internal noise coherence resonance in mesoscopic chemical oscillation systems

34
Internal Noise Coherence R esonance in mesoscopic che mical oscillation systems Zhonghuai Hou ( 侯侯侯 ) Perugia SR2008 Email: [email protected] Department of Chemical Physics Hefei National Lab for Physical Science at Microscal e University of Science & Technology of China (USTC)

Upload: draco

Post on 05-Jan-2016

51 views

Category:

Documents


1 download

DESCRIPTION

Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems. Zhonghuai Hou ( 侯中怀 ) Perugia , SR2008 Email: [email protected] Department of Chemical Physics Hefei National Lab for Physical Science at Microscale University of Science & Technology of China (USTC). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Zhonghuai Hou ( 侯中怀 )Perugia , SR2008

Email: [email protected] of Chemical PhysicsHefei National Lab for Physical Science at MicroscaleUniversity of Science & Technology of China (USTC)

Page 2: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Our Research Interests

Nonlinear Dynamics in Mesoscopic Chemical Systems

Dynamics of Complex Networks Nonequilibrium Thermodynamics of Small

Systems (Fluctuation Theorem) Multiscale Modeling of Complex Systems

Nonequilibrium +Nonlinear+ Complexity

Page 3: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Outline

Introduction the question

Internal Noise Coherence Resonance

Stochastic Normal Form Theory as well as its applications

Conclusion

Page 4: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Genetic Toggle Switch

In E. ColiNature 2000

Two or more stable states under same external constraints

Reactive/Inactive bistabe

CO+O2 on Pt filed tipPRL1999

Travelling/Target/Spiral/Soliton … waves

PEEM Image CO Oxidation on Pt

PRL 1995

Calcium Spiral Wave in Cardiac Tissues

Nature 1998

Temporally Periodic Variations of Concentrations

Rate OscillationCO+O2 Nano-particle C

atal.Today 2003

Synthetic transcriptional oscillator (Repressilator)

Nature 2002

Stationary spatial structures in reaction-diffusion systems

Cellular PatternCO Oxidation on Pt

PRL 2001

Turing PatternBZ Reaction System

PNAS 2003

Oscillation Multistability Patterns Waves Chaos

Nonlinear Chemical Dynamics

far-from equilibrium, self-organized, complex, spatio-temporal structures

Aperiodic/Initial condition sensitivity/strange attractor…

Strange AttractorThe Lorenz System

Chemical turbulenceCO+O2 on Pt Surface

Science 2001

Page 5: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Sub-cellular reactions

- gene expression- ion-channel gating- calcium signaling … …

Heterogeneous catalysis

- field emitter tips- nanostructured composite surface- small metal particles

Mesoscopic Reaction SystemN, V

(Small)

Molecular Fluctuation

22 1 1orX X

X V N

Nonlinear Chemical Dynamics? Chemical Oscillation

Regularity Stochasticity

Page 6: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Noise Induced Pattern Transition

Z.Hou, et al., PRL 81, 2854 (1998)

Disorder sustained spiral waves

Z.Hou, et al., PRL 89, 280601 (2002)

We already know ... Noise and disorder play constructive

roles in nonlinear systems

Taming Chaos by Topological Disorder

F. Qi, Z.Hou, H. Xin, PRL 91, 064102 (2003)M. Wang, Z.Hou, H.Xin. ChemPhysChem 7 , 579( 2006);

Ordering Bursting Chaos in Neuron Networks

Page 7: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Modeling of Chemical Oscillations

Macroscopic level: Deterministic, Cont.

N Species, M reaction channels, well-stirred in VReaction j:

j X X v Rate:

( ) jW VX

1

( ( ))( ( ) )

Mji

ij ij

W td X t VF

dt V

XX

Oscillation

Co

nce

ntr

atio

n

Control parameter

Hopf Bifurcation

Stale focus

Hopf bifurcation leads to oscillation

: 0

loses stabilityS S

S

X F X

X

has a pair of

pure imaginary eigenvalues

ij J F X

Page 8: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Modeling of Chemical Oscillations

Mesoscopic Level: Stochastic, Discrete

1

;; ;

M

j j j jj

P tW P t W P t

t

X

X ν X ν X XMaster Equation

Kinetic Monte Carlo Simulation (KMC)Gillespie’s algorithm

Exactly

( , )j

Approximately 1 2

1 1

1 ( )

M Mj ji

ij ij jj j

W WXdt

dt V V VV

X X

Chemi cal Langevi n Equati on (CLE)

V Deterministic equation

Internal Noise

Page 9: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

New: Noise Induced Oscillation

1.4 1.6 1.8 2.0 2.2 2.4 2.60.4

0.8

1.2

1.6

2.0

2.4

2.8

Con

cent

ratio

n X

1

Control parameter B

V=1E4

Stochastic OscillationA=1, B=1.95

0.0 0.4 0.8 1.2 1.6 2.010-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

Frequency (Hz)

Pow

er

FFT

A model system: The Brusselator

1.4 1.6 1.8 2.0 2.2 2.4 2.60.4

0.8

1.2

1.6

2.0

2.4

B=2.2 Oscillation

Con

cent

ratio

n X

1

Control parameter B

Hopf Bifurcation

B=1.9 Stale focus

A=1DeterministicStochastic

Noisy Oscillation

Page 10: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Optimal System Size

:

2 :

Peak Height HSNR

Width at H

Optimal System size for mesoscopic chemical oscillation Z. Hou, H. Xin. ChemPhysChem 5, 407(2004)

Best performance

Page 11: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

New features In the literature (Two important papers): Hu Gang, ... (PRL 1993) External noise + Saddle Node Pikovsky/Kurths (PRL 1997) External noise + Excitability

In our work: Internal noise + Supercritical Hopf

Internal noise coherence resonance (INCR)Also: System Size Resonance (SSR)

Page 12: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Seems to be common … Internal Noise Stochastic Resonance in a Circadian Clock System J.Che

m.Phys. 119, 11508(2003)

Optimal Particle Size for Rate Oscillation in CO Oxidation on Nanometer-Sized Palladium(Pd) Particles

J.Phys.Chem.B 108, 17796(2004)

Internal Noise Stochastic Resonance of synthetic gene network Chem.Phys.Lett. 401,307(2005)

Effects of Internal Noise for rate oscillations during CO oxidation on platinum(Pt) surfaces J.Chem.Phys. 122, 134708(2005)

System size bi-resonance for intracellular calcium signaling ChemPhysChem 5, 1041(2004)

Double-System-Size resonance for spiking activity of coupled HH neurons ChemPhysChem 5, 1602(2004)

? Common mechanism

Analytical Study

Page 13: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Analytical study Main idea

Fact: all happens close to the HB

Question: common features near HB?

Answer: normal form on center manifold

Page 14: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Analytical study

1

1: ( ) ( ) ( )

M

j j jjCLE dX F dt v w dW t

V X X

Stochastic Normal Form

3

20

1( )

1( )

r rj jj

i j jj

dr r C r dt dWV

d C r dt dWV

S

X

FJ

X

0 i

) ,1( iba

baT

01

S

S

XX

XXT

y

x

22

111

iZ x iy re

0, for 0, /( )

finite, and coupled via noiserV r C

V r

jjjj

jjjrj

w

w

)sin~cos~(

)sin~cos~(

12

21

Page 15: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Analytical study Stochastic Averaging (...)

3

20

2r r

i

dr r C r dt dWVr V

d C r dt dWr V

2 2 2 (00)1 2( ) / 2 : system dependent

and are de-coupled Solvable

j j jjw

r

Time scale separation

1, ~ 1O

Page 16: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Analytical study(…) Probability distribution of r

2

3 2 2( , )2

2r r r

r tr C r Vr

t V

2 4

0 2

2( , )0 ( ) exp

2r

s

r C rr tr C r

t V

3 2( , )0 2 0 s

r

r tr C r Vr

r

1/ 22 2even for <0, 2 / ( 2 )s r rr C V C

Fokker-Planck

equation

Stationary distribution

Most probable radius

Noise induced

oscillation

Page 17: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Analytical study(…) Auto-correlation function

12 21( ) lim ( ) ( ) 2t sCorr r r t r t r e V

21

1( ) lim cos ( )cos ( ) cos( )

2tCorr t t e

2 221/ 4 /c sVr

Correl ati on Ti me:

( ) lim ( ) ( ) ( )* ( )tC x t x t Corr r Corr

Page 18: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Analytical study(…) Power spectrum and SNR

22

2 202 1

( ) 2 ( )( )

i srPSD C e d

2 2 4 21 0 2

22 22

2

2

p i s s s

s s c

C r H r r V

Vr SNR H r

2 2

4( )0 r

opt

CSNRV

V

Optimal system size:

Page 19: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Analytical study(…) 3

20

2r r

i

dr r C r dt dWVr V

d C r dt dWr V

Universalnear HB

2 22 / 2s r rr C V C

2 2

21/ 4 /c sVr , ,s cV r

2/ s cSNR H r

2 24 /opt rV C 2 2 2 (00)

1 2( ) / 2j j jjw

System Dependent

ChemPhysChem 7, 1520(July 2006) ; J. Phys.Chem.A 111, 11500(Nov. 2007); New J. Phys. 9, 403(Nov. 2007) ;

Page 20: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Applications of the theory

Extension to general reaction networks Control CR via noise modulation

Multiple Noise: External and Internal

Entropy Production: Scaling Law

Page 21: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

General Reaction Network

CLE:

Page 22: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Control CR: Noise Modulation What really matters:

3

20

2r r

i

dr r C r dt dWVr V

d C r dt dWr V

2 22 / 2s r rr C V C 2 2

21/ 4 /c sVr

2

s cSNR r 2 24 /opt rV C

Page 23: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Example: Colored Noise

2/ ( 1)dX dt A B X X Y t 2/dY dt BX X Y

Model system: Brusselator

2

20

1

2

AS

00 0 iS e d

Type 1: Ornstein-Uhlenbeck (OU)

1ou ou

c c

Dt t

& 0 2 2

0

2

1ouc

DS

Type 2: Power-Limited (PL)

1pl pl

c c

Dt t

& 2 2

2

1c

plc

DS

Page 24: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Example: Colored Noise

OU

PL

Page 25: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Multiple Noise: External+Internal Model system: CO Oxidation

11 1 1

1 1

1 1

1( ) ( ) ( )

1( ) ( ) ( ) , 1

M M

j j j j jj j

M M

j j j j jj j

dXv w v w t D w t

dt V

dXv w v w t

dt V

X X

X X

' 't t t t

( ) ( ') ( ')i j ijt t t t Internal noise:

External noise:

2002 2002 2 2

11 21 11 1 22 2( )1

2 2

M v v av v aD

N

Page 26: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

The Interplay

Internal Noise

Exte

rnal N

ois

e

Too much internal noise, no CR with external noise: SR as a collective behavior of ion-channel clusters

Page 27: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Entropy Production?

Macroscopic Level: Nonequilibrium Statistical Thermodynamics

0i ii iv

Ad Sp dv W j

dt T T

;vS t s t dv r ii

i

cs s

t c t

s

sJ

t

ii ir rr

cj v w

t

I. Prigogine 1970s

Page 28: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Entropy Production?

Mesoscopic Level: Stochastic Thermodynamics

; ln ;

0

X

e i i

S t P X t P X t

d S d S d SdSJ A

dt dt dt dt

Luo,Nicolis 1984; P.Gaspard 2004

Page 29: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Entropy Production?

Single Trajectory Level: Dynamic Irreversibity

U. Seifert, PRL 2005

0 1 2 1j

j j n ru u u u u u u

A Random Trajectory

Trajectory Entropy ln ;s p u

tot ms s s Total Entropy Change

0;0ln

;n

ps

p t

u

u

1;ln

;

j j

mj j j

Ws

W

u r

u r

R t u u

0|ln

|tot R

n

ps

p

u u

u u

0tots

Page 30: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Fluctuation Theorems !

1totse

totstot totp s p s e

Integrate FT

Detailed FT(NESS)

1BW G k T

Jarzynsky Equality

e

Probability of Second-law violation 0

is exponentially small tots

Page 31: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Brusselator

(X+1,Y-1)(X,Y-1)

(X-1,Y)

(X-1,Y-1)

(X+1,Y)(X,Y)

(X+1,Y+1)(X,Y+1)

Y

X

(X-1,Y+1)

(a)

92 94 96 98 100 102 104 106

197

198

199

200

201

202

203

Y

X

un=u0

(b)

FT holds

-4 0 4 8 12

0.0

0.1

0.2

0.3

0.4 b=1.9 b=2.0 b=2.1

P(

s m)

sm

(a)

-4.5 -3.0 -1.5 0.0 1.5 3.0 4.5-4.5

-3.0

-1.5

0.0

1.5

3.0

4.5

ln(P

(s m

)/P(-s

m))

sm

b=1.9 b=2.0 b=2.1

(b)

Page 32: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Scaling law

System Size Dependence

2 3 4 51

2

3

4 b=1.9 b=2.1

lnP

lnV2 3 4 5

1

2

3

4

log

(Vr2

)

logV

B=1.9 B=2.1

Simulation SNF Theory

,m L mc Ds s c X Y

u

2 2, ln 1 cos

2ms s

X rs c X Y

X X Vx x

0 2 2

0 0

21 cos

r

m L ms s

V rs rdr r d Vr

x x

u

1/22 22 /

2r

mr

C Vr

C

2lim 0V mr

rC

2

2lim 02V mr V

Page 33: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Conclusion Noise Induced Oscillation Stochastic Modeling is important Optimal System Size: Internal Noise Coheren

ce Resonance Intrinsic behavior Stochastic Normal Form Theory

Universality + Underlying mechanism Prediction: Control CR Nonequilibrium Thermodynamics: FT

Page 34: Internal Noise Coherence Resonance in mesoscopic chemical oscillation systems

Acknowledgements

Supported by: National science foundation (NSF)

Thank you