flavour oscillation and cp violation flavour oscillation: mixing

33
Content Flavour Oscillation and CP Violation Quarks Mixing and the CKM Matrix Flavour Oscillation: Mixing of Neutral Mesons CP violation Neutrino Mixing Stephanie Hansmann-Menzemer 1

Upload: others

Post on 03-Feb-2022

41 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Content

Flavour Oscillation and CP Violation

• Quarks Mixing and the CKM Matrix

• Flavour Oscillation: Mixing of Neutral Mesons

• CP violation

• Neutrino Mixing

Stephanie Hansmann-Menzemer 1

Page 2: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Quark Mixing in SMstrong, elm, weak NC conserve flavour and have identical coupling (constants) for

all up-type and down-type quarks, all leptons and all neutrinos:

• uγµu, cγµc, tγµt

• eγµe, µγµµ, τγµτ

• dγµd, sγµs, bγµb

• νeγµνe, νµγµνµ, ντγ

µντ

these interactions leave abmiguity for definition of quark and lepton eigenstates

e.g. rotational freedom in space of up-type quark:

x = 1√2(u + c) would still have the same form of Lagrangian with same coupling:

xγµx

weak CC couples up and down type quarks: uγµ(1 − γ5)d, ...

Stephanie Hansmann-Menzemer 2

Page 3: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Quark Mixing in SMYukawa term (coupling of Higgs to fermions) introduces:

u, c, t”

mu

0

B

B

@

u

c

t

1

C

C

A

+“

d, s, b”

md

0

B

B

@

d

s

b

1

C

C

A

; mu, md (3x3) mass matrices

choice of mass eigenstates for representation of Lagrangien introduceds a (3x3)

rotation matrix for u-type quarks and one for d-type quarks.

U†muU =

0

B

B

@

mu 0 0

0 mc 0

0 0 mt

1

C

C

A

V †mdV =

0

B

B

@

md 0 0

0 ms 0

0 0 mb

1

C

C

A

U, V are unitary matrices, q are mass eigenstates

0

B

B

@

u

c

t

1

C

C

A

= U

0

B

B

@

u

c

t

1

C

C

A

0

B

B

@

d

s

b

1

C

C

A

= V

0

B

B

@

d

s

b

1

C

C

A

All terms of the Lagrangian but CC are invariant under this rotation.

LCC =“

u c t”

U†Uγµ(1 − γ5)V †V

0

B

B

@

d

s

b

1

C

C

A

=“

u c t”

Uγµ(1 − γ5)V †

0

B

B

@

d

s

b

1

C

C

A

Stephanie Hansmann-Menzemer 3

Page 4: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Quark Mixing in SM

u c t”

Uγµ(1 − γ5)V †

0

B

B

@

d

s

b

1

C

C

A

=“

u c t”

γµ(1 − γ5)UV †

0

B

B

@

d

s

b

1

C

C

A

0

B

B

@

d′

s′

b′

1

C

C

A

= UV †

0

B

B

@

d

s

b

1

C

C

A

=

0

B

B

@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

C

C

A

×

0

B

B

@

d

s

b

1

C

C

A

flavour CKM matrix mass

JCCµ ∝

u, c, t”

㵓

1 − γ5”

VCKM

0

B

B

@

d

s

b

1

C

C

A

for quarks: flavour eigenstates 6= mass eigentstates!direct result of coupling of Higgs to quark flavours!

Stephanie Hansmann-Menzemer 4

Page 5: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

CKM Matrix I

d′

s′

b′

=

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

d

s

b

flavour CKM matrix mass

18 parameters (9 complex elements)-5 relative quark phases (unobservable)-9 unitarity conditions————————-= 4 independent parameters 3 Euler angles and 1 Phase

4 fundamental Standard Model Parameters (out of ∼18 (28))

Stephanie Hansmann-Menzemer 5

Page 6: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

CKM Matrix II

Lagrangian insensitive to phases of left-handed fields:possible redefinition:

uL → eiφ(u)uL cL → eiφ(c)cL tL → eiφ(t)tL

dL → eiφ(d)dL sL → eiφ(s)sL bL → eiφ(b)bL

φ(q): real numbers

V =

e−iφ(u) 0 0

0 e−iφ(c) 0

0 0 e−iφ(t)

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

eiφ(d) 0 0

0 eiφ(s) 0

0 0 eiφ(b)

5 unobservable phase differences:

Vlj → ei(φ(j)−φ(l))VljStephanie Hansmann-Menzemer 6

Page 7: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

CKM Matrix III

u c t

d s b

u

d ’

c

s ’

t

b ’

Diagonal elements of CKM matrix are close to one.Only small of diagonal contributions.Mixing between quark families is “CKM suppressed”.

Stephanie Hansmann-Menzemer 7

Page 8: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Definition of CKM Angles

VCKM =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

=

1 − λ2/2 λ Aλ3e−iγ

−λ 1 − λ2/2 Aλ2

Aλ3e−iβd −Aλ2 1

+ O(λ4)

cos θC = λ ∼ 0.22;

one unitarity relation: VudV∗ub + VcdV

∗cb + VtdV

∗tb = 0

Bd triangle:α = arg

(

− VtdV ∗tb

VudV ∗ub

)

;

β = arg(

−VcdV ∗cb

VtdV ∗tb

)

;

γ = arg(

−VudV ∗ub

VcdV ∗cb

)

;

area of triangle 6= 0 → complex contributions of CKM elementsStephanie Hansmann-Menzemer 8

Page 9: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Unitarity Triangle

γ

α

α

dm∆

Kεsm∆ & dm∆

ubV

βsin 2(excl. at CL > 0.95)

< 0βsol. w/ cos 2

α

βγ

ρ-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

η

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

excl

uded

are

a ha

s C

L >

0.95

Winter 12

CKMf i t t e r

Current status of knowledge on “the” (Bd) CKM triangle.Sofar all measurements consistent with each other.

Stephanie Hansmann-Menzemer 9

Page 10: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Complex Elements and CP Violation

Stephanie Hansmann-Menzemer 10

Page 11: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Neutral Meson Mixing

Stephanie Hansmann-Menzemer 11

Page 12: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Phenomenology of Mixing ISchrödinger equation for unstable mesons (at rest):

i ddt|Ψ >= H|Ψ >= (m − i

2Γ)|ψ >

→ |Ψ(t) >= |Ψ0 > e−imte−1

2Γt

→ ||Ψ(t) > |2 = ||Ψ0 > |2e−Γt

For neutral mesons, consider 2 components (formulas equivalent valid for K0, D0, B0s mesons):

id

dt

0

@

B0

B0

1

A = H

0

@

B0

B0

1

A =

0

@

H11 H21

H12 H22

1

A

0

@

B0

B0

1

A

=“

M − i2Γ

0

@

B0

B0

1

A =

0

@

m11 − i2Γ11 m21 − i

2Γ21

m12 − i2Γ12 m22 − i

2Γ22

1

A

0

@

B0

B0

1

A

CPT theorem:

m11 = m22 = m(B0) = m(B0)

Γ11 = Γ22 = Γ

= 1τ(B0)

= 1

τ(B0)

off-diagonal elements ⇒ mixing

M , Γ hermetic:

m12 = m∗21, Γ12 = Γ∗

21

Stephanie Hansmann-Menzemer 12

Page 13: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Mass Eigenstates

diagonlizing matrix → mass eigenstates x with eigenvalues mx + iΓx2

BL = p|B0 > +q|B0 > with mL, ΓL

BH = p|B0 > −q|B0 > with mH , ΓH

|p2| + |q2| = 1, complexe coefficients

Flavour eigenstates:

B0 = 12p(|BL > +|BH >)

B0 = 12q (|BL > −|BH >)

Parameters of mass states:

mH,L = m ± Re√

H12H21

ΓH,L = Γ ∓ 2Im√

H12H21

∆m = mH − MK = 2Re√

H12H21

∆Γ = ΓH − ΓL = −4Im√

H12H21

x ≡ ∆mΓ ; y ≡ ∆Γ

Stephanie Hansmann-Menzemer 13

Page 14: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Phenomenology of Mixing II

H =

m − i2Γ ∆m

2 − i2∆Γ

∆m2 − i

2∆Γ m − i2Γ

Two mixing mechanisms:

• mixing through decay: y = ∆ΓΓ ∼ O(1)

• mixing through oscillation: x = ∆mΓ ∼ O(1)

(K0K0, B0B0, B0s B0

s and D0D0 show different behavior)

long distant, on shell states

important for K not for B mesons

→ ∆Γ

short distant, virtual states

→ ∆m Stephanie Hansmann-Menzemer 14

Page 15: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Time Evolution I|BH/L(t) >= bH/L(t)|BH,L > with bH/L(t) = e−imH/Lte−ΓH/Lt/2

|B0(t) > =|BL(t) > +|BH(t) >

2p

=1

2p(bL(t)(p|B0 > +q|B0 >) + bH(t)(p|B0 > −q|B0 >))

= f+(t)|B0 > − q

pf−(t)|B0 >

|B0(t) > = f+(t)|B0 > +p

qf−(t)|B0 >

f±(t) = 12

eimH te−ΓH t/2 ± e−imLte−ΓLt/2”

CP-violation in mixing: P (B0 → B0) 6= P (B0 → B0) ⇔ | qp| 6= 1

Stephanie Hansmann-Menzemer 15

Page 16: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Time Evolution II

f±(t) = 12

(

eimH te−ΓH t/2 ± e−imLte−ΓLt/2)

P (B0 → B0) = P (B0 → B0) = |f+(t)|2 =14

(

e−ΓLt + e−ΓH t + 2e−(ΓL+ΓH)t/2 cos ∆mt)

P (B0 → B0) = | qp |2|f−(t)|2 =

14 |

qp |2

(

e−ΓLt + e−ΓH t − 2e−(ΓL+ΓH)t/2 cos ∆mt)

P (B0 → B0) = |pq |2|f−(t)|2 =

14 |

pq |2

(

e−ΓLt + e−ΓH t − 2e−(ΓL+ΓH)t/2 cos ∆mt)

Mixing asymmetry :P (B0→B0)−P (B0→B0)

P (B0→B0)+P (B0→B0)= 2e−(ΓH+ΓL)t/2 cos ∆mt

e−ΓHt+e−ΓLt

assume | qp | = 1Stephanie Hansmann-Menzemer 16

Page 17: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Phenomenology of Mixing IIITwo mixing mechanisms:

• mixing through decay: y = ∆ΓΓ ∼ O(1)

• mixing through oscillation: x = ∆mΓ ∼ O(1)

K0/K0 D0/D0 B0/B0 Bs/Bs

τ [ps]∗ 89 0.4 1.6 1.5

51700

Γ [ps−1] 5.6× 10−3 2.4 0.64 0.62

y= ∆Γ2Γ

-0.997 0.01 |y|<0.01 0.03±0.03

∆m [ps−1] 5.3 × 10−3 0.02 0.5 17.8

x= ∆mΓ

0.95 0.01 0.8 26

xxxxxxxx∗) at LHCb energies lifetime in ps ∼ decay length in cm

K0: mixing in decay and mixing in oscillation (medium) -

D0: very slow mixing - 2008

Bd: dominantly mixing in oscillation (medium) - 1987

Bs: dominantly mixing in oscillation (very fast) - 2006Stephanie Hansmann-Menzemer 17

Page 18: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

How to Measure Mixing?

• identify initial flavour of meson

• identify final flavour of meson→ identify Meson as mixed or unmixed

• if mixing is fast ... need to measured decay time:

decay length L+ momentum p → t = mLp

• if mixing is slow ... can deduce information from time integratedasymmetry

Stephanie Hansmann-Menzemer 18

Page 19: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Neutral Kaonsassume no CP violation, Ks, KL correspond to mass eigenstates:

K short

• τ(K0L) = 51.7 ± 0.44 ns

• typical decay length: 5-20 m

• KL → 3π BR > 99%

• CP = -1

|KL >= 1√

2|K0 > −|K0 >

K long

• τ(K0S) = 0.089 ± 0.001 ns

• typical decay length: few cm

• KS → 2π BR > 99%

• CP = +1

|KS >= 1√

2|K0 > +|K0 >

Stephanie Hansmann-Menzemer 19

Page 20: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

CPLEAR Experiment

Stephanie Hansmann-Menzemer 20

Page 21: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

CPLEAR Experiment

Stephanie Hansmann-Menzemer 21

Page 22: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

CPLEAR Experiment

A = 2e−(ΓS+ΓL)t/2 cos ∆mte−ΓSt+e−ΓLt

Stephanie Hansmann-Menzemer 22

Page 23: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

B-Mixing

B mesons are produced in high energetic collitions:

• B factories:e+e− → Y (4S) → B0B0

e+e− → Y (4S) → B+B−

50% : 50% for charged and neutral B meson productionm(Y(4S)) = 10.58 GeV; not sufficient energy to produce Bse−

e+

b

b

Y(4S)γ

b

b

uu

B−

B+

e.g. ARGUS, BELLE, BABAR

• pp, pp collidere.g. TEVATRON, LHC

Stephanie Hansmann-Menzemer 23

Page 24: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

ARGUS 1987

e+e− → Y (4S) → B0B0

√s = 10.58 GeV

unmixed:

B0B0 → ℓ+ℓ−

mixed:

B0B0 → ℓ+ℓ+

B0B0 → ℓ−ℓ−

time integrated measurement:

∼ 18% of B0 mix before they decay

decay of other B meson is used to tagged production

tt

d

d

b

b

Bd Bd

V V

VV

tb td

td tb*

*

(u,c) (u,c)

Stephanie Hansmann-Menzemer 24

Page 25: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

B0s

¯B0

sMixing Analysis

xxx t = L Bm

p

L−D

−π

+K−

K

b hadronPV

Bs0

s

signal sideopposite side

1) Bs selection & reconstruction2) Measurement of proper decay time ct

3) Flavor tagging (main challenge at hadron colliders)

Time dependent asymmetry measurement:

A(t) ≡ N(t)mixed−N(t)unmixed

N(t)mixed+N(t)unmixed∝ cos(∆mst)

Stephanie Hansmann-Menzemer 25

Page 26: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Time Dependent Asymmetries

decay time, ps0.0 0.5 1.0 1.5 2.0

prob

abili

ty d

ensi

ty

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

totalunmixedmixed

decay time, ps

asym

met

ry

������������������������������������������������������������������

������������������������������������������������������������������

A = #unmixed − #mixed#unmixed + #mixed

0 2.5 5 7.5 10proper decay time, t [ps]

asym

met

ry Bd mixing ∆md = 0.5 ps−1

Bs mixing ∆ms= 18 ps−1

A = 2e−(ΓH+ΓL)t/2 cos ∆mte−ΓHt+e−ΓLt ∼ cos ∆m

ΓH ∼ ΓL

Stephanie Hansmann-Menzemer 26

Page 27: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Time dependent Asymmetry

???Stephanie Hansmann-Menzemer 27

Page 28: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Tagging Dilution

Measured Asymmetrie:

Ameasured(t) =N(B0)

(t) − N(B0)′

(t)

N(B0)′

(t) + N(B0)′

(t)

=N(B0)(t)(1 − Pmt) + N(B0)(t)Pmt − N(B0)(t)(1 − Pmt) − N(B0)(t)Pmt

NRS(t) + NWS(t)

= (1 − 2Pmt)NB0

(t) − NB0(t)

NB0(t) + NB0

(t)= (1 − 2Pmt)A(t) = DA(t)

N′

B0/N

B0: as B0/B0 tagged decays

Pmt : Mistag-Probability

D : Tagging Dilution

Stephanie Hansmann-Menzemer 28

Page 29: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Auswirkung der Tagging Dilution

Mis-tag dilutes the observed Oszillation!

decay time, ps0.0 0.5 1.0 1.5 2.0

prob

abili

ty d

ensi

ty

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

perfect tagging

totalunmixedmixed

decay time, ps0.0 0.5 1.0 1.5 2.0

prob

abili

ty d

ensi

ty

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P(mistag) = 0.4

totalunmixedmixed

Amplitude: 1-2P(mistag)

Stephanie Hansmann-Menzemer 29

Page 30: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Asymmetry Measurement

Tagging dilution D = 1 − 2Pmt

Always true ↔ 100% dilution; radom Tag (Pmt = 50%) ↔ 0% Dilution;

Tagging efficiency ǫ = Ntagged

Nall

effective statist. size of sample

→ Neff = Nall × ǫD2.

[%] ǫD2 Reduktion des Datensatzes

D0/CDF 2.5 - 5.0 × 20-50

BABAR/BELLE ≈ 30 × 3-4

LHCb 3.0 × 30

e+e− experiments factor of 10 better!

Stephanie Hansmann-Menzemer 30

Page 31: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Flavour Tagging Methoden

K+

sBbl−

Opposite Side Tagging

bb Paarproduktion→ korrelierte ProduktionsflavourInklusive Reko. des OS B

xxxxxx Same Side Tagging

xb

u

u

Bb

s

K +

s

s

Nicht bei Y (4S) möglich!(keine Fragmentation)Stephanie Hansmann-Menzemer 31

Page 32: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Mixing @ Babar & CDF

B0B0

x

B0s B

0s (2006)

[ps]sm∆/πDecay Time Modulo 20 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Fitt

ed A

mpl

itude

-2

-1

0

1

2

data

cosine with A=1.28

CDF Run II Preliminary -1L = 1.0 fb

Stephanie Hansmann-Menzemer 32

Page 33: Flavour Oscillation and CP Violation Flavour Oscillation: Mixing

Bs − Bs Mixing at LHCb

∼ 9.250 Bs candidates in 3 channels

Proper time resolution: σt = 45 fs

∆ms = 17.725 ± 0.041 ± 0.026 ps−1

world best measurement!

]2 mass [MeV/csB5400 5600 5800

2#

even

ts /

15 M

eV/c

0

2000

datafitsignalmisid. bkg.

Ks D→sB

comb. bkg.

LHCb preliminary

= 7 TeVs

-1341 pb

[ ps ]sm∆ / πt modulo 20 0.05 0.1 0.15 0.2 0.25 0.3 0.35

mix

A

-0.4

-0.2

0

0.2

0.4

LHCb preliminary

= 7 TeVs

-1341 pb

Aufl

ösun

gre

d.A

mpl

itude

LHC

b-C

ON

F-2

011-

050

Stephanie Hansmann-Menzemer 33