interactions in an electrolyte sähkökemian peruseet ke-31.4100 tanja kallio [email protected]...

15
Interactions in an electrolyte Sähkökemian peruseet KE-31.4100 Tanja Kallio [email protected] C213 CH 2.4-2.5

Upload: bathsheba-richards

Post on 16-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Interactions in an electrolyte Sähkökemian peruseetKE-31.4100

Tanja [email protected]

CH 2.4-2.5

Solvent – ion interactions

Solvent – ion interactions

ion neutral1

2

3

vacuum

solvent

a

ez

a

qdqdqqVw

zeze

0

22

0 00

1 84)(

a

ezw

r0

22

3 8

W2 = cavity formation + surface tensionW2 ~ negligible

W1 = discharging an ion

W3 = charging a molecule

r

el a

ezGw

11

8 0

22

IS

total

Experimental values for hydration energy

Kationit Säde/pm / hydG

kJ mol 1

/ hydH

kJ mol 1

/ hydS

J mol 1 K 1

/mV

cm3 mol 1

H+ 1055 1090 131 5,5

Li+ 69 475 530 161 6,4

Na+ 102 365 415 130 6,7 K+ 138 295 330 93 3,5 Rb+ 149 275 305 84 8,6 Cs+ 170 250 280 78 15,8 NH4

+ 148 285 325 131 12,4 Me4N

+ 280 160 215 163 84,1 Et4N

+ 337 130 205 241 143,6 Mg2+ 72 1830 1945 350 32,2 Ca2+ 100 1505 1600 271 28,9 Fe2+ 78 1840 1970 381 30,2 Ni2+ 69 1980 2115 370 35 Fe3+ 65 4265 4460 576 53 Anionit F

– 133 465 510 156 4,3

Cl– 181 340 365 94 23,3

Br– 196 315 335 78 30,2

I– 220 275 290 55 41,7

OH– 133 430 520 180 0,2

NO3

– 179 300 310 95 34,5

ClO4

– 250 205 245 76 49,6

Ion – ion interactions

Debye length (1/2)

)()(

)( rzbi

RT

rFzbii

i

i

ececrc

Spatial distribution of ions around the central ion obeys Boltzmann distribution

(2.32)

rr

counterion 273 K

Debye length (2/2)

i

bii

i

ibii

i

rzbii

iii cz

RT

rF

RT

rFzFczeFczFczr i 2

2)( )()(

1)(

i

bii

rr

czRT

F 2

0

2222

0

2 ;

Charge density around the central ion is obtained by summarizing charge densities of all the ions

first term of Taylor series

electroneutrality

(2.33)

(2.34)

k-1 = Debye length = thickness of the double layer

Dependence of potential on charge density is given by Poisson equation

rr

Electrostatic potential falloff

ra

eezr

ar

r

c 1

14)(

)(

0

(2.36)

rCerr )(

a

cezdrrrC )(4 2

General solution for the previous equation in spherical coordinates is (f(r) = 0 when r → )

Integration constant is determined taking into account that the total charge density around the central ion is equal but opposite that of the central ion

After calculus we obtain

distance of closest approach

Debye-Hückel limiting law (1/3)

a

ezaVaadqaNw

r

cezc

14

)()()(;)(0

atm0

atmionion A

Electrostatic work done to move the central ion inside the ion cloud

r

ezrV

r

c 1

4)(

0

potential distribution around the central ion (2.36)

potential field created by the central ion at distance a (2.37)

a

ezNw c

r

18

2

0

Aionion

ra

eezr

ar

r

c 1

14)(

)(

0

Consequently

(2.39)

Debye-Hückel limiting law (2/3)

Comparison of (2.39) and (2.40) gives us

akT

ez

RT

w

r

ii

18ln

0

2ionion

g2 = 1 (infinite dilution)

(2.41)

ion-ionosm1

2

1

2

1

2dil lnlnln wwRT

c

cRT

a

aRTw

activity coefficients origins from electrostatic interactions between ions

(2.40)

When diluting the solution from concentration c1 to c2 (infinite dilute) work is done

Debye-Hückel limiting law (3/3)

i

iiii czIIBa

IAz 22

2

1;

1log

ion strength

Sifting to log system

2/12/32/11

2/1

8

2/32/32/12/3

6

Kdmmolcm1029,50

Kdmmol108246,1

TB

TA

r

r

IBa

IAzz

1log

Utilizing definition of mean activity:

(2.42)

(2.43)

experimentalD-H lawD-H limiting law

Ionpairs

1

1

AB

BBAA c

c

ccKd

g± = 1 → Kd = a2c/(1 a)

Equilibrium constants for ion assosiation/dissosiataion

Bjerrumin theoryIons around the central ion obey Maxwell-Bolzman distributionPotential profile immediately around the central ion obeys (2.37)Hypothesis: ions form ion pair when distance is smaller than q

Fouss theoryIons must be in contact to form an ionpairProbability of forming an ion pair depends on number of ions, solvent volume, space occupied by the species and electrostatic energy on the surface of the ion

bx

ra dxex

kT

ezzNK

2

4

3

0

2

A 44000

akTaE KeaN

c

/)(33

4A2

10001

Super acids and Hammett acid function

M.A. Paul and F.A. Long, Chem. Rev. 57 (1957) 1-45

Hammett acid function H0 for 0.1 M HCl-solutions. Abscissa: content of the organic component in mol-%

B + H+ BH+

very acidic acids extension to the conventional pH scale is needed

a weak indicator base B is added into the acid solution

equilibrium constant for the indicator acid

BH

BH

B

BH

BH

B0 log)log(log

c

clog

ca

acH H

measurable

measurable

O][Hlog)1(][OHlog 2 npKH w

for super basisBH + OH−(H2O)n B− + (n + 1)H2O

unknownconcentration depends on the pH of the super aid

Hammet acid function is defined so that it becomes equal to pH in ideally diluted aqueous solutions

Summary

Interaction in electrolyte solutions

r

el a

ezGw

11

8 0

22

IS

solvent – ion interactions

ion neutral1

2

3

vacuum

solvent

ion – ion interactions

i

bii

r

czRT

F 2

0

22

Debye length

IBa

IAzz

1log

Debye – Hückel law

0][BH

[B]log HpKd

superacids

O][Hlog)1(][OHlog 2 npKH w