international study @ university coburg in germany ... · preliminary remarks – module...

115
Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes Department of Mechanical Engineering and Automotive Technology Bachelor's program in Mechanical Engineering Module Manual

Upload: others

Post on 29-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

Department of Mechanical Engineering and Automotive Technology

Bachelor's program in Mechanical Engineering

Module Manual

Page 2: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

2

Table of Contents Preliminary remarks – Module plan ...........................................................................................................4

Additive Production ....................................................................................................................................5

Bachelor’s Thesis ........................................................................................................................................8

Bachelor Seminar .......................................................................................................................................9

Business Organization ............................................................................................................................. 10

Business Administration for Engineers ................................................................................................... 12

CAx Techniques ....................................................................................................................................... 14

CNC Technology....................................................................................................................................... 17

Electrical Engineering and Electronics ..................................................................................................... 18

English Communication Skills (B2) .......................................................................................................... 21

Production Technology ........................................................................................................................... 22

Free-Form Surface Modeling ................................................................................................................... 24

Principles of CFD ...................................................................................................................................... 25

Principles of Automotive Technology ..................................................................................................... 28

Foundations of Finite Elements Method ................................................................................................. 30

Foundations of Construction ................................................................................................................... 32

Principles of Physics ................................................................................................................................ 35

Advanced Dynamics / Machine Dynamics .............................................................................................. 37

Hydraulics and Pneumatics ..................................................................................................................... 39

Industry Internship .................................................................................................................................. 41

Computer science for engineers 1 .......................................................................................................... 43

Computer Science for Engineers 2 .......................................................................................................... 45

Engineering Mathematics 1 ..................................................................................................................... 47

Engineering Mathematics 2 ..................................................................................................................... 49

Engineering -Practical Project ................................................................................................................. 51

Construction and Machine Elements 1 ................................................................................................... 52

Construction and Machine Elements 2 ................................................................................................... 55

Plastic-Specific Construction and Composite Materials .......................................................................... 57

Mechanical Engineering Internship and Occupational Safety ................................................................ 60

Mathematical Methods and Models ....................................................................................................... 62

Measurement Technology & Sensor Systems ......................................................................................... 64

Modern Production Technology.............................................................................................................. 67

Product Definition and Conception ......................................................................................................... 69

Page 3: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

3

Project Formula Student ......................................................................................................................... 71

Project Management ............................................................................................................................... 72

Legal Foundations for Engineers ............................................................................................................. 74

Robotics and Handling Technology ......................................................................................................... 76

Control and Feedback Control Technology ............................................................................................. 78

Flow-Optimized Design of Machines and Systems.................................................................................. 80

Continuous-Flow Machines ..................................................................................................................... 82

Fluid Dynamics and Heat Transfer .......................................................................................................... 85

Technical English for Mechanical Engineers (B2) .................................................................................... 88

Structural Mechanics 1 (Statics) .............................................................................................................. 90

Structural Mechanics 2 (Mechanics of Materials) ................................................................................... 92

Structural Mechanics 3 (Dynamics) ......................................................................................................... 94

Technical Thermodynamics ..................................................................................................................... 97

Combustion Engines 1 ............................................................................................................................. 99

Combustion Engines 2 ........................................................................................................................... 101

Specialization FEM ................................................................................................................................. 103

Material Characterization and Damage Analysis .................................................................................. 105

Materials Technology 1 ......................................................................................................................... 107

Materials Technology 2 ......................................................................................................................... 109

Tooling Machines .................................................................................................................................. 111

Academic/scientific work ...................................................................................................................... 113

Page 4: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

14 weeks Basic industrial internship (no CPs, to be completed before the start of the required internship semester, recommendation: completion before start of program) +++

Voluntary preliminary or crash courses in "Mathematics" (Horbaschek) without CPs

CP Semeste

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

WS (1) Engineering Mathematics 1 Stark

Computer Science f. Engineers 1 Reißing

Materials Technology 1

Foundations

of Construction Höllein

TM1 (Structural Analysis) Faber

Principles of Physics Prechtl

SS (2) Engineering Mathematics 2 Prechtl

Computer Science f. Engineers 2 Raab | Siebert

Production Technology

Hartan Hiltman

CAx Techniques

TM2 (Mechanics of Materials) Faber

Business Administration f. Engineers &

Business Organization Strehl | Rost

WS (3) Math. Methods & Models Prechtl

E-technology & Electronics Raab

Principles of FEM

Construction & m. Elements 1 Stark

TM3 (Dynamics) Prechtl

Fluid Dynamics & Heat Transfer

SS (4)

Measurement Technology & Sensor

systems Koch

Control Technology Steber | Baur

Materials Technology 2

Construction & m. Elements 2 Perseke

Technical Thermodynamics Epple Epple | Fritsche

Project Management (2) 22 weeks @ 4 days Industrial Internship with Internship Reoprt (2) WS (5) and Academic/scientific Work (3) Baumeister | Steber

Rost | Steber, et al.

5 x MSWP "Mechanical Engineering-Specific Compulsory Elective Module" (each 5 CPs) with the areas of specialization:

Development and construction Production and materials Applied fluid technology Automotive

Simulation methods

Product definition and design Modern production technology

Plastic-specific construction and

composite materials

Continuous-flow machines

Flow-optimized design of machines and systems

Principles of automotive technology FEM specialization

Tooling machines Combustion engines 1 SS (6)

Mach.-techn. Internship & Occupational Safety

Hartan, et al.

Principles CFD

Free-form surface modeling

Advanced dynamics /

Robotics and handling technology

Material characterization and damage analysis

Hydraulics and pneumatics Combustion engines 2 Project "Formula Student" (CAT)

Additive production

CNC technology

WS (7) Bachelor's Thesis (12-16 weeks) Bachelor Seminar

Steber, et al. Practical Engineering Project

6 weeks + report (1)

Part 2: "Engl. Communication

Skills" Bulluck

* For the key qualifications "General Program 1" and "General Program 2", one subject each (2 SWH) must be selected from the corresponding "General program" subject catalog; this does not include the subjects "Technical English" and "Meetings & Presentation".

4

Preliminary remarks – Module plan

KEY: Mathematics / natural sciences Mechanics and construction Principles of mechatronics Materials and production Computer science & programming Applied fluid mechanics

Business administration Communication and management Mechanical engineering spec. Specialization

Key qualifications / languages Internships / practical projects Basic internship and propedeutics

Key

qua

lific

atio

ns

*Stu

d.

*Stu

d.

Law

Te

chn.

Eng

lish

& C

omm

. ski

lls

Part

1: "T

echn

. Eng

lish

f. M

echa

nica

l En

gine

ers"

Bul

luck

Prin

c. f.

Eng

. Gen

. 2

Gen

. 1

Page 5: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

5

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

Additive Production

Academic Program Mechanical Engineering

Module name Additive Production

Abbrev. AF

Subtitle -

Courses -

Semester 6

Module coordinator Dr. Markus Stark

Instructor(s) Dr. Markus Stark

Language German

Classification in curriculum Compulsory elective module

Use in other

academic programs

-

Format / SWH Seminar-type lecture / 3 SWH, internship / 1 SWH

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives Seminar-type lectures:

Students will:

- Become acquainted with the essential additive production

techniques and their properties including the applicable

materials.

- Be able to select suitable additive production methods and

suitable materials for different applications.

- Know essential technologies and systems for the digitalization

of objects and will be able to process the generated data with

select programs.

- Be able to roughly assess and select essential optical

components for additive production systems.

Internship:

Students will:

- Be able to prepare and start print orders for selected 3D

printers and will perform any necessary follow-up work.

Page 6: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

6

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

- Be able to perform essential process steps for molding of

masters using vacuum casting independently.

- Become familiar with the essential work steps of

photogrammetry and sidelight projection.

- Be able to independently perform simple steps for reverse

engineering based on acquired scan data in the Siemens NX

system.

Contents Seminar-type lecture:

Additive Production (AP)

- Introduction to additive production (application of AP in

product life cycle)

- Data acquisition and processing

- Pre-processing

- Additive production procedure (procedure, system

technology, materials, applications)

- Post-processing

- Design rules

- Safety, quality assurance, and profitability of optical

system components in additive production

- Principles of optics and laser technology

- Essential components (lenses, scanner) 3D

scanning

- Scan procedure, data processing (reverse engineering)

Internship:

- Creation of components using the additive production

procedure polyjet modeling and fused layer modeling

- Creation of components using vacuum casting

- Digitalization of objects using stripe light projection in

combination with photogrammetry

- Processing of scan data in Siemens NX

Program / examination achievement

Written examination

Permitted

examination tools

Simple scientific calculator

Collection of formulas already provided by module coordinator

Media Presentation, projector, chalkboard, script

Page 7: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

7

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

Literatur Berger, Uwe; Hartmann, Andreas; Schmid, Dietmar: Additive

Fertigungsverfahren. Rapid Prototyping, Rapid Tooling, Rapid

Manufacturing. Haan-Gruiten: Verl. Europa-Lehrmittel. 1st ed.,

2013.

Gebhardt, Andreas: Generative Fertigungsverfahren. Additive

manufacturing und 3D-Drucken für Prototyping - Tooling -

Produktion. Munich: Hanser. 4th revised and expanded ed., 2013.

Eichler, Jürgen; Eichler, Hans-Joachim: Laser. Bauformen,

Strahlführung, Anwendungen. Berlin, Heidelberg: Springer-Verlag

Berlin Heidelberg. 7th ed., 2010.

Schröder, Gottfried; Treiber, Hanskarl: Technische Optik.

Grundlagen und Anwendungen. Würzburg: Vogel (Vogel-

Fachbuch: Kamprath-Reihe). 10th expanded ed., 2007.

Page 8: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

8

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

Bachelor’s Thesis

Academic Program Mechanical Engineering

Module name Bachelor’s Thesis

Abbrev. BT

Subtitle -

Courses Bachelor’s Thesis

Semester 7

Module coordinator Assigned by the Examination Committee

Instructor(s) Assigned professor

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Bachelor’s thesis

Work requirement Self-directed study: 360h in at most 16 weeks

ECTS 12

Technical prerequisites Pursuant to SPO §5 (3)(advancement authorization to 6th / 7th semester)

Qualification objectives Ability to perform complex, practice-related work with scientific

methods to achieve solutions.

Ability to create scientifically founded, written treatments, ability

to defend one’s own ideas and results against technical criticism. Contents Scientific, application-oriented development with practical

relation via an self-contained engineering topic in the area

of mechanical engineering.

Program / examination achievement

Bachelor’s thesis

Permitted

examination tools

(Not relevant)

Media (Not relevant)

Literature

Page 9: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

9

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

Bachelor Seminar

Academic Program Mechanical Engineering

Module name Bachelor Seminar

Abbrev. BS

Subtitle -

Courses -

Semester 7

Module coordinator Dr. Michael Steber

Instructor(s) Dr. Michael Steber

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures with integrated presentations / 2 SWH

Work requirement In-class program: 15 hrs.

self-directed study: 135 hrs.

ECTS 5

Technical prerequisites Academic/scientific work

Qualification objectives Students will be able to create scientifically-founded written work

and will be able to present insights in the Bachelor's thesis in a

focused and structured manner.

Contents Scientific, application-oriented presentation with practical

relevance

Program / examination achievement

Presentation

Permitted

examination tools

(Not relevant)

Media Projector and chalk board

Literature

Page 10: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

10

Business Organization

Academic Program Mechanical Engineering

Module name Business Organization

Abbrev. BO

Subtitle -

Courses -

Semester 2

Module coordinator Dr. Alexander Rost

Instructor(s) Dr. Alexander Rost

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures / 2 SWH

Work requirement In-class program: 22 hrs.

self-directed study: 68 hrs.

ECTS 3

Technical prerequisites -

Qualification objectives Students should develop skills based on the taught knowledge of

the organizational forms and processes in the organization of

technical departments and industrial companies, which will

permit them to apply the business issues in business organization

theory to matters of operational organization and to apply

principles of personnel management and processes to industrial

structures.

Contents Business organization for engineers is distinguished by a

number of special characteristics. The goal is the theoretical-

systematic teaching of knowledge about the organizational

forms and processes in the organization of technical

departments and the transfer of the business issues in business

organization theory to the concerns of operational

organization.

Page 11: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

11

Topics include the general principles of organizational and work

place design, the detailed organization of production, basic

questions of the optimization of production processes, as well as

issues concerning "streamlined production" and the "Toyota

production system".

Program / examination achievement

Written examination

Permitted

examination tools

Simple scientific calculator

Media Projector, chalk board, overhead projector, self-directed study

Literature Bühner R. Betriebswirtschaftliche Organisationslehre, 10th

edition 2004.

Bokranz, Landau – Produktivitätsmanagement von

Arbeitssystemen, 1st edition 2006.

Blohm, Beer et al – Produktionswirtschaft, 4th edition 2008.

Refa-Handbücher: Methodenlehre der Betriebsorganisation.

Wieland, H.-P. –Betriebsorganisation für Ingenieure, & edition

2008.

Wöhe G. – Einführung in die allg. BWL; Teil: Organisation und

Produktionslehre, 24th edition 2010.

Page 12: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

12

Business Administration for Engineers

Academic Program Mechanical Engineering

Module name Business Administration for Engineers

Abbrev. Business administration

Subtitle -

Courses -

Semester 2

Module coordinator Dr. Georg Roth

Instructor(s) Dipl. BA. Nicole Strehl

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures / 2 SWH

Work requirement In-class program: 22 hrs.

self-directed study: 38 hrs.

ECTS 2

Technical prerequisites -

Qualification objectives Students will gain knowledge of essential basic concepts of general

business administration and selected correlations from the

following areas:

legal forms, marketing, personnel, investment and financing,

fundamentals of accounting, ecological management

Contents Fundamental concepts of general business administration legal

forms: stock corporations, partnerships, and mixed forms, and

their business relevance

Corporate governance and its social significance

Basic concepts in marketing:

- Marketing strategies

- Tools of the marketing mixes and their significance

- Significance of customer loyalty and CRM

- Foundations of market research

Page 13: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

13

Basic issues in HR: Significance and responsibilities of todays’

human resources management

Ecological management

Foundations of investment and financing accounting:

- Investment types

- Main forms of financing

- Static accounting procedures

- Dynamic accounting procedures

Principles of accounting:

- structure and sub-areas of accounting

- Tasks in accounting

- Annual financial report with balance sheet and profit and loss statement

Program / examination achievement

Written examination

Permitted

examination tools

Simple scientific calculator

Media Projector, chalk board, overhead projector, self-directed study

Literature Känel, von Siegfried: Betriebswirtschaft für Ingenieure, Herne,

NWB-Verlag, 2008.

Schmalen, Helmut; Pechtl, Hans: Grundlagen und Probleme der

Betriebswirtschaft, 14th edition , Stuttgart, Verlag Schäffer-

Poeschel 2009.

Wöhe, G.: Einführung in die Allgemeine Betriebswirtschaftslehre,

24th revised edition, Munich, Verlag Vahlen, 2010.

Page 14: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

14

CAx Techniques

Academic Program Mechanical Engineering

Module name CAx Techniques

Abbrev. CAX

Subtitle -

Courses -

Semester 1 and 2

Module coordinator Dipl.-Eng. Frank Höllein

Instructor(s) Dipl.-Eng. Frank Höllein

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures with integrated exercises / 4 SWH

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives Students will be able to model components and

assemblies using the CAx system "Siemens NX" and

derive drawings.

Contents - Parametric associative modeling

- Sketch creation

- Reference elements

- Part modeling (3D bodies and 2D surfaces)

- Sheet metal part modeling

- Drafting components, detail elements

- Bottom-up / top-down assemblies

- Drafting of assemblies

Program / examination achievement

One take-home assignment (30%) and for each semester one -

must-pass - practical proof of performance (each 35%).

Permitted

examination tools

Lecture script and handwritten notes

Page 15: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

15

Media Projector, CAx workstation

Page 16: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

16

Literatur

Sándor Vajna, Andreas Wünsch: NX12 für Einsteiger – kurz und

bündig

Course participants have access to the Siemens e-learning

portal "Learning Advantage".

Page 17: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

17

CNC Technology

Academic Program Mechanical Engineering

Module name CNC Technology

Abbrev. CNC

Subtitle -

Courses -

Semester 6

Module coordinator Dr. Michael Steber

Instructor(s) Dr. Michael Steber

Language German

Classification in curriculum Compulsory elective module

Use in other

academic programs

-

Format / SWH Seminar-type lecture / 2 SWH, internship / 2 SWH

Work requirement In-class program: 45

hrs. self-directed study: 105 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives Learning and classifying control components of tooling machine

controls; creation of CNC programs for different tooling machine

control types; comparison of CAD/CAM systems; and applying

practical examples – also in teams

Contents Principles of CNC programming techniques

Practical exercises on lathe and milling machines

Structure of a CAD/CAM chain with a CAM system and

practical exercises at the milling center

Program / examination achievement

Written examination

Permitted

examination tools

Examination part 1: none

Examination part 2: all legally permitted

Media Projector, chalk board, scripts, and work documents

Literature

Page 18: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

18

Electrical Engineering and Electronics

Academic Program Mechanical Engineering

Module name Electrical Engineering and Electronics

Abbrev. ETE

Subtitle -

Courses -

Semester 3

Module coordinator Dr. Peter Raab

Instructor(s) Dr. Peter Raab

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures with integrated exercises / 4 SWH +

exercises accompanying lectures

Work requirement In-class program: 55 hrs.

self-directed study: 95 hrs.

ECTS 5

Technical prerequisites Engineering Mathematics 1 and 2

Qualification objectives Students will be able to:

- Describe the basic electric quantities in DC circuits and explain

their connections.

- Calculate the equivalent resistance values of simple and

mixed resistive circuits.

- Recognize and calculate linear networks.

- Explain and calculate switching processes of

capacities and inductivities in DC circuits.

- Transfer and calculate the basic electric quantities to AC circuits

(also three-phase systems).

- Clarify the fundamental laws of magnetic fields and calculate

magnetic circuits and induction processes.

- Explain the function of DC and three-phase motors.

Contents Part 1: Foundations:

Page 19: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

19

1. Basic electric quantities

2. The basic electric circuit

3. Calculation of linear networks

4. Electric components

5. The magnetic field / induction

6. The electric AC circuit / three-phase system Part 2:

Electric machines and drives

1. DC drives

- Function, operating characteristics, characteristic curve, and

control of DC machines (DCM)

- Function of buck converter and line-commutated

converter:

2. Three-phase drives

- Function of asynchronous machines (ASM)

- Creation of rotary field

- Power transfer in transformers, characteristic curves and

combined current of ASM

- Function, characteristic curves, operating characteristics of

- synchronous machines (SM); pointer diagrams

- Three-phase drives with DC link converter, principle and

function.

Program / examination achievement

Written examination

Permitted

examination tools

Any student- own tools and simple scientific calculator

Media Visualizer, projector, chalk board, supplemental written

documents

Literature Hagmann, G.: Grundlagen der Elektrotechnik, AULA-Verlag

Wiesbaden.

Wilfried Weißgerber: Elektrotechnik für Ingenieure 1.

Vieweg+Teubner, Wiesbaden 2009.

Martin Vömel, Dieter Zastrow: Aufgabensammlung Elektrotechnik

1: Gleichstrom, Netzwerke und elektrisches Feld. Vieweg Verlag

Wiesbaden, 2009.

Page 20: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

20

Martin Vömel, Dieter Zastrow: Aufgabensammlung Elektrotechnik

2: Magnetisches Feld und Wechselstrom. Vieweg Verlag

Wiesbaden, 2009.

Marinescu, Marlene: "Elektrische und magnetische Felder: Eine

praxisorientierte Einführung", Springer Verlag, 2009.

Nerreter, W.: Grundlagen der Elektrotechnik, Fachbuchverlag

Leipzig.

Paul, S., Paul, R.: "Grundlagen der Elektrotechnik und Elektronik 1:

Gleichstromnetzwerke und ihre Anwendungen", Springer Verlag,

2010.

Fischer, Rolf: "Elektrische Maschinen", Hanser Verlag, 2009.

Späth, Helmut: "Elektrische Maschinen und Stromrichter",

Verlag Braun Karlsruhe, 1991.

Specovius, Joachim: "Grundkurs Leistungselektronik", Springer

Verlag, 2013.

Teigelkötter, Johannes: "Energieeffiziente elektrische Antriebe",

Springer Verlag, 2013.

Page 21: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

20

English Communication Skills (B2)

Academic Program Mechanical Engineering

Module name English Communication Skills (B2)

Abbrev. ECS

Subtitle -

Courses -

Semester 7

Module coordinator Barney Craven, M.A.

Instructor(s) Helen Bulluck, Richard Fry, M.Sc.

Language English

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures, seminar and exercise / 2 SWH

Work requirement In-class program: 22 hrs.

self-directed study: 68 hrs.

ECTS 3

Technical prerequisites No formal prerequisites, but a plus are at least 6 years of school

English enabling student to use language independently (B1 level

of Common European Framework of Reference for Languages)

Qualification objectives Expansion and improvement of individual English skills (reading,

writing, listening comprehension, speaking skills) to the B2 level

of the Common European Framework of Reference for Languages,

with particular consideration of technical and professional topics

Focus lies on the skills of speaking and listening

comprehension

From the Common European Framework of Reference for

Languages (http://www.europaeischer-referenzrahmen.de/):

B2 – Independent use of language

Is able to understand the main contents of complex texts on

specific and abstract topics; also understands technical

discussions in own specialty

Page 22: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

21

Is able to communicate spontaneously and fluently enough to

permit a normal conversations with native speakers without great

effort on either side. Is able to express himself/herself clearly and

in detail on a wide spectrum of topics, explain an opinion on a

current question, and state the advantages and disadvantages of

different possibilities.

Contents - Building verbal skills in English that are used in the professional

world: Social interaction with business partners, leading and

participating in business meetings, planning and conducting

professional presentations in English

- Expansion of vocabulary with technical terminology and

expressions from various areas

Program / examination achievement

Presentation

Permitted

examination tools

Media Projector and chalk board / whiteboard,

electronic scripts, and work documents

language lab

Literature Current literature will be recommended during the course.

Page 23: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

22

Production Technology

Academic Program Mechanical Engineering

Module name Production Technology

Abbrev. FT

Subtitle -

Courses -

Semester 2

Module coordinator Dr. Michael Steber

Instructor(s) Dr. Michael Steber

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lecture / 4 SWH, internship / 1 SWH

Work requirement In-class program: 75 hrs.

self-directed study: 75 hrs.

ECTS 5

Technical prerequisites Basic knowledge: metallic materials

Qualification objectives Assess and select suitable production methods for metallic

materials

Contents - Principles of chipping, wear

- Cutting materials and cooling lubricants

- Tool monitoring

- Lathing

- Milling

- Drilling

- Sanding

- Honing, lapping

- Casting

- Sintering

- Foundations forming technology

- Rolling

- Continuous and discontinuous extrusion

Page 24: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

23

- Smithing

- Deep-drawing

- Bending

- Splitting, punching

- Ablation

- Welding

- Soldering, gluing

Program / examination achievement

Written examination and practical proof of performance

Permitted

examination tools

None

Media Projector, chalk board, scripts, and work documents

Literature Scheipers: Handbuch der Metallbearbeitung, Europa Lehrmittel

2002.

Fritz, Schulze: Fertigungstechnik, Springer Verlag 2001.

König, Klocke: Fertigungsverfahren Vol. 1 to 5, VDI-Verlag 2008.

Page 25: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

24

Free-Form Surface Modeling

Academic Program Mechanical Engineering

Module name Free-Form Surface Modeling

Abbrev. FFM

Subtitle -

Courses -

Semester 6

Module coordinator Dipl.-Eng. Frank Höllein

Instructor(s) Dipl.-Eng. Frank Höllein

Language German

Classification in curriculum Compulsory elective module

Use in other

academic programs

-

Format / SWH Seminar-type lectures with integrated exercises / 4 SWH

Work requirement In-class program: 45

hrs. self-directed study: 105 hrs.

ECTS 5

Technical prerequisites Solid CAD skills in "Siemens NX"

Qualification objectives Students will be able to model bodies from free-form surfaces

using the "Siemens NX" CAx system and derive volumes from

them.

Contents • Curves and curve analysis

• Areas and are analysis

• Area operations

• Facette bodies

Program / examination achievement

One take-home assignment (30%) and one must-pass practical

proof of performance (70%).

Permitted

examination tools

Lecture script and handwritten notes

Media Projector, CAx workstation

Literature Das große Freiformflächen-Buch (HBB-Engineering)

Course participants will have access to the Siemens e-learning

portal "Learning Advantage".

Page 26: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

25

Principles of CFD

Academic Program Mechanical Engineering

Module name Principles of CFD

Abbrev. CFD

Subtitle -

Courses -

Semester 6

Module coordinator Dr. Philipp Epple

Instructor(s) Dr. Philipp Epple

Language German

Classification in curriculum Compulsory elective module

Use in other

academic programs

-

Format / SWH Seminar-type lectures with integrated exercise / 4 SWH

Work requirement In-class program: 45

hrs. self-directed study: 105 hrs.

ECTS 5

Technical prerequisites Principles of fluid dynamics

Qualification objectives Students will be able to:

- Apply the continuity equation (conservation of mass) in

differential form and simplify it for special cases.

- Apply the momentum equation in differential form and

interpret all terms of the equation.

- Distinguish between unstructured and structured

computational mesh.

- Calculate the laminar stress tensor of a fluid and determine the

wall shear stress.

- Define turbulence and derive the Reynolds-averaged

Navier Stokes equations.

- Calculate the turbulent stress tensor of a fluid.

- Discretize the basic equations with the finite difference and

finite volume methods.

Page 27: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

26

Work on small CFD projects independently with ANSYS

CFX.

Contents Conservation equations of fluid dynamics

Discretization of conservation equations

Computational meshes: structured and unstructured

meshes

Solution procedure: Finite differences and finite volume

turbulence modeling

Structure of a numerical flow simulation ANSYS

CFX and Workbench

Integration of CAD programs and Excel in Workbench

geometry generation in ANSYS: Design models grid generation

with ANSYS ICEM and Workbench analysis scripts in PERL

Sample projects from mechanical engineering

Program / examination achievement

Written examination

Permitted

examination tools

All legally permitted

Media Chalk board, projector, supplemental written documents

Literature Lecheler, S.: Numerische Strömungsberechnung, Schneller Einstieg

durch anschauliche Beispiele, 4th updated and expended edition,

Vieweg Teubner Verlag, Wiesbaden 2017.

Laurien, E. and Örtel Jr., H.: Numerische Strömungsmechanik.

Grundgleichungen und Modelle – Lösungsmethoden –Qualität und

Genauigkeit, 6th revised and expanded edition, Vieweg Teubner

Verlag, Wiesbaden 2018.

Schwarze, R.: CFD-Modellierung. Grundlagen und Anwendungen

bei Strömungsprozessen. Springer Vieweg, Berlin 2013.

Ferziger, J.H. and Peric, M.: Numerische Strömungsmechanik,

Springer Verlag, Berlin 2008.

Tu, J., Yeoh, G.H., Liu,C.: Computational Fluid Dynamics, a Practical

Approach, Butterworth-Heinemann, Elsevier, 2008.

Anderson Jr., J.D.: Computational Fluid Dynamics, The Basics

with Applications, McGraw-Hill, 1995.

Page 28: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

27

Hirsch, C.: Numerical Computation of Internal and External Flows,

Second Edition, Butterworth-Heinemann, Elsevier, 2007.

Principles of fluid dynamics

Zierep, J, Bühler, K.: Grundzüge der Strömungslehre, 8th edition,

Vieweg+Teubner, 2010.

Sigloch, Herbert: Technische Fluidmechanik, Springer-Verlag,

Berlin 2009.

Bohl, W., Elmendorf, W.: Technische Strömungslehre, 13th

revised edition, Vogel Buchverlag, Würzburg, 2005.

Page 29: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

28

Principles of Automotive Technology

Academic Program Mechanical Engineering

Module name Principles of Automotive Technology

Abbrev. GFT

Subtitle -

Courses -

Semester 6

Module coordinator Dr. Hartmut Gnuschke

Instructor(s) Dr. Hartmut Gnuschke

Language German

Classification in curriculum Compulsory elective module

Use in other

academic programs

-

Format / SWH Seminar-type lectures / 4 SWH

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives Students will be able to correctly describe components and

subsystems of road vehicles in terms of concept and function

and will be able to assess them correctly in terms of the overall

vehicle system.

Contents Vehicle types; four-stroke Otto engine, four-stroke Diesel engine;

fuels;

Power transfer: drive types, clutch, manual transmission,

automatic transmission, wheel drive; Chassis: axle geometry,

steering, suspension, vibration damping;

Chassis: wheel suspension, tires and wheels;

Brakes: foundations, hydraulic braking system, vehicle dynamics

Program / examination achievement

Written examination

Permitted

examination tools

Simple scientific calculator

Media Projector

Page 30: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

29

Literature Gerigk, Bruhn e.a.: Kraftfahrzeugtechnik (westermann).

Page 31: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

30

Foundations of Finite Elements Method

Academic Program Mechanical Engineering

Module name Foundations of Finite Elements Method

Abbrev. FEM

Subtitle -

Courses -

Semester 3

Module coordinator Dr. Ingo Faber

Instructor(s) Dr. Ingo Faber

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures / 2 SWH, computer exercises / 2 SWH

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives Students will develop the foundations of finite element

analysis in the area of structural mechanics.

While using conservation theorems (e.g. Castigliano's theorem),

students will be able to calculate the deformation behavior of

stick and rod structures.

While using the theorem of minimum potential energy, students

will be able to develop element stiffness matrices and to derive

and solve the necessary linear equation systems for loaded and

suspended stick structures without the aid of computers.

Students will be able to operate a common commercial

finite element program system.

Students will be able to transfer CAD models to FEM models

in the area of construction-related calculations. They will be

able to independently develop suitable boundary conditions

for finite

Page 32: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

31

element calculations, based on real-world loads.

Students will practice the creation of calculation networks for

arbitrary construction components for finite element

calculations.

Students will be able to interpret the calculation results and

draw suitable conclusions concerning the strength and

stiffness of the studied components.

Contents Basic example; Boolean correlation matrix; virtual work /

minimum energy principle; Castigliano's theorem; Ritz method;

material matrices; stiffness matrices; trial functions; element

types; and boundary conditions

Practical exercises in Ansys Workbench: program structure;

material definitions; boundary conditions; post-processing;

network structure ; linear calculations; multi-step analysis;

and non-linear contact calculations.

Program / examination achievement

Written examination

Permitted

examination tools

All written documents

Simple scientific calculator

Media Chalk board, PowerPoint

Literature Expert Verlag / Müller, Groth: FEM für Praktiker – Band 1.

Page 33: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

32

Foundations of Construction

Academic Program Mechanical Engineering

Module name Foundations of Construction

Abbrev. KON

Subtitle Technical drawing and methodology

Courses -

Semesters 1 and 2

Module coordinator Dr. Kai Hiltmann

Instructor(s) Dipl. Eng. Hans-Herbert

Hartan Dr. Kai Hiltmann

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures / KON1: 2 SWH; KON2: 1 SWH

exercises and internships to accompany lectures / KON1: 1

SWH; KON2: 2 SWS

Work requirement In-class program: 68 hrs.

self-directed study: 82 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives KON1:

Manual and computer-aided implementation of construction

drawings based on functional, production, and

standardization considerations.

KON2:

Methodological solution of an assignment defined with

specifications. Students will be able to subdivide the assignment

into sub-problems, derive functions, find different principal

solutions, and create concepts from methodically selected

partial solutions. Students can employ variational and design

principles for their design of the solution.

Contents KON1:

Page 34: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

33

Most important procedures for geometric representation of

technical objects:

- Multi-chalk-board projection

- Representation of points, lines, and planes

- Representation of bodies, plane body sections,

intersections, unfoldings

- Representation of technical objects using orthogonal

axonometry

Standard representation of machine parts and smaller

assemblies:

- dimensioning, tolerances, and fits, surfaces

- Representation using sketched drawings and 3D-CAD drawings

- Representation of small constructions with prescribed shape

- Creation of design descriptions and bills of materials

- Application of an industrially used 3D-CAD program KON2:

Design systematics pursuant to VDI 2221 ff

- Introduction to project work

- The 7 steps of the designer pursuant to VDI 2221

- Customer specification and performance specification

- What does the customer want?

- Functions and functional structure

- Finding and selection solution principles

- Modular structure

- Principles of design

- Principles of variation

The taught content will be applied in an exercise project.

Program / examination achievement

Proof of performance to accompany exercises in KON1,

practical proof of performance with presentation in KON2

Permitted

examination tools

All legally permitted

Media KON1: Lecture with chalk board, projector etc., drawing

exercises KON2: Lecture with chalk board, projector etc.,

design and constructive exercises, construction of a model,

Literature KON1:

Page 35: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

34

Fischer, U. and Gomeringer, R.: Tabellenbuch Metall. Haan-

Gruiten: Verl. Europa-Lehrmittel Nourney , 44th edition 2008

(Series Europa technical books for metal-related professions) .

-- ISBN 978-3- 8085-1078-0.

Hesser, W.; Hoischen, H. and Hoischen-Hesser: Technisches

Zeichnen. Berlin : Cornelsen, 32nd ed. 2009. -- ISBN

9783589241323.

Labisch, S. and Weber, C.: Technisches Zeichnen. Wiesbaden :

Vieweg, 3rd edition 2009 (Series Viewegs technical books of

technology) .

-- ISBN 978-3-8348-0312-2.

KON2:

Conrad, K.-J.: Grundlagen der Konstruktionslehre. Munich:

Hanser, 5th ed. 2010 . -- ISBN 978-3-446-42210-0.

Norm VDI 2221: Methodik zum Entwickeln und Konstruieren

technischer Systeme und Produkte.

Norm VDI 2222 Sheet 1: Konstruktionsmethodik - Methodisches

Entwickeln von Lösungsprinzipien.

Norm VDI 2222 Sheet 2: Konstruktionsmethodik; Erstellung und

Anwendung von Konstruktionskatalogen.

Page 36: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

35

Principles of Physics

Academic Program Mechanical Engineering

Module name Principles of Physics

Abbrev. PH

Subtitle -

Courses -

Semester 1

Module coordinator Dr. Martin Prechtl

Instructor(s) Dr. Martin Prechtl

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures (with integrated exercises) / 4 SWH,

physics colloquium / 1 SWH

Work requirement In-class program: 55 hrs.

self-directed study: 95 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives Basic knowledge of elementary laws of classical physics

Correct treatment of phys. concepts / units

Ability to understand techn. applications in terms of phys.

effects Contents • Lecture unit 01: Principles of physics methodology

• Lecture unit 02: Bohr’s nuclear model

• Lecture unit 03: The nucleus, radioactivity

• Lecture unit 04: Kinetic gas theory

• Lecture unit 05: Real gases and fluids

• Lecture unit 06: Solid state properties

• Lecture unit 07: Electric fields, magnetism

• Lecture unit 08: Hertz dipole

• Lecture unit 09: Diffraction and interference

Page 37: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

36

• Lecture unit 10: Heat radiation, laser principle

• Lecture unit 11: Emission of electrons

• Lecture unit 12: Special relativity

• Lecture unit 13: The solar system, cosmology

Physics colloquium (discussion of selected topics and questions

from different areas of physics in full assembly)

• History of physics (milestones)

• Selected phys. issues from everyday life

• Exercises on "physical computation"

• Current research – e.g. nuclear fusion

Program / examination achievement

Written examination

Permitted

examination tools

Self-compiled collection of formulas, simple scientific calculator

Media Chalk board, visualizer / projector, supplemental written

documents

Literature H.A. Stuart: Kurzes Lehrbuch der Physik. Berlin, Heidelberg:

Springer-Verlag, 2014

D. Meschede: Gerthsen Physik. Berlin, Heidelberg: Springer-Verlag,

2015

B. Bahr, J. Resag, K. Riebe: Faszinierende Physik. Berlin,

Heidelberg: Springer-Verlag, 2015

R. Dohlus: Physik mit einer Prise Mathe. Berlin, Heidelberg:

Springer-Verlag, 2014

E. Hering, R. Martin: Physik für Ingenieure. Berlin, Heidelberg:

Springer-Verlag, 2012

Page 38: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

37

Advanced Dynamics / Machine Dynamics

Academic Program Mechanical Engineering

Module name Advanced Dynamics / Machine Dynamics

Abbrev. HDY

Subtitle -

Courses -

Semester 6

Module coordinator Dr. Martin Prechtl

Instructor(s) Dr. Martin Prechtl

Language German

Classification in curriculum Compulsory elective module

Use in other

academic programs

Bachelor "Automotive Technology"

Format / SWH Seminar-type lectures / 4 SWH

Work requirement In-class program: 45

hrs. self-directed study: 105 hrs.

ECTS 5

Technical prerequisites Structural Mechanics 1, 2, & 3, Engineering Mathematics 1 &

2, Mathematical Methods and Models

Qualification objectives Preliminary design of a drive based on the fundamental

methods of dynamics

Application of the principle of virtual work and Lagrange’s

equations of the first and second type to determine the

equations of motion

Basic understanding of the properties of the motion of spinning

tops

Calculation of dynamic bearing reactions and the required

masses for balancing components

Mathematical description and analysis of coupled oscillators

Calculation of bending resonance frequencies and

critical revolution speeds

Basic understanding of the mathematical modeling of

continuum vibrations

Page 39: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

38

Contents Mathematical methods:

d’Alembert's principle according to Lagrange, virtual work,

Lagrange's equations of the first and second type, generalized

coordinates and forces, constraints

Spatial rigid body kinetics:

principle of center of gravity or principle of moments, principle

of work and energy, angular momentum, inertia tensor /

matrix, Steiner-Huygens theorem, principal axis system, Euler

derivation, Euler’s equations, motion of force-free and non-

force-free, symmetrical tops, gyroscopic movement, self-

centering effect, dynamic bearing reactions, structural analysis

and dynamic balancing

Advanced vibration theory:

systems with several degrees of freedom (DE system), angular

eigenfrequency, harmonic excitation, frequency response and

vibration damping, bending vibrations (massless beams with

attached point masses), influence coefficient and Castigliano’s

theorem, critical revolution speeds, and bending vibrations of

continua

Program / examination achievement

Written examination

Permitted

examination tools

Textbook Mathematische Dynamik (Prechtl), lecture script,

arbitrary collection of mathematical formulas, simple scientific

calculator, self-compiled collection of formulas

Media Chalk board, projector, supplemental written documents

Literature Prechtl, M.: Mathematische Dynamik – Modelle und analyt.

Methoden der Kinematik und Kinetik. Berlin, Heidelberg:

Springer Spektrum; 2015.

Gross, D.; Hauger, W.; Schröder, J.; Wall, W.A.: Technische

Mechanik 3 – Kinetik. Berlin, Heidelberg: Springer-Verlag; 2012.

Gross, D.; Ehlers, W.; Wriggers, P.; Schröder, J.; Müller, R.: Formeln

und Aufgaben zur Technischen Mechanik 3. Berlin, Heidelberg:

Springer-Verlag; 2012.

Page 40: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

39

Hydraulics and Pneumatics

Academic Program Mechanical Engineering

Module name Hydraulics and Pneumatics

Abbrev. HYP

Subtitle -

Courses -

Semester 6

Module coordinator Dr. Philipp Epple

Instructor(s) Manuel Fritsche M.Eng.

Language German

Classification in curriculum Compulsory elective module

Use in other

academic programs

-

Format / SWH Seminar-type lectures / 4 SWH

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites Principles of fluid dynamics and thermodynamics

Qualification objectives The students will be able to:

- Determine the properties of fluids at different pressures and

temperatures.

- Calculate pipe flow.

- Describe the fundamental components of pneumatic and

hydraulic circuits and explain their function.

- Design and calculate simple pneumatic and hydraulic circuits.

Contents - Fluids and fluid properties

- Pipe hydraulics

- Hydraulic construction elements: hydro motor, hydro

cylinder, and directional valves

- Circuit diagrams (incl. simulation)

Page 41: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

40

- design and calculation of hydraulic and pneumatic

systems

Program / examination achievement

Written examination

Permitted

examination tools

All legally permitted

Media Chalk board, projector, supplemental written documents

Literature [1] Bauer, G.: Ölhydraulik: Grundlagen, Bauelemente,

Anwendungen, Springer Vieweg, 10th edition, 2011.

[2] Grollius, H.-W.: Grundlagen der Pneumatik, Hanser Verlag,

3rd updated edition, 2012.

[3] Grollius, H.-W.: Grundlagen der Pneumatik, Hanser Verlag,

7rd updated edition, 2014.

[4] Gebhardt N., Will, D.: Hydraulik: Grundlagen, Bauelemente,

Anwendungen, Springer Vieweg, 6th edition, 2015.

[5] Watter, H.: Grundlagen, Bauelemente, Anwendungen,

Springer Vieweg, 4th edition, 2015.

Page 42: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

41

Industry Internship

Academic Program Mechanical Engineering

Module name Industry Internship

Abbrev. IP

Subtitle -

Courses -

Semester 5

Module coordinator Dr. Gundi Baumeister

Instructor(s) Dr. Gundi Baumeister

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH required internship in industrial operations

Work requirement 22 weeks (4- day week)

ECTS 22

Technical prerequisites Advancement authorization to 3rd semester pursuant to SPO (§5

Para. 2) and successful completion and recognition of basic

internship pursuant to SPO (§7 Para. 1 and 2)

Qualification objectives Students will be able to analyze engineering challenges in

operating processes/projects that relate to the academic program;

they will also develop suitable solutions, and implement them

correspondingly. They will be able to represent them, assess their

own solution critically, and derive conclusions. Contents The course focuses on the application of theoretical knowledge to

issues and topics in professional practice. Students should select a

subject-related focus which corresponds to their personal

specialization area. Possible areas include development,

construction, projecting, production, production preparation and

management, quality management, and optimization of technical

processes.

Program / examination achievement

Technical-scientific report

Page 43: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

42

Examination performance is the prerequisite for

recognition of the practical semester.

Permitted

examination tools

(Not relevant)

Media Projector, chalk board

Literature Pamphlet for the required internship in the Bachelor's

program in Mechanical Engineering at Coburg University of

Applied Sciences, (can be downloaded from the intranet of HS

Coburg). Guideline for scientific work, Coburg, (can be

downloaded from the intranet of HS Coburg).

Page 44: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

43

Computer science for engineers 1

Academic Program Mechanical Engineering

Module name Computer Science for Engineers 1

Abbrev. INI1

Subtitle -

Courses -

Semester 1

Module coordinator Dr. Ralf Reißing

Instructor(s) Dr. Ralf Reißing Dipl.

Eng. Anton Siebert

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures / 2 SWH, programming exercises / 2

SWH

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives - Interpret and calculate number and symbol presentations in

computers

- Describe basic concepts of programming languages

- Analyze and represent algorithms in different forms

- Analyze and program simple Matlab programs

- Use the Matlab tool as an engineer

Contents History and foundations of information technology

Representation of numbers and symbols in the

computer

Algorithms, representation of algorithms, sample

algorithms, algorithm analysis

Basic constructs of script language in Matlab

Program / examination achievement

Written examination

Page 45: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

44

Permitted

examination tools

Everything except computers (exception: simple scientific

calculator)

Media Projector, chalk board, scripts, computer exercises

Literature Ernst: Grundkurs Informatik. Springer.

Herold, Lurz, Wohlrabe: Grundlagen der Informatik. Pearson.

Stein: Einstieg in das Programmieren mit MATLAB. Hanser.

Beucher: MATLAB und Simulink: Grundlegende Einführung für

Studenten und Ingenieure in der Praxis. Pearson.

Page 46: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

45

Computer Science for Engineers 2

Academic Program Mechanical Engineering

Module name Computer Science for Engineers 2

Abbrev. INI2

Subtitle -

Courses -

Semester 2

Module coordinator Dr. Ralf Reißing

Instructor(s) Dr. Ralf Reißing Dipl.

Eng. Anton Siebert

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures / 2 SWH, programming exercises / 2

SWH

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites Computer Science for Engineers 1

Qualification objectives - Apply advances concepts in algorithms

- Use advanced concepts of the C programming language

- Analyze and program complex Matlab programs

- Solve technical problems with Matlab

- Perform independent software project in a team

Contents More complex sample algorithms

Advanced concepts in Matlab and Matlab scripts

Software development process: requirement acquisition,

design, implementation, quality assurance, and testing

Program / examination achievement

Written examination

Permitted

examination tools

Everything except computers (exception: simple scientific

calculator)

Media Projector, chalk board, scripts, computer exercises

Page 47: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

46

Literature see Computer science for engineers 1

Page 48: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

47

Engineering Mathematics 1

Academic Program Mechanical Engineering

Module name Engineering Mathematics 1

Abbrev. IM1

Subtitle -

Courses -

Semester 1

Module coordinator Dr. Markus Stark

Instructor(s) Dr. Markus Stark

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures / 4 SWH, exercises to accompany lecture

/ 1 SWH

Work requirement In-class program: 55 hrs.

self-directed study: 95 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives The students will be able

to

(subject-related skills):

- Make logical connections in the form of mathematical

statements.

- Prove a mathematical statement using complete

induction.

- Describe a locus in a vector parameter representation.

- Check the linear independence of vectors.

- Matrix calculations (e.g. inverse matrix).

- Solve systems of linear equations.

- Describe complex numbers and find complex solutions of

equations.

Page 49: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

48

Methodological skills:

- understanding and solving physical and engineering problems in

a mathematical manner.

Contents Calculating with real and complex numbers

Foundations of logic, algebra of sets, and combinatorics

Analytical geometry

Vectors, matrices, determinants, systems of linear equations,

eigenvalues and eigenvectors

Program / examination achievement

Written examination

Permitted

examination tools

arbitr. collection of mathematical

formulas, simple scient. calculator,

Own collection of formulas (at most six DIN A4 pages)

Media Lecture, seminar-type lectures, exercises

Literature Papula: Mathematik für Ingenieure.

Meyberg/Vachenauer: Höhere Mathematik.

Strang: Introduction to Applied Mathematics.

Evans: Engineering Mathematics.

Kreyszig: Advanced Engineering Mathematics.

Page 50: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

49

Engineering Mathematics 2

Academic Program Mechanical Engineering

Module name Engineering Mathematics 2

Abbrev. IM2

Subtitle -

Courses -

Semester 2

Module coordinator Dr. Martin Prechtl

Instructor(s) Dr. Martin Prechtl

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures / 4 SWH, exercises / 1 SWH

Work requirement In-class program: 55 hrs.

self-directed study: 95 hrs.

ECTS 5

Technical prerequisites Engineering Mathematics 1

Qualification objectives Knowledge and confident use of expanded mathematical

concepts and procedures

(Focus area: differential and integral calculus)

Contents Real-valued functions, derivative function

Concept of a function, inverse function, shifting and reflection of

graphs, continuity, trigonometric equations, hyperbolic and area

functions, polynomials, fundamental theorem of algebra, rational

functions, polynomial division & Horner’s scheme

Slope of a curve, definition of first derivative, differential

quotient, higher derivatives, product rule, quotient rule, chain

rule, derivation of inverse function, implicit differentiation,

curve discussion, zeros and poles/singularities, and relative and

absolute maxima

Page 51: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

50

Extreme value problems, Newton-Raphson procedure and

Regula falsi, linearization, differential, error estimation, Taylor

series, Lagrange remainder representation, power series

development, MacLaurin series l

Foundations of integral calculus

Antiderivative, indefinite integrals, rules of computation,

substitution in indefinite integrals, integration of rational

functions, definite integrals (Riemann int.), fundamental

domain, fundamental theorem of calculus, and integral function

Substitution in certain integrals, partial integration, improper

integrals, selected applications of integral calculus: Integral mean

value, volume calculation, center of gravity for bodies of

revolution, Guldin theorem

Functions with several real variables

Functions, partial derivations, continuity, Schwarz theorem,

complete differential, error propagation (absolute and relative

error, standard deviation), multiple integrals (in particular double

integrals incl. substitution / variable transformation), Jakobi

determinant, volume and center of gravity calculation, Guldin

theorem, area and mass moment of inertia, relative extrema,

optimization with additional constraints, Lagrange multipliers, and

regression calculation (in particular linear regression)

Program / examination achievement

Written examination

Permitted

examination tools

Lecture script, arbitrary collection of mathematical formulas,

simple scientific calculator, self-compiled collection of formulas

Media Visualizer, projector, laptop, chalk board

Literature Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler

(3 volumes, 1 exercise book, and collection of formulas),

Vieweg+Teubner

Bronstein-Semendjajew: Collection of mathematical formulas

“Taschenbuch der Mathematik”, Harri Deutsch

Page 52: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

51

Engineering -Practical Project

Academic Program Mechanical Engineering

Module name Engineering - Practical Project

Abbrev. IPP

Subtitle -

Courses -

Semester 7

Module coordinator Dr. Ingo Faber

Instructor(s) By appointment

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Take-home assignment

Work requirement Self-directed study: 210 hrs.

ECTS 7

Technical prerequisites -

Qualification objectives Students will be able to find solutions independently - also in

teams - with independent time management for a scientific

problems from the field of Mechanical Engineering.

They will be able to study, document, and solve the problem

independently.

Contents Studying a problem from the above area, finding solution

independently, independent time management, documentation

as final report with specifications for scientific documentation

and presentation

Program / examination achievement

Final report

Permitted

examination tools

(Not relevant)

Media -

Literature Assignment-specific

Page 53: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

52

Construction and Machine Elements 1

Academic Program Mechanical Engineering

Module name Construction and Machine Elements 1

Abbrev. KM1

Subtitle -

Courses -

Semester 3

Module coordinator Dr. Markus Stark

Instructor(s) Dr. Markus Stark

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures / 4 SWH, exercises to accompany lecture

/ 1 SWH

Work requirement In-class program: 55 hrs.

self-directed study: 95 hrs.

ECTS 5

Technical prerequisites Production Technology, TM2 (Mechanics of Materials)

Qualification objectives Students will

- Know essential design rules, principles, and guidelines and

will be able to apply the correctly for simple systems.

- Be able to design simple components, in particular axles

and shafts, for static and dynamic loads while taking into

consideration the effect of notches.

- Know different machine elements and their different properties

and will be able to select and design them for static and dynamic

loads.

Contents Design: Design principles and guidelines

Strength calculation

Machine elements:

Page 54: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

53

- Springs

- Connection elements and procedures: Screws, rivets, pins, bolts,

securing element and gluing, soldering, welding

- Shafts / axles

Program / examination achievement

Written examinations and research papers

Permitted

examination tools

Lecture script, without Chap. 2 Design and without

exercises and/or earlier examination problems;

Roloff/Matek Maschinenelemente - formulas; and

Roloff/Matek Maschinenelemente – tables, collection

of formulas for lectures; and

simple scientific calculator

Media Chalk board, projector, overhead, computer

Literature Wittel, H.; Muhs, D. Jannasch, D. Voßiek, J.: Roloff/Matek

Maschinenelemente. (Normung, Berechnung, Gestaltung und

Tabellenbuch). Springer Vieweg, 23rd ed., 2017.

Wittel, H. ; Muhs, D. ; Jannasch, D. ; Voßiek, J. Roloff/Matek

Maschinenelemente Formelsammlung. Springer Vieweg, 13th ed.,

2016.

Wittel, H. ; Muhs, D. ; Jannasch, D. ; Voßiek, J. Roloff/Matek

Maschinenelemente Aufgabensammlung. Wiesbaden:

Vieweg+Teubner Verlag, 18th ed., 2016.

Fischer, U.; et. al.: Tabellenbuch Metall.: Verlag Europa-Lehrmittel,

46th ed., 2014.

Decker, K.-H.: Machine elements: Gestaltung und Berechnung.

Munich, Vienna: Carl Hanser, 19th edition, 2014.

Decker, K.-H.: Machine elements: Aufgaben.

Schlecht, B.: Maschinenelemente 1. Munich: Pearson Studium,

2007.

Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.-H.: Konstruktionslehre.

Berlin, Heidelberg: Springer, 7th ed., 2006.

Hoischen, H.; Hesser, W.: Technisches Zeichnen. Berlin: Cornelsen

Verlag, 32nd edition, 2009.

Alex, D.; et. al.: Klein – Einführung in die DIN-Normen. Stuttgart:

Teubner Verlag / Berlin: Beuth Verlag, 14th ed., 2008.

Page 55: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

54

Schmid, D. et al.: Konstruktionslehre Maschinenbau. Haan-

Gruiten: Europa Lehrmittel, 3rd ed., 2013.

Page 56: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

55

Construction and Machine Elements 2

Academic Program Mechanical Engineering

Module name Construction and Machine Elements 2

Abbrev. KM2

Subtitle -

Courses -

Semester 4

Module coordinator Dr. Winfried Perseke

Instructor(s) Dr. Winfried Perseke

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures with integrated exercises / 4 SWH,

exercise in groups (ca. 6-10 participants) with take-home

assignments (research papers) / 1 SWH

Work requirement Workload corresponding to 5 credits ca. 150 hrs.

ECTS 5

Technical prerequisites Technicals drawing, descriptive Geometry, CAD (all

covered in module KonMe1), Structural Mechanics

Qualification objectives Ability to develop, represent, and calculate mechanical

engineering products using standardized elements and

assemblies while taking into consideration the design rules

and guidelines

Contents Knowledge, selection, and calculation of the most important

machine elements in the area of:

- Shaft-hub joints

- Clutches

- Rolling and plain bearings

- Transmissions

Design of installation locations of machine elements and

standardized assemblies

Page 57: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

56

Machine element calculation software and its

application

Working on prescribed design tasks with own concepts and

design possibilities

Creating and presenting technical drawings and product

descriptions

Program / examination achievement

Written examinations and research papers

Permitted

examination tools

Written documents, simple scientific calculator

Media Projector, chalk board, overhead projector, online exercises

Literature Script of the module coordinator.

Roloff/Matek: Maschinenelemente, Vieweg Verlag.

Niemann/Winter/Höhn: Maschinenelemente, Springer Verlag.

Page 58: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

57

Plastic-Specific Construction and Composite Materials

Academic Program Mechanical Engineering

Module name Plastic-Specific Construction and Composite Materials

Abbrev. KKV

Subtitle -

Courses -

Semester 6

Module coordinator Dr. Alexander Rost

Instructor(s) Dr. Alexander Rost

Language German

Classification in curriculum Compulsory elective module

Use in other

academic programs

-

Format / SWH Seminar-type lectures / 4 SWH

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites None, basic knowledge of materials, plastic a plus

Qualification objectives Students will learn what is necessary to design a plastic

component based on different criteria. They will learn to design

a component to meet all load, plastic, production, and cost

requirements and to select the most suitable plastic material.

They will also acquire a basis for assessing the behavior of the

components under loads.

In the second part of the lecture, students will learn about matrix

and fiber materials as well as the processing of fiber composites,

and will acquire qualifications for designing fiber composite

structures.

Contents Knowledge and ability to develop and process plastics and fiber

composite materials

Plastics (fundamental properties)

Page 59: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

58

The development and design process for complex plastic

parts

Creating customer and performance specification sheets,

project management

Injection molding and tool technology

Design guidelines and material selection

Simulation

Design examples and machine elements from KU

refinement processes for plastics

Processing and chipping techniques

Fiber composite materials / components

Fiber types and properties

Matrix types and properties

Processing methods

Design of components, testing

procedure

Program / examination achievement

Written examination

Permitted

examination tools

Simple scientific calculator

Media Projector, chalk board, overhead projector, sample components

Literature Ehrenstein: Polymer Werkstoffe, Carl Hanser Verlag, 2011.

Michaeli et.al.: Kunststoff-Bauteile werkstoffgerecht konstruieren,

Carl Hanser Verlag, 1995.

DuPont Technische Kunststoffe, Internet.

Schreyer: Konstruieren mit Kunststoffen, Carl Hanser, 1992.

Ehrenstein: Mit Kunststoffen konstruieren, 3rd ed., Hanser, 2007.

Erhard: Konstruieren mit Kunststoffen, 4th ed., Hanser, 2008.

Potente: Fügen von Kunststoffen, Carl Hanser Verlag, 2004.

Ehrenstein: Faserverbundwerkstoffe, Hanser Verlag 1992.

AVK – Industrievereinigung Verstärkte Kunststoffe e.V.: Handbuch

Faserverbundwerkstoffe / Composites, 4th ed., Vieweg, 2014.

Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden,

Springer, 2007.

Michaeli; Wegener: Dimensionieren mit

Faserverbundkunststoffen, Hanser Verlag.

Page 60: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

59

Flemming et.al.: Faserverbundbauweisen Vol. 1-4, Springer.

Page 61: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

60

Mechanical Engineering Internship and Occupational Safety

Academic Program Mechanical Engineering

Module name Mechanical Engineering Internship and Occupational Safety

Abbrev. MTPA

Subtitle -

Courses -

Semester 6

Module coordinator Dipl.-Eng. Hans-Herbert Hartan

Instructor(s) Dipl. Eng. Hans-Herbert Hartan et al.

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Internship / 4 SWH

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives Students will be able to perform tests on machines and systems.

They will be able to produce and analyze measurement logs and

link the insights they have gained to the theoretical contents of

basic subjects.

The practical training will be performed at test stations and

production machines. Students will learn their functions and

mechanisms, change parameters in practical trials, and

document and analyze measurements.

Contents Electric drive and converter technology

Plastic processing methods

Measurement technology, control technology, and

system simulation

Hydraulics and pneumatics

Occupational

safety

Page 62: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

61

MT2= measurement data acquisition and

processing

MT3= thermography

RT= computer

simulation

STR= flow technology

HD= hydraulic test

station

EAS 1-3= electric drive and converter technology

Program / examination achievement

Proof of performance to accompany program

Permitted

examination tools

None

Media -

Literature -

Page 63: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

62

Mathematical Methods and Models

Academic Program Mechanical Engineering

Module name Mathematical Methods and Models

Abbrev. MMM

Subtitle -

Courses -

Semester 3

Module coordinator Dr. Martin Prechtl

Instructor(s) Dr. Martin Prechtl

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures (with integrated exercises) / 4 SWH,

accompanying exercises / 1 SWH

Work requirement In-class program: 55 hrs.

self-directed study: 95 hrs.

ECTS 5

Technical prerequisites Engineering Mathematics 1 and 2

Qualification objectives Mathematical-physical model building using simple technical

examples from mechanical engineering and its surrounding areas

Methods of advanced mathematics with applications in

mechatronics

Contents Differential equations

Ordinary first order DEs, graphical solution, Lipschitz continuity,

balance equations, variation of constants according to Lagrange,

superposition principle, linear n-th order DEs, Wronskian

determinant, zeros of a real polynomial, damped vibrations,

partial DEs on the example of bending vibration series, in part.

function series

Numerical series, geometric series, convergence and divergence,

absolute and normal convergence, power series, radius of

convergence, Taylor series, Lagrange remainder

Page 64: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

63

Power series development, Fourier series (real and complex

representation), fundamental and harmonic oscillation,

amplitude spectrum, Dirichlet theorem, harmonic distortion

factor, integral transformations

Fourier transformation, Delta peak/distribution, Laplace

transformation, Heaviside step function, generalized derivation,

derivative theorems, solution of AWPs, transfer function,

convolution integral, convolution theorem, impulse and step

response, LZI systems

[optional: Mathematical optimization

Relative and absolute extrema (rev.), optimization problems with

additional constraints, Lagrange multipliers, simplex algorithm]

Program / examination achievement

Written examination

Permitted

examination tools

Lecture script, any collection of mathematical formulas, self-

compiled collection of formulas, simple scientific calculator

Media Chalk board, projector, supplemental written documents

Literature Papula: Mathematik f. Ingenieure u. Naturwiss. Vol. 1, 2. Vieweg;

2001.

Erven, Schwägerl: Mathematik für Ingenieure. Oldenburg; 2008.

Hoffmann, Marx, Vogt: Mathematik für Ingenieure 1, 2; Pearson;

2006.

Heuser: Gewöhnliche Differentialgleichungen. Teubner; 1995.

Brigola: Fourieranalysis, Distributionen und Anwendungen.

Vieweg; 1997.

Page 65: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

64

Measurement Technology & Sensor Systems

Academic Program Mechanical Engineering

Module name Measurement Technology & Sensor Systems

Abbrev. MTS

Subtitle -

Courses -

Semester 4

Module coordinator Dr. Oliver Koch

Instructor(s) Dr. Oliver Koch

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures / 4 SWH

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives Concepts and definitions of measurement technology

Determination of systematic and random deviations from

measurement values and implementation of capability

calculations

Applications of converter principles for the detection of

physical parameters

Applications of measurement technology with

regard to production technology

Contents Development of basic measurement

technology concepts, definitions, SI

units, static and dynamic behavior

Measurement deviations, measurement errors, error

propagation, sensors

Detection of measured variables of

physical parameters

Page 66: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

65

Program / examination achievement

Written examination

Page 67: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

66

Permitted

examination tools

All legally permitted

Media Chalk board, projector, supplemental written documents

Literature Pfeifer, Schmitt: Fertigungsmesstechnik, Oldenbourg

Wissenschaftsverlag, 2010.

Page 68: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

67

Modern Production Technology

Academic Program Mechanical Engineering

Module name Modern Production Technology

Abbrev. MPR

Subtitle -

Courses -

Semester 6

Module coordinator Dr. Michael Steber

Instructor(s) Dr. Michael Steber

Language German

Classification in curriculum Compulsory elective module

Use in other

academic programs

Bachelor "Automotive Technology"

Format / SWH Seminar-type lectures / 3 SWH, program/project paper / 1 SWH

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives Ability to assess, select, and apply modern production

technologies

Contents Computer-integrated production

Networking of WZM controls

Tooling machines for flexible production systems (FPS)

Tool administration and process monitoring

Material flow components

Device periphery and handling installation

Control of flexible production systems

MDE/BDE systems

Joining process in electronics production

Joining process for detachable and non-detachable joints

Simulation

Profitability consideration of FPS

Page 69: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

68

Planning of FPS

Program / examination achievement

Written examination and research papers

Permitted

examination tools

None

Media Projector, chalk board, scripts, and work documents

Literature

Page 70: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

69

Product Definition and Conception

Academic Program Mechanical Engineering

Module name Product Definition and Conception

Abbrev. PDK

Subtitle -

Courses -

Semester 6

Module coordinator Dr. Kai Hiltmann

Instructor(s) Dr. Kai Hiltmann

Language German

Classification in curriculum Compulsory elective module

Use in other

academic programs

Format / SWH Seminar-type lectures / 2 SWH, exercise and project paper / 2

SWH

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites Recommended: methodological procedure pursuant to VDI 2221 et seq.

Qualification objectives As a student or newcomer to the profession, you will typically

receive a defined problem that you have to solve. Where does this

definition of the problem come from? After this course, you will be

able to define an imprecise need or problematic situation and will

be able to specify the objectives and partial objectives for it. For

this purpose, you will employ methods to recognize possibilities

for improvement and will derive objectives from this. These

objectives are also typically connected with counter-objectives,

which you will be able to recognize. This is a special aspect of

Coburg’s methodology. From a long list of individual objectives,

you will methodically select the most important ones and will find

technical parameters for it using the QFD method. You will list

these in a specification sheet. You will then develop different

solution concepts using the TRIZ method.

Page 71: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

70

Contents Product planning pursuant to

VDI 2220, product definition

pursuant to the Linde quality

function, deployment

Program / examination achievement

Academic/scientific report (take-home assignment, 3/4 of grade),

examination (1/4 of grade)

Permitted

examination tools

All except communication devices

Media Presentation, projector, chalkboard, script

Literature King, B.: Doppelt so schnell wie die Konkurrenz. St. Gallen : gfmt

Ges. für Management und Technologie AG , 2nd ed. 1994 . -- ISBN

3-906156-36-2.

Koltze, K. and Souchkov, V.: Systematische Innovation. Munich:

Hanser. 2011: Praxisreihe Qualitätswissen . -- ISBN 978-3-446-

42132-5.

Terninko, J.: Step-by-step QFD. Boca Raton Fla. : St. Lucie Press ,

2nd ed. 1997 . -- ISBN 1-57444-110-8.

Page 72: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

70

Project Formula Student

Academic Program Mechanical Engineering

Module name Project Formula Student

Abbrev. PFS

Subtitle -

Courses -

Semester

Module coordinator Dr. Stefan Gast

Instructor(s) Dr. Stefan Gast

Language German

Classification in curriculum

Use in other

academic programs

Bachelor "Automotive Technology"

Format / SWH Take-home assignment

Work requirement In-class program: 30 hrs.

self-directed study: 120 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives Students will be able to:

Develop independent solutions in coordination with the

Formula Student Team of Coburg University (CAT Racing) for a

technical / business engineering-specific assignment from the

area of Formula Student; they will organize the necessary

training and will set up a schedule/ time management while

taking the overriding constraints for the assignment into

consideration.

Contents Studying a task from the area of Formula Student, developing an

independent solution, and undertaking independent time

management, all while taking the overriding constraints due to

the requirements of the team into consideration. Documentation

in the form of a final report as defined in the module

"Academic/Scientific Work and Presentation".

Page 73: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

71

Program / examination achievement

Final report

Permitted

examination tools

(Not relevant)

Media (Not relevant)

Literature Assignment-specific

Page 74: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

72

Project Management

Academic Program Mechanical Engineering

Module name Project Management

Abbrev. PJM

Subtitle -

Courses -

Semester 5

Module coordinator Dr. Alexander Rost

Instructor(s) Dr. Alexander Rost

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures with integrated exercise / 2 SWH

Work requirement In-class program: 22.5 hrs.

self-directed study: 52.5 hrs.

ECTS 2

Technical prerequisites Foundations of operational processes

Qualification objectives Students will become familiar with fundamental project

management methods and will learn how to apply them.

Students will learn how to consistently plan and work on their

project as a process in a team.

Students will improve their collaboration abilities and work

techniques.

The "social skills" of the students will be improved.

Contents From idea to clarified assignment

Project influences

Roles in project management

Emphasizing the benefits of the

project

Cooperation in projects

Page 75: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

73

Overview of all PJ assignments

Planning and controlling of projects

Risk management

Structure and preparation

Classic PJM and SCRUM

Program / examination achievement

Examination

Permitted

examination tools

None

Media Script, projector, chalk board, audio and video contributions

Literature Burghardt (2008): Project management

Cleland / King (1997): Project Management Handbook

GPM, Gessler (2009): Kompetenzbasiertes Projektmanagement

(PM3)

PM Guide 2.0, IAPM,

https://www.iapm.net/de/zertifizierung/zertifizierungsgrundlagen

/pm-guide-2-0

Kerzner (2003): Project management

Litke (2005): Projektmanagement - Handbuch für die Praxis

Patzak / Rattay (2004): Project management

RKW / GPM (2003) (publ.): Projektmanagement Fachmann

Schelle / Ottmann / Pfeiffer (2008): ProjektManager

Schelle et.al. (Publ.): Projekte erfolgreich managen (collection of sheets)

Page 76: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

74

Legal Foundations for Engineers

Academic Program Mechanical Engineering

Module name Legal Foundations for Engineers

Abbrev. RGI

Subtitle -

Courses -

Semester 5

Module coordinator Matthias Huber

Instructor(s) Matthias Huber

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

General program

Format / SWH Seminar-type lectures / 2 SWH

Work requirement In-class program: 22 hrs.

self-directed study: 38 hrs.

ECTS 2

Technical prerequisites -

Qualification objectives Specialized skills:

The goal of the module is to teach students the most important

application-related areas of civil law that apply to

engineers/technicians.

Methodological skills:

Students will acquire the ability to recognize legal problem areas

and resolve simple cases in professional practice independently

– if appl. in cooperation with legal experts. They will be

introduced into legal methods and case work for this purpose.

The modules will strengthen students in their ability to

understand, analyze, and communicate legal situations so they

will be able to assess legal risks with certainty in their practical

activities.

Other skills:

Page 77: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

75

The module supports team spirit and organizational skills, but

also instructs students to work independently.

Contents Basics of civil law:

Basic concepts of law, natural or legal persons and legal entities,

basics of legal transactions, substitutions, contractual

obligations, defaults and breaches of duty, particularly relevant

types of contracts, legal aspects of the internet

Principles of commercial and company law

Sales person, sales paths, commercial sale, business forms

Principles of labor law:

Employment contract, termination, works council, labor disputes

Program / examination achievement

Examination

Permitted

examination tools

Legal texts acc. to instructor

Media PowerPoint presentation, lecture script

Literature Lecture script

Müssig, Wirtschaftsprivatrecht, C.F. Müller.

Führich, Wirtschaftsprivatrecht, Verlag Vahlen.

Schade, Wirtschaftsprivatrecht, Verlag Kohlhammer

Page 78: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

76

Robotics and Handling Technology

Academic Program Mechanical Engineering

Module name Robotics and Handling Technology

Abbrev. RHT

Subtitle -

Courses -

Semester 6

Module coordinator Dr. Oliver Koch

Instructor(s) Dr. Oliver Koch

Language German

Classification in curriculum Compulsory elective module

Use in other

academic programs

-

Format / SWH Seminar-type lecture / 2 SWH, internship / 2 SWH

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives Learning about the individual components of industrial robots and

their impact on deployment possibilities

Assessment of the potential and constraints for the economic use

of robots and manipulators

Understanding the integration of handling systems into the

automated production environment

Knowing and implementing requirements for easy to handle

product design

Learning to program robots

Contents Classification of robots

Kinematics/ guides/ drives

Gripper design

Sensors and measurement systems

Robot control and programming

Page 79: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

77

Automation in assembly and handling (installations)

Work place layout and design of periphery

Assembly-ready product design

Internship:

Programming and implementation of different

processing assignments for the Reis robot

Program / examination achievement

Written examination

Permitted

examination tools

All legally permitted

Media Chalk board, projector, supplemental written documents

Literature

Page 80: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

78

Control and Feedback Control Technology

Academic Program Mechanical Engineering

Module name Control and Feedback Control Technology

Abbrev. SRT

Subtitle -

Courses -

Semester 4

Module coordinator Dr. Marcus Baur

Instructor(s) Dr. Marcus Baur Dr.

Michael Steber

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures with integrated exercise and internship

/ 4SWS

Work requirement In-class program: 56 hrs.

self-directed study: 94 hrs.

ECTS 5

Technical prerequisites Engineering mathematics, mathematical methods and models

Qualification objectives This course will enable students to:

Represent elementary control circuit structures,

calculate system responses, and create transfer

functions

Analyze and classify single-loop control circuit structures

Synthetize simple controllers

Understand programming techniques for

programmable logic controller

Contents Goals and basic concepts of control technology, LAPLACE

transformation, transfer function, block diagram algebra, root

locus, characteristic frequency curves

Structure of an SPS, program representation types,

operands, links, trends in automation technology

Page 81: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

79

Program / examination achievement

Written examination

Permitted

examination tools

All written documents, simple scientific calculator

Media Visualizer, projector, chalk board, laptop (Matlab / Simulink)

Literature Föllinger, Otto: Regelungstechnik, Hüthig-Verlag.

Lunze, Jan: Regelungstechnik 1, Springerverlag.

Schulz, Gerd: Regelungstechnik 1 – Lineare und nichtlineare

Regelung. Oldenbourg, 2010.

Page 82: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

80

Flow-Optimized Design of Machines and Systems

Academic Program Mechanical Engineering

Module name Flow-Optimized Design of Machines and Systems

Abbrev. SAM

Subtitle -

Courses -

Semester 6

Module coordinator Dr. Philipp Epple

Instructor(s) Dr. Philipp Epple

Language German

Classification in curriculum Compulsory elective module

Use in other

academic programs

-

Format / SWH Seminar-type lectures with integrated exercise / 4 SWH

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites Fluid dynamics and heat transfer, partial examination 1

Qualification objectives The students will be able to:

- Apply the continuity equation and conservation of

momentum in differential form for two-dimensional

ideal flows.

- Calculate potential flows.

- Calculate the flow around a cylinder with and without

displacement.

- Select airfoil profiles and calculate airfoils.

- Understand the fundamentals of viscous flow, boundary layer

theory, and drag calculations.

Contents Potential flows, displacement, and circulation

Profile theory and conformal mapping

Numeric procedure of profile theory

Airfoil theory, boundary influences, induced drag, winglets

Page 83: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

81

Viscous flow, flow around bodies, boundary layers, and drag

calculations

Program / examination achievement

Written examination

Permitted

examination tools

All legally permitted

Media Chalk board, projector, supplemental written documents

Literature Anderson, J.D.: Fundamentals of Aerodynamics, Fifth

Edition, McGraw-Hill Book Company, New York 2011.

Bohl, W., Elmendorf, W.: Technische Strömungslehre, 15th

revised edition, Vogel Buchverlag, Würzburg, 2014.

Böswirth, L: Technische Strömungslehre, 10th edition,

Vieweg+Teubner, Wiesbaden 2014.

Houghton, E.L., Carpenter, P.W., Collicot, S.H. and Valentine, D.T.:

Aerodynamics for Engineering Students, 6th ed., Elsevier, Oxford

2013.

Junge,G.: Einführung in die Technische Strömungslehre, 2nd

edition, Hanser Verlag, 2015.

Krause, E.: Strömungslehre und Gasdynamik und Aerodynamisches

Laboratorium, Teubner Verlag, Stuttgart, 2003.

Schlichting, H. and Truckenbrodt, E: Aerodynamik des Flugzeuges,

Erster Band, Grundlagen aus der Strömungsmechanik,

Aerodynamik des Tragflügels (Teil I), 2nd revised edition, Springer-

Verlag, Berlin, 1967.

Schlichting, H. and Gersten, K: Grenzschicht-Theorie, 9th

edition, Springer-Verlag, Berlin, 1997.

Sigloch, Herbert: Technische Fluidmechanik, 10th edition,

Springer Verlag 2017

Surek, D. and Stempin, S.: Technische Strömungsmechanik,

Teubner Verlag, Stuttgart, 2017.

Zierep, J, Bühler, K.: Grundzüge der Strömungslehre, 11th

edition, Vieweg+Teubner, 2018.

Page 84: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

82

Continuous-Flow Machines

Academic Program Mechanical Engineering

Module name Continuous-Flow Machines

Abbrev. SM

Subtitle -

Courses -

Semester 6

Module coordinator Dr. Philipp Epple

Instructor(s) Dr. Philipp Epple

Language German

Classification in curriculum Compulsory elective module

Use in other

academic programs

-

Format / SWH Seminar-type lectures with integrated exercise / 4 SWH

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites Fluid dynamics and heat transfer, partial examination 1

Qualification objectives The students will be able to:

- Explain the function of continuous-flow machines.

- Calculate the energy conversion in continuous-flow machines.

- Create layout of main dimensions of continuous-flow machine.s

- Calculate the characteristic values of continuous-flow machines.

- Explain the operating behavior of continuous-flow machines.

Contents Definitions of continuous-flow machines and their classification

Relative and absolute flow, velocity triangles

Energy conversion in impeller, Euler’s principal equation,

reduced output

Similarity relationships, characteristic values, Cordier

diagram, radial machines: Radial grid, principal

dimensions, blade shapes

Axial machines: Axial grid, principal dimension equation,

airfoil procedure, grid procedure, validity limits

Page 85: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

83

Guides for radial machines: Ring diffusers, spiral

housings

Diffusers and guides for axial machines

Characteristic values for diffusors

Operating behavior of continuous-flow

machines

Program / examination achievement

Written examination

Permitted

examination tools

All legally permitted

Media Chalk board, projector, supplemental written documents

Literature Bohl, Willi: Strömungsmaschinen 1 – Aufbau und Wirkungsweise,

9th edition, Vogel Buchverlag 2004.

Bohl, Willi: Strömungsmaschinen 2 – Berechnung und

Konstruktion, 8th edition, Vogel Buchverlag 2012.

Bommes, L., Fricke, J., Klaes,K.: Ventilatoren, Vulkan – Verlag,

Essen, 1994.

Carolus, Thomas: Ventilatoren, Aerodynamischer Entwurf,

Schallvorhersage, Konstruktion, 3rd edition, B.G. Teubner,

Wiesbaden 2012.

Eck, B.: Ventilatoren – Entwurf und Betrieb der Radial-, Axial- und

Querstromventilatoren, 5th edition, Springer – Verlag, Berlin

1991. Menny, K.: Strömungsmaschinen: Hydraulische und

Thermische Kraft- und Arbeitsmaschinen (German Edition), 5th

edition 2006. Eckert, B. und Schnell, E.: Axialkompressoren und

Radialkompressoren, Anwendung – Theorie – Berechnung,

Springer – Verlag, Berlin, 1953.

Kalide, W, Sigloch,H.: Energieumwandlung in Kraft- und

Arbeitsmaschinen, 10th edition, Carl Hanser Verlag, Munich,

2010.

Käpelli, E.: Strömungslehre und Strömungsmaschinen, 5th

expanded edition, Verlag Harri Deutsch, Frankfurt, 1987.

Pfleiderer,C. and Petermann,H.: Strömungsmaschinen, 7th

edition, Springer Verlag, Berlin, 2005.

Page 86: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

84

Sigloch, H.: Strömungsmaschinen, Grundlagen und Anwendungen,

6th edition, Carl Hanser Verlag Munich , 2018.

Page 87: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

85

Fluid Dynamics and Heat Transfer

Academic Program Mechanical Engineering

Module name Fluid Dynamics and Heat Transfer

Abbrev. SMW

Subtitle -

Courses -

Semester 3 and 4

Module coordinator Dr. Philipp Epple

Instructor(s) Dr. Philipp Epple Manuel

Fritsche (M.Eng.)

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

Bachelor "Power Engineering and Renewable Energies"

Format / SWH Seminar-type lectures / 4 SWH

Work requirement In-class program: 45 hrs. per semester

Self-directed study: 105 hrs. per semester ECTS 2x4

Technical prerequisites Engineering Mathematics 1 and 2, physics

Qualification objectives The students will be able to:

- Calculate pressure in hydrostatic systems.

- Calculate forces and moments in hydrostatic systems.

- Apply the one-dimensional continuity equation for pipe flow.

- Apply the stationary and non-stationary energy equation

(Bernoulli equation) for different systems.

- Calculate forces and moments in pipelines.

- Calculate the heat transfer due to conduction, convection,

and radiation for simple systems.

- Calculate the heat transfer in cooling ribs.

- Calculate the Nusselt number for convective heat transport.

- Design a heat exchanger. Contents - Basic concepts, hydrostatics

Page 88: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

86

- Fluid kinematics

- Incompressible flow, current filament theory

- Continuity equation, energy equation (Bernoulli)

- Momentum principle

- Foundations of viscous flow

- Elements of laminar and turbulent flow

- Pipe flow

- Heat transfer Heat conduction, convective heat

transfer, heat exchangers, thermal radiators

Program / examination achievement

Written examination

Permitted

examination tools

All legally permitted

Media Chalk board, projector, supplemental written documents

Literature Technische Strömungslehre:

Bohl, W., Elmendorf, W.: Technische Strömungslehre, 13th

revised edition, Vogel Buchverlag, Würzburg, 2005.

Böswirth, L: Technische Strömungslehre, 10th edition,

Vieweg+Teubner, Wiesbaden 2014.

Durst, Franz: Grundlagen der Strömungsmechanik - Eine

Einführung in die Theorie der Strömungen in Fluiden,

Springer Verlag, Berlin, 2006.

Fox, Robert W., McDonald, Alan T., Pritchard, Philipp J.:

Introduction to Fluid Mechanics, Fifth Edition, John Wiley & Sons,

Inc., New York, 8th Edition, 2012.

Kuhlmann, Hendrik: Strömungsmechanik, Pearson Studium Verlag,

2014.

Kümmel, W.: Technische Strömungsmechanik - Theorie und Praxis,

Teubner Verlag, 2007.

Oertel Jr., Herbert and Böhle, Martin: Strömungsmechanik -

Grundlagen, Grundgleichungen, Lösungsmethoden,

Softwarebeispiele, 5th edition, Vieweg & Sohn, 2009.

Siekmann, Helmut E.: Strömungslehre für den Maschinenbau,

Technik und Beispiele, Springer Verlag 2nd edition, Berlin, 2008.

Sigloch, Herbert: Technische Fluidmechanik, Springer Verlag, 2017

Page 89: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

87

Zierep, J, Bühler, K.: Grundzüge der Strömungslehre, 11th edition,

Vieweg+Teubner, 2018.

Heat transfer

Böck, P. and Wetzel, T.: Wärmeübertragung, 6th ed., Springer

Verlag 2015.

Cengel, Y. and Ghajar, A.J.: Heat and Mass Transfer:

Fundamentals and Applications, McGrawHill, 6th ed. 2019.

Cerbe, G. and Wilhelms, G.: Technische Thermodynamik, 18th

edition, Hanser Verlag, Munich 2017.

Marek, R. and Nitsche, K.: Technische Thermodynamik, 7th edition,

Hanser Verlag, Munich 2015.

Pitts, D. and Sissom, E.L.: Heat Transfer, Schaum’s Outline,

McGraw-Hill, 2nd ed, 2011.

Polifke,W. and Kopitz, Jan: Wärmeübertragung, Pearson Studium

2009.

VDI Wärmeatlas, 10th edition, Springer Verlag 2006.

Wagner, W.: Wärmeübertragung, Vogel Buchverlag, 11th edition,

Würzburg 2013.

Page 90: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

88

Technical English for Mechanical Engineers (B2)

Academic Program Mechanical Engineering

Module name Technical English for Mechanical Engineers (B2)

Abbrev. TE

Subtitle -

Courses -

Semester 6

Module coordinator Barney Craven, M.A.

Instructor(s) Helen Bulluck, Richard Fry, M.Sc.

Language English

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures, seminar and exercise / 2 SWH

Work requirement In-class program: 22 hrs.

self-directed study: 38 hrs.

ECTS 2

Technical prerequisites No formal prerequisites, but a plus are at least 6 years of school

English enabling student to use language independently (B1 level

of Common European Framework of Reference for Languages)

Qualification objectives Expansion and improvement of individual English skills (reading,

writing, listening comprehension, speaking skill) to the B2 level of

the Common European Framework of Reference for Languages,

with particular consideration of technical and professional topics

From the Common European Framework of Reference for

Languages (http://www.europaeischer-referenzrahmen.de/):

B2 – Independent use of language

Is able to understand the main contents of complex texts on

specific and abstract topics; also understands technical

discussions in own specialty. Is able to communicate

spontaneously and fluently enough to permit a normal

conversations with native speakers

Page 91: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

89

without great effort on either side. Is able to express

himself/herself clearly and in detail on a wide spectrum of topics,

explain an opinion on a current question, and state the

advantages and disadvantages of different possibilities.

Contents - Structure and expansion of basic vocabulary with technical

terminology and expressions using texts from different areas

- Training of written expression in English by working through

texts and writing professional correspondence

- Training of verbal expression in English through discussion

- Review of grammatical foundations with exercises

Program / examination achievement

Examination

Permitted

examination tools

None

Media Projector and chalk board / whiteboard,

electronic scripts, and work documents

language lab

Literature Dunn, M.; Howey, D.; Illic, A.: English for Mechanical Engineering.

Cornelsene Verlag, 2011. ISBN 978-3-06520329-6.

Additional literature will be recommended during the

course.

Page 92: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

90

Structural Mechanics 1 (Statics)

Academic Program Mechanical Engineering

Module name Structural Mechanics 1 (Statics)

Abbrev. TM1

Subtitle -

Courses -

Semester 1

Module coordinator Dr. Ingo Faber

Instructor(s) Dr. Ingo Faber

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures / 4 SWH, exercises to accompany

lecture / 1 SWH

Work requirement In-class program: 55 hrs.

self-directed study: 95 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives Students will be able to reproduce the principles of static

balance in rigid bodies in 2 and 3 dimensions.

Students will be able to construct free body diagrams of rigid

bodies in the plane and in 3D space.

Students will develop solution strategies to determine bearing and

joint reactions and to calculate internal forces in rigid bodies and

systems rigid bodies. The problems may be in the plane or in 3D

space.

Students design solutions to determine the frictional state and

the contact parameters in frictional contact. Contents Vector calculation, balance of forces at a point, the

momentum concept, resultants of force systems, balance of

rigid body in the plane and in 3D space,

Page 93: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

91

2D and 3D timber frameworks, stress resultants (incl. transverse

force line bending moment line), Coulomb friction, cable friction,

center of gravity calculation in the plane and in 3D space.

Program / examination achievement

Written examination

Permitted

examination tools

All written documents

Simple scientific calculator

Media Chalk board, PowerPoint

Literature Russel C. Hibbeler: Technische Mechanik 1, Statik, 2012, ISBN 978-

3-86894-125-8.

Page 94: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

92

Structural Mechanics 2 (Mechanics of Materials)

Academic Program Mechanical Engineering

Module name Structural Mechanics 2 (Mechanics of Materials)

Abbrev. TM2

Subtitle -

Courses -

Semester 2

Module coordinator Dr. Ingo Faber

Instructor(s) Dr. Ingo Faber

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures / 4 SWH, exercises to accompany

lecture / 1 SWH

Work requirement In-class program: 55 hrs.

self-directed study: 95 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives Students will be able to represent mechanical stress states

through partial sketches, Mohr’s stress circle, and stress tensors

and convert the representation forms into each other.

Students will be able to explain component stresses, principal

stresses, and equivalent stress (maximum principal stress

criterion NSH, maximum shear stress hypothesis SSH, and

maximum distortion energy theory GEH).

Students will perform both graphical (with Mohr’s circle) and

calculated tensor transformations for the stress tensor, strain

tensor, and the inertia tensor.

Students will be able to calculate strain and mechanical stress

fields from a given displacement field.

Page 95: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

93

Students will be able to convert stress and deformation fields

into each other for a linear-elastic material.

Students will be able to characterize materials and develop

the necessary procedures for static strength verification.

Students will be able to calculate the linear-elastic

deformation of rods, torsion rods, and bending beams and

determine the resulting stress states.

Students will be able to determine overdetermined static

problems with rods, torsion rods, and bending beams via

superpositions of part-load cases they construct themselves.

Contents Stress concept, multi-axial stress state, Mohr’s circle,

deformations, distortions, spatial distortion state, mechanical

material properties, strength hypotheses/ equivalent stresses,

tension rods, torsion rods, bending beams, superposition, and

static and dynamic strength verification. Program / examination achievement

Written examination

Permitted

examination tools

All written documents

Simple scientific calculator

Media Chalk board, PowerPoint

Literature Russel C. Hibbeler: Technische Mechanik 2, Festigkeitslehre, 2013,

ISBN 978-3-86894-126-5.

Page 96: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

94

Structural Mechanics 3 (Dynamics)

Academic Program Mechanical Engineering

Module name Structural Mechanics 3 (Dynamics)

Abbrev. TM3

Subtitle Kinematics and kinetics

Courses -

Semester 3

Module coordinator Dr. Martin Prechtl

Instructor(s) Dr. Martin Prechtl

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures: 4 SWH (with integrated exercises),

accompanying exercises: 1 SWH (+ 2SWS tutorial)

Work requirement In-class program: 55 hrs.

self-directed study: 95 hrs.

ECTS 5

Technical prerequisites Structural Mechanics 1 and 2, Engineering Mathematics 1 and 2

Qualification objectives Description motion processes in different coordinate

systems

Basic understanding of relative kinematics

Application of the Newton's second law for point masses

Formulation of energy balances for point masses

Calculation of central collision processes

Formulation of kinematic relationships for multi-

body systems

Creation of free body diagrams for rigid bodies

Calculation of multi-body systems using force and

momentum equations and based on an energy balance

Calculation of eccentric collision processes

Modeling of simple oscillating systems and analysis of properties

of motion

Page 97: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

95

Content Foundations of kinematics:

Definition of speed/velocity and acceleration, point kinematics,

motion in a straight line (Cartesian coordinates), polar

coordinates, natural coordinates, integration of the equations of

motion, relative kinematics, kinematics of rigid bodies (fixed axis

of rotation, 2D and 3D kinematics), instantaneous center of

rotation

Kinetics of point masses:

Newton’s laws, basic dynamic equation ("F=m · a"), free and

guided point mass motion, constraint forces, resistance forces

(incl. Coulomb friction), (principle of) momentum and angular

momentum, collision processes, principle of work and energy,

conservative forces and potential, d’Alembert’s principle, dynamic

force balance, systems of point masses (kinematic and physical

constraints, degrees of freedom), and principle of center of

gravity/ angular momentum

Kinetics of systems of point masses:

Degree of freedom, kinematic relationships, principle of center of

gravity/ angular momentum, principle of work and energy,

d’Alembert’s principle

Rigid body kinetics in the plane:

Rotation about a fixed axis, axial mass moment of inertia,

Steiner’s theorem, rotational energy, reduced mass moment of

inertia, rotational collisions, rigid body kinetics in the plane,

principle of center of gravity and angular momentum, principle of

work and energy, rolling/ adhesion, rolling friction, d’Alembert’s

principle, principle of momentum and angular momentum,

eccentric collisions, center of collision

Harmonic oscillations:

State variable, period/ oscillation duration, (circular) frequency,

amplitude, phase diagram, complex representation, free

oscillations of conservative systems, circular eigenfrequency,

damping proportional to speed (viscous), Lehr’s damping factor,

harmonic excitation (via spring / damper and/or due to a rotating

imbalance), solution of

Page 98: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

96

corresponding oscillation differential equations,

dimensionless time, magnification function / amplitude

frequency response, resonance effect

Program / examination achievement

Written examination

Permitted

examination tools

Textbook Mathematische Dynamik (Prechtl), lecture script,

arbitrary collection of mathematical formulas, simple scientific

calculator, self-compiled collection of formulas

Media Chalk board, projector, supplemental written documents

Literature Prechtl, M.: Mathematische Dynamik – Modelle und analyt.

Methoden der Kinematik und Kinetik. Berlin, Heidelberg:

Springer Spektrum; 2015.

Gross, D.; Hauger, W.; Schröder, J.; Wall, W.A.: Technische

Mechanik 3 – Kinetik. Berlin, Heidelberg: Springer-Verlag; 2012.

Gross, D.; Ehlers, W.; Wriggers, P.; Schröder, J.; Müller, R.: Formeln

und Aufgaben zur Technischen Mechanik 3. Berlin, Heidelberg:

Springer-Verlag; 2012

Page 99: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

97

Technical Thermodynamics

Academic Program Mechanical Engineering

Module name Technical Thermodynamics

Abbrev. TTD

Subtitle -

Courses -

Semester 4

Module coordinator Dr. Philipp Epple

Instructor(s) Dr. Philipp Epple

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

Bachelor "Automotive Technology"

Format / SWH Seminar-type lectures / 2 SWH, exercise / 2 SWH

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives The students will be able to:

- Differentiate state and process variables and calculate

special gas constants.

- Understand phase diagrams and calculate state

variables in two-phase domain.

- Apply the first law of thermodynamics for closed and open

systems.

- Apply the second law of thermodynamics for various systems.

- Calculate the properties of ideal gases and gas mixtures.

- Calculate simple cycles.

Contents System and state

Processes and process

parameters

Phase diagrams

Page 100: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

98

2. Principal law of thermodynamics

State variables of ideal gases

Gas mixtures, moist air, and steam

Cycles of engines

Selected adiabatic flow process

Program / examination achievement

Written examination

Permitted

examination tools

All legally permitted

Media Chalk board, projector, supplemental written documents

Literature Windisch, H.: Thermodynamik - Ein Lehrbuch für Ingenieure,

6th edition, Oldenbourg Verlag, Munich, 2017.

Hahne, E.: Technische Thermodynamik, Einführung und

Anwendung, 5th edition, Oldenbourg Verlag, Munich, 2011.

Cerbe, G. and Wilhelms, G.: Technische Thermodynamik,

Einführung und Anwendung, 18th edition, Oldenbourg

Verlag, Munich, 2017.

Döring, E., Schedwill, H., Dehli, M.: Grundlagen der Technischen

Thermodynamik, Lehrbuch für Studierende der

Ingenieurwissenschaften, 8th edition, Springer Vieweg,

Heidelberg, 2016.

Geller, W.: Thermodynamik für Maschinenbau, Grundlagen für die

Praxis, 5th edition, Springer Verlag, 2015.

Langeheinecke, K., Jany, P., Thieleke, G.: Thermodynamik für

Ingenieure, 10th edition, Vieweg Teubner Verlag, Wiesbaden

2017. Meyer, G., Schiffner, E.: Thechnische Thermodynamik, 3rd

edition, VCH Verlagsgesellschaft Weinheim, 1968.

Kretzschmar, H.-J. and Kraft, I.: Kleine Formelsammlung

Technische Thermodynamik, 5th updated edition, Carl Hanser

Verlag, Munich, 2016.

Cengel, Turner, Cimbala: Fundamentals of Thermal-Fluid Sciences

with Student Resource DVD and Property Tables Booklet, 4th

Edition, Mcgraw-Hill Higher Education, 2016.

Potter, M. and Somerton, C.: Thermodynamics for Engineers,

Second Edition, Schaums Outlines, 2009.

Page 101: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

99

Combustion Engines 1

Academic Program Mechanical Engineering

Module name Combustion Engines 1

Abbrev. VKM1

Subtitle -

Courses -

Semester 6

Module coordinator Dr. Hartmut Gnuschke

Instructor(s) Dr. Hartmut Gnuschke

Language German

Classification in curriculum Compulsory elective module

Use in other

academic programs

Bachelor "Automotive Technology"

Format / SWH Seminar-type lectures with 15% integrated internship / 4 SWH

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives Students will be able to correctly describe concept and function

of components of combustion engines, describe and assess the

engine process in terms of mechanics and thermodynamics, and

understand and interpret typical measurement activities at

engine test stations (e.g. creation of engine maps, indexing). Contents Mechanical structure: Crank shaft, piston rod,

pistons, crank case, cylinder head

Kinematics / Kinetics: Laws of motion and forces in engines;

assessing engine components; mass compensation;

thermodynamics of combustion engines; and engine tests

Program / examination achievement

Written examination

Permitted

examination tools

Simple scientific calculator

Page 102: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

100

Media Projector, chalk board

Literature Grohe, Otto- und Dieselmotoren, Vogel-Verlag 2003.

Basshuysen, Schäfer (Publ.), Vieweg Handbuch

Verbrennungsmotor, Vieweg 2010.

Bosch Kraftfahrttechnisches Taschenbuch, Vieweg 2012.

Mollenhauer, Tschöke (publ.) Handbuch Dieselmotor, Springer-

Verlag 2007.

Page 103: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

101

Combustion Engines 2

Academic Program Mechanical Engineering

Module name Combustion Engines 2

Abbrev. VKM2

Subtitle -

Courses -

Semester 6

Module coordinator Dr. Hartmut Gnuschke

Instructor(s) Dr. Hartmut Gnuschke

Language German

Classification in curriculum Compulsory elective module

Use in other

academic programs

Bachelor "Automotive Technology"

Format / SWH Seminar-type lectures with 15% integrated internship / 4 SWH

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives Students will be able to correctly describe concept and function

of components of combustion engines, describe and assess the

engine process including exhaust treatment, and understand

and interpret typical measurement activities at engine test

stations (e.g. determination of catalytic converter efficiency and

emission measurements).

Contents Fluid dynamics: charge cycle, charging

Carburetion: injection systems

Combustion: (self) ignition, formation of pollutants

and exhaust treatment; engine tests

Program / examination achievement

Written examination

Permitted

examination tools

Simple scientific calculator

Media Projector, chalk board

Page 104: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

102

Literature Grohe, Otto- und Dieselmotoren, Vogel-Verlag 2003.

Basshuysen, Schäfer (Publ.), Vieweg Handbuch

Verbrennungsmotor, Vieweg 2010.

Bosch Kraftfahrttechnisches Taschenbuch, Vieweg 2012.

Mollenhauer, Tschöke (publ.) Handbuch Dieselmotor, Springer-

Verlag 2007.

Page 105: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

103

Specialization FEM

Academic Program Mechanical Engineering

Module name Specialization FEM

Abbrev. VFEM

Subtitle -

Courses -

Semester 6

Module coordinator Dr. Ingo Faber

Instructor(s) Dr. Ingo Faber

Language German

Classification in curriculum Compulsory elective module

Use in other

academic programs

-

Format / SWH Seminar-type lectures (ca. 25%) with integrated

computer exercises (ca. 75%)

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites Mastery of foundations of finite element method

Qualification objectives Students will be able to solve complex mechanical problems from

practical calculations using the finite element method. While

students will be able to pose and solve construction calculations

independently after the basic lecture, after this specialized

module, they will be able to optimize calculation models created

with expert knowledge (expanded options and APDL

programming).

Contents Specialization in assembly calculations, foundations of strength

design, large deformations, non-linear material laws

(plastification), submodel technique, dynamic calculations /

oscillation analysis, temperature field calculations, and APDL

programming

Program / examination achievement

Practical proof of performance

Page 106: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

104

Permitted

examination tools

All written documents

Simple scientific calculator

Media Projector, whiteboard

Literature Expert Verlag / Müller, Groth: FEM für Praktiker – Band 1.

Hanser Verlag / Gebhardt: Praxisbuch FEM mit Ansys Workbench.

Page 107: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

105

Material Characterization and Damage Analysis

Academic Program Mechanical Engineering

Module name Material Characterization and Damage Analysis

Abbrev. WCSA

Subtitle -

Courses -

Semester 6

Module coordinator Dr. Gundi Baumeister

Instructor(s) Dr. Gundi Baumeister

Language German

Classification in curriculum Compulsory elective module

Use in other

academic programs

-

Format / SWH Seminar-type lectures 4 SWH incl. 30% internship

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites Principles of materials technology; knowledge of connections

behind structure and properties of metals; basic knowledge of

types of steel and heat treatment of steels; and basic knowledge

of physics and chemistry

Qualification objectives Ability to analyze damage to components critically based on

materials scientific connections; development of ability to judge

suitable methods for material characterization and damage

analysis; design and independent implementation of analyses with

scanning electron microscope and energy dispersive spectroscopy

Contents Damage analysis, comparison of light and electron microscopes,

structure and function of scanning electron microscope, energy

dispersive spectroscopy and wavelength dispersive spectroscopy,

fractography

Program / examination achievement

Combination of practical and written examination

Page 108: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

106

Permitted

examination tools

Simple scientific calculator

Media Projector, chalk board, supplemental written documents,

blended learning

Literature Neidel, Andreas et al.: Handbuch Metallschäden. Munich,

Hanser, 2012.

Grosch, Johann et al.: Schadenskunde im Maschinenbau.

Renningen, Expert, 1990.

Schmidt, Peter F.: Praxis der Rasterelektronenmikroskopie und

Mikrosbereichsanalyse. Renningen, Expert.

Reimer, Ludwig und Pfefferkorn, Gerhard:

Rasterelektronenmikroskopie. Berlin, Springer, 1977.

Goodhew, Peter J., Humphreys, F. John: Elektronenmikroskopie -

Grundlagen und Anwendung. Hamburg, McGraw-Hill, 1990.

Bargel, Hans-Jürgen und Schulze, Gerhard: Werkstoffkunde. Berlin,

Springer, 2012.

Page 109: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

107

Materials Technology 1

Academic Program Mechanical Engineering

Module name Materials Technology 1

Abbrev. WT1

Subtitle -

Courses -

Semester 1

Module coordinator Dr. Gundi Baumeister

Instructor(s) Dr. Gundi Baumeister

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures / 4 SWH, exercises and internships

to supplement lectures / 1 SWH

Work requirement In-class program: 55 hrs.

self-directed study: 95 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives Students will be able to connect the structure

and properties of materials. They will be able to:

Differentiate between different material-specific treatments

and will be able to assess suitable applications for metallic

materials. Assess functional improvement to traditional

materials, such as steel and aluminum. Select and assess

suitable material testing procedures and estimate how

meaningful different material tests are.

Contents Atoms, periodic system of elements, bonds; crystal systems; state

diagrams; (micro)structure; iron-carbon diagram; heat treatment;

states of imbalance; short names for materials; alloy elements;

types of steel;

Page 110: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

108

Case-hardening and nitrification; precipitation

hardening; non-ferrous metal; material testing.

Program / examination achievement

Written examination and practical proof of performance

Permitted

examination tools

Simple scientific calculator

Media Projector, chalk board, visualizer, work sheets

Literature Seidel, Wolfgang W. and Hahn, Frank: Werkstofftechnik. Munich

Hanser, 2012.

Weißbach, Wolfgang: Werkstoffkunde und Werkstoffprüfung.

Wiesbaden, Vieweg, 2007.

Bargel, Hans-Jürgen and Schulze, Günter: Werkstoffkunde. Berlin,

Springer, 2012.

Page 111: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

109

Materials Technology 2

Academic Program Mechanical Engineering

Module name Materials Technology 2

Abbrev. WT2

Subtitle -

Courses -

Semester 4

Module coordinator Dr. Gundi Baumeister

Instructor(s) Dr. Gundi Baumeister

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures / 4 SWH, exercises and internships

to supplement lectures / 1 SWH

Work requirement In-class program: 55 hrs.

self-directed study: 95 hrs.

ECTS 5

Technical prerequisites Principles of Materials Technology 1

Qualification objectives Students will develop the ability to connect structure,

properties, and processing of the most important plastics with

their specific processing procedures. Students will be able to

assess possible uses of different plastics for given applications

based on the macromolecular structure and derive

corresponding application areas.

Contents Bonding forces and structure of polymers; macromolecular

structure of plastics; basic connection of structure and

properties; properties of the most important thermoplastics,

duroplastics, and elastomers; plastic testing procedure;

extrusion (film blowing / blow molding); injection molding and

injection molding tools; special

shaping procedures; fiber composite materials

Program / examination achievement

Written examination and practical proof of performance

Page 112: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

110

Permitted

examination tools

Simple scientific calculator

Media Projector, chalk board, visualizer, work sheets

Literature Schwarz, Otto and Ebeling, Friedrich-Wolfhard: Kunststoffkunde.

Würzburg, Vogel, 2005.

Menges, Georg et al: Werkstoffkunde Kunststoffe. Munich,

Hanser, 2011.

Franck, Adolf et al.: Kunststoffkompendium. Würzburg, Vogel,

2011.

Kaiser, Wolfgang: Kunststoffchemie für Ingenieure. Munich,

Hanser, 2006.

Schwarz, Otto; Ebeling, Friedrich-Wolfhard, Furth, Brigitte:

Kunststoffverarbeitung. Würzburg, Vogel, 2005.

Seidel, Wolfgang W. and Hahn, Frank: Werkstofftechnik. Munich

Hanser, 2012.

Page 113: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

111

Tooling Machines

Academic Program Mechanical Engineering

Module name Tooling Machines

Abbrev. WZM

Subtitle -

Courses -

Semester 6

Module coordinator Dr. Oliver Koch

Instructor(s) Dr. Oliver Koch

Language German

Classification in curriculum Compulsory elective module

Use in other

academic programs

-

Format / SWH Seminar-type lectures / 4 SWH

Work requirement In-class program: 45 hrs.

self-directed study: 105 hrs.

ECTS 5

Technical prerequisites -

Qualification objectives Understanding requirements for tooling machines

Knowing the basic structure of tooling machines

Selecting components of tooling machines based on

requirements

Knowing and understanding possible applications of

different design forms of tooling machines

Ability to assess possibilities and framework conditions for the

economic use of tooling machines

Contents Requirements for tooling machines

Tooling machine benches and WZM arrangement

Tooling machine tours

Spindle bearing systems

Tooling machine drives (engine, transmission,

transmission components)

Control of tooling machines

Page 114: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

112

Lathes

Drills / mills / broaching

machines

Sanders

Ablation machines

Gear machining machines

Program / examination achievement

Written examination

Permitted

examination tools

All legally permitted

Media Chalk board, projector, supplemental written documents

Literature Weck, Brecher: Werkzeugmaschinen Vol. 1-5 Springer Vieweg.

Conrad: Taschenbuch der Werkzeugmaschinen. Hanser Verlag.

Page 115: International study @ University Coburg in Germany ... · Preliminary remarks – Module plan................................ ...........................................................................4

Module Manual MB – As of 17.07.2019 – valid for WS 2019/20 – subject to changes

113

Academic/scientific work

Academic Program Mechanical Engineering

Module name Academic/scientific work

Abbrev. WA

Subtitle -

Courses -

Semester 5

Module coordinator Dr. Michael Steber

Instructor(s) Dr. Michael Steber

Language German

Classification in curriculum Compulsory module

Use in other

academic programs

-

Format / SWH Seminar-type lectures / 1 SWH

Work requirement In-class program: 9 hrs.

self-directed study: 81 hrs.

ECTS 3

Technical prerequisites -

Qualification objectives Introduction to academic/scientific work, organization of

literature research, ability to prepare information

Contents Determination of topics and learning

fields literature research, literature

acquisition, information preparation

Presentations, practical report , Bachelor's Thesis

Program / examination achievement

Presentation

Permitted

examination tools

(Not relevant)

Media Projector and chalk board

Literature