreedom associated with the individual

    components of the interaction.

    The three factor analysis of variance model:

    The ANOVA table (see Table 5.12)

    Computing formulas for the sums of squares

    (see Page 186)

    Example 5.3

    ijklijkjkik

    ijkjiijkly

    )()()(

    )(

  • 8/10/2019 Introduction Factorial Designs

    30/41

    30

  • 8/10/2019 Introduction Factorial Designs

    31/41

    Example 5.3: Three factors: the percent

    carbonation (A), the operating pressure (B); the

    line speed (C)

    31

  • 8/10/2019 Introduction Factorial Designs

    32/41

    32

  • 8/10/2019 Introduction Factorial Designs

    33/41

    33

    5.5 Fitting Response Curves and

    Surfaces An equation relates the response (y) to the factor

    (x).

    Useful for interpolation. Linear regression methods

    Example 5.4

    Study how temperatures affects the battery lifeHierarchy principle

  • 8/10/2019 Introduction Factorial Designs

    34/41

    Involve both quantitativeand qualitativefactors

    This can be accounted for in the analysis to produce

    regression modelsfor the quantitative factors at each

    level (or combination of levels) of the qualitativefactors

    34

    A= Material type

    B= Linear effect of Temperature

    B2= Quadratic effect of

    Temperature

    AB= Material typeTempLinear

    AB2= Material type - TempQuad

    B3= Cubic effect of

    Temperature (Aliased)

  • 8/10/2019 Introduction Factorial Designs

    35/41

    35

  • 8/10/2019 Introduction Factorial Designs

    36/41

    36

  • 8/10/2019 Introduction Factorial Designs

    37/41

    37

  • 8/10/2019 Introduction Factorial Designs

    38/41

    38

    5.6 Blocking in a Factorial Design

    A nuisance factor: blocking

    A single replicate of a complete factorial

    experiment is run within each block. Model:

    No interaction between blocks and treatments ANOVA table (Table 5.20)

    ijkkijjiijky )(

  • 8/10/2019 Introduction Factorial Designs

    39/41

    39

  • 8/10/2019 Introduction Factorial Designs

    40/41

    Example 5.6:

    Two factors: ground clutter and filter type

    Nuisance factor: operator

    40

  • 8/10/2019 Introduction Factorial Designs

    41/41

    41

    Two randomization restrictions: Latin square

    design

    An example in Page 200.

    Model:

    Tables 5.23 and 5.24

    ijklljkkjiijkly )(