intelligent compaction for soils, subbase, & stabilized ... · intelligent compaction for...

21
TRB IC Workshop Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 1 Intelligent Compaction for Soils, Intelligent Compaction for Soils, Subbase, & Stabilized Base Subbase, & Stabilized Base Field Demo Results Field Demo Results By By David J. White, Ph.D. David J. White, Ph.D. Iowa State University Iowa State University Earthworks Engineering Research Center (EERC) Earthworks Engineering Research Center (EERC) FHWA/IC Team FHWA/IC Team MN KS TX MS IN NY PA VA MD ND GA WI 2008 2009 2010 IC Field Demo Schedule IC Field Demo for Soils/SB/STB State Dates Materials Rollers TX July, 2008 Cohesive Soils, SB, STB Case/Ammann Dynapac KS Aug, 2008 Cohesive Soils Sakai Caterpillar NY May, 2009 Incohesive Soils, SB Bomag Caterpillar MS July, 2009 STB Case/Ammann Caterpillar

Upload: phungthien

Post on 21-Apr-2018

228 views

Category:

Documents


2 download

TRANSCRIPT

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 1

Intelligent Compaction for Soils, Intelligent Compaction for Soils, Subbase, & Stabilized BaseSubbase, & Stabilized Base

Field Demo ResultsField Demo Results

ByByDavid J. White, Ph.D.David J. White, Ph.D.

Iowa State UniversityIowa State UniversityEarthworks Engineering Research Center (EERC)Earthworks Engineering Research Center (EERC)

FHWA/IC TeamFHWA/IC Team

MN

KS

TXMS

IN

NY

PA

VA

MD

ND

GA

WI

200820092010

IC Field Demo Schedule

IC Field Demo for Soils/SB/STB

State Dates Materials Rollers

TX July, 2008 Cohesive Soils, SB, STB

Case/AmmannDynapac

KS Aug, 2008 Cohesive Soils SakaiCaterpillar

NY May, 2009 Incohesive Soils, SB

BomagCaterpillar

MS July, 2009 STB Case/AmmannCaterpillar

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 2

Equipment and Test MethodsEquipment and Test Methods

Caterpillar:CMV, RMV, MDP

Dynapac: CMV, Bouncing Value

Bomag: EVIB

Sakai: CCV

Case/Ammann: ks

Volvo: CMV

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 3

InIn--Situ Testing MethodsSitu Testing Methods

FWD, DCP, LWD, PLT, NG, GG, ST, CH, DSPA

Measurement Influence DepthMeasurement Influence Depth

Width (m)0 1 2 3 4 5 6 7 8

Dep

th (m

)

0.00.30.60.91.21.51.82.12.42.73.0

Nuclear Density Gaugec

Dynamic Cone Penetrometer (DCP)

Notes:a Influence depths for LWD/FWD are assumed ~ 1 x B (width)b Influence depth of soil stiffness gauge ~ 230 mm (Florida DOT  , 2003)cMaximum  penetration depth for Nuclear density gauge = 0.3 mdAccording to Method of Equivalent Thickness by Odemark (1949)

Soil StiffnessGaugeb

Typical penetration depth ~ 1m

Extensionup to ~ 3m

B = 0.3 m

Compaction layer

1 to 1.2 m (NCHRP 21‐09)1.5 m (ISSMGE 2005)

0.3 m spacingGeophones

Deflection Basind

Static Cone Penetration Test (CPT)

X

> 3m

B = 2.1 m

300 mm dia.LWDa/FWDa,d

X X X X X

In‐situ point test measurementsArea over which the roller MV’s are averaged

Distance = Roller travel in approx. 0.1 to 0.5 sec.Impact ForceFrom Rollers

XX 2.1 m X

CMV = 0.8 to 0.9 m (White et al. 

2009)

MDP = 0.3 to 0.6 m 

(White et al. 2009)

Laboratory Test MethodsLaboratory Test Methods

Proctor, Relative Density, Gradation, Atterberg Limits, Resilient Modulus, Moisture content, Gyratory/PDA Compaction

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 4

Experimental Plan and Site Experimental Plan and Site Specific Project GoalsSpecific Project Goals

Factors Affecting ICFactors Affecting IC--MVsMVsHeterogeneity in underlying layer support Heterogeneity in underlying layer support conditionsconditionsMoisture content variation Moisture content variation Range of measurement valuesRange of measurement valuesMachine operations (amplitude, frequency, Machine operations (amplitude, frequency, speed) and roller speed) and roller ““jumpingjumping””NonNon--uniform drum/soil contactuniform drum/soil contact

Factors Affecting ICFactors Affecting IC--MVsMVs (cont(cont’’d)d)Limited number of inLimited number of in--situ measurements situ measurements for correlation for correlation Uncertainty in spatial pairing of point Uncertainty in spatial pairing of point measurements and roller measurements and roller MVsMVsNot enough information to interpret the Not enough information to interpret the resultsresultsMeasurement errors associated with the Measurement errors associated with the roller roller MVsMVs and inand in--situ point test situ point test measurementsmeasurements

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 5

Project GoalsProject Goals1.1. Document impact of Document impact of variable feedback variable feedback

controlcontrol on compaction uniformityon compaction uniformity2.2. Document machine Document machine vibration amplitudevibration amplitude

influence on compaction efficiencyinfluence on compaction efficiency3.3. Evaluate impact of Evaluate impact of lift thicknesslift thickness on IC on IC

roller values and compaction efficiencyroller values and compaction efficiency

Project Goals (contProject Goals (cont’’d)d)4.4. Develop Develop correlationscorrelations b/w IC roller values b/w IC roller values

to traditional measurementsto traditional measurements5.5. Study IC roller Study IC roller measurement influence measurement influence

depthdepth6.6. Compare IC results to Compare IC results to tradition tradition

compaction operationscompaction operations7.7. Study IC roller measurement values in Study IC roller measurement values in

production compaction operationsproduction compaction operations

ISU Research Team Contacts:David J. White, Associate Professor, [email protected], (515) 290‐1080 (cell)Heath Gieselman, Assistant Scientist, [email protected], (515) 450‐1383 (cell)

Embankment/Subgrade (Sandy Silt/Gravel)

Aggregate Base (4 inch minus)

1

2

3

Embankment/Pavement Foundation LayersAccelerated Implementation of IC Technology for Embankment

Subgrade Soils, Aggregate Base, and Asphalt Pavement MaterialsUS 219, Springville, NY – New York State Department of Transportation

[May 17-May 22, 2009]

Notes:A. Moisture condition calibration test strip areas ± 1.5% optimum except as noted.  B. NYSDOT assistance requested for FWD testing and information on project QA testing requirements. C. As time permits repeatability passes for roller will be performed on embankment and aggregate base. 

Aggregate Base (2 inch minus)4”

8”

Date TB MachineAmp (mm)

Spot Tests Notes/Comments

05/17

ISU arrives at  site  to setup mobile lab (2pm)Setup BOMAG/CAT rollers and make trial  runs with GPS (3pm)Meet with Contractor and identify potential test areas  (4pm)Collect material samples  for on‐site laboratory  characterization  (5pm)

05/18

1BOMAG (smooth)

0.7, 2.0Auto

DCP, LWD, NG, PLT, BCD(?)

10 m x 60 m calibration  test area. 1. Compact foundation layer with 8 roller passes and 

map.2. Place one 300 mm loose lift of silty gravel over 

area3. Compact in three lanes using low, high, and vario

control – 10 passes + 3 mapping passes4. Develop compaction curves5. Excavate trenches and repeat compaction

2CAT 

(smooth)TBD

DCP, LWD, NG, PLT, FWD

Roller mapping  in production areas of embankment and aggregate base. Monitor existing practice and perform in‐situ tests for comparison. Use data for test run on IC QA specification.

05/19

3CAT 

(smooth)0.91.8

DCP, LWD, NG, PLT, BCD

15 m x 60 m calibration  test area. 1. Compact foundation layer with 8 roller passes and 

map.2. Place 300 mm loose lift of silty gravel  over a area 

for lanes 1/2 and 600 mm loose lift lanes 3/4.3. Create wet spot (+4%) 15 m x  10 m4. Compact in four lanes using low and high 10 

passes + 2 mapping passes5. Develop compaction curves

4BOMAG (smooth)

TBDDCP, LWD, NG, 

PLT, FWD

Roller mapping  in production areas of embankment and aggregate base. Monitor existing practice and perform in‐situ tests for comparison. Use data for test run on IC QA specification.

5/20 to 5/22

5/6

BOMAG (smooth)/

CAT (Smooth)

TBDDCP, LWD, NG, 

PLT, FWDProduction compaction areas of embankment and aggregate base. Multiple lifts.

05/21 Open House –presentation of preliminary results and roller demonstrations.

#2 (Vario Control)#3 (High Amp)

#1 (Low Amp)

Plan View Profile View

Notes: Compact underlying layer with 8 roller passes

Lift = 300 mm10 m

~60 m

Notes: After compaction testing, excavate two trenches and recompact

10 m

~60 m

Trench depth = 0.3 m and 1 mTrench widths = 1 m and 2m

Loose trenches

Calibration Test Strips - BOMAG

#1 #2 #3

Profile View

Lift = 600 mm

Notes: Compact underlying layer with 8 roller passes

Lift = 300 mmLanes 1/2

Lanes 3/4Wet zone (+4% wopt)

#3 (Low Amp)

Plan View

15 m#2 (High Amp)

#4 (High Amp)

#1 (Low Amp)

~60 m

Calibration Test Strips - CAT

Example Experimental Plan

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 6

TxDOTTxDOT IC DemoIC Demo

FM 156, Fort Worth, TXFM 156, Fort Worth, TXCohesive SG, Stabilized SG, and Cohesive SG, Stabilized SG, and Aggregate SB (Flex Base)Aggregate SB (Flex Base)

MN

KS

TXMS

IN

NY

PA

VA

MD

ND

GA

WI

Material Index Properties

Parameter SubgradeLime

Stabilized Subgrade

Flex Base

Material Description (USCS) Lean clay Silty sand

with gravel

Poorly graded gravel to silty

gravel with sand

Gravel Content (%) 3 17 69Sand Content (%) 10 60 21Silt Content (%) 50 19 7Clay Content (%) 37 4 3Liquid Limit, LL (%) 41 47 -

Plasticity Index, PI 29 12 -

AASHTO A-7-6(24) A-2-7 A-1-aUSCS CL SM GP-GM

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 7

InIn--Situ Testing MethodsSitu Testing Methods

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 8

Dis

tanc

e (m

)

0

20

40

60

80

100

120

140

160

180

Pass 1 2 3 4 5 6 7 8

Lane12345

Localized Wet Area

Cohesive Subgrade

Compaction CurvesCompaction Curves

Pass

0 2 4 6 8 10

Ave

rage

ELW

D-Z

2 (M

Pa)

6

9

12

15

18

Pass

0 2 4 6 8 10

Ave

rage

γd

(kN

/m3 )

13

14

15

16

17

18

19

Section 1 - Dry Section 2 - OptimumSection 3 - Wet

0 2 4 6 8 10

Ave

rage

w (%

)

5

10

15

20

25

30

35

Pass

0 2 4 6 8 10

Ave

rage

CB

R (%

)

3

6

9

12

15

18

0 2 4 6 8 10

Ave

rage

kS

IPD (M

N/m

)

8

10

12

14

16

18

20

Std. Proctor wopt = 17.8%

Std. Proctor γdmax = 16.8 kN/m3

Initial pass over rough grade

Cohesive Subgrade

20 40 60 80 100 120 140 160 180 200 220 240

k SIS

D(M

N/m

)

20

40

60

80

EFW

D-D

3 (M

Pa)

0

400

800

1200

20 40 60 80 100 120 140 160 180 200 220 240

k SIS

D(M

N/m

)

20

40

60

80

ELW

D-Z

2 (M

Pa)

0

100

200

300

400ks (MN/m)Point Measurement

Flex Base Flex BaseLime Stabilized Subgrade

Flex Base

Lime StabilizedSubgrade

Flex Base

Box Culvert

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 9

20 40 60 80 100 120 140 160 180 200 220 240

CM

V

0

50

100

150

200

ELW

D-Z

2 (M

Pa)

0

100

200

300

400

CMV (Setting 2)Point MeasurementCMV (Setting 3)

Flex Base Flex BaseLime Stabilized Subgrade

20 40 60 80 100 120 140 160 180 200 220 240

CM

V

0

50

100

150

200

EFW

D-D

3 (M

Pa)

0

400

800

1200Box Culvert

Flex Base

Lime StabilizedSubgrade

Flex Base

Lane 6

Lane 5

Lane 4

Lane 3

Lane 2

~ 200 m

~ 14

 m

Calibration lanes

Lane 1

Box Culvert

Distance (m)

30 40 50 60 70 80 90 100 110 120 130

k s (M

N/m

)

10

15

20

25

30

35

40Pass 1Pass 4Pass 6Pass 8Pass 12

Box Culvert

30 40 50 60 70 80 90 100 110 120 130

k s (M

N/m

)

1015202530354045

EFW

D-D

3(M

Pa)

050100150200250

EFWD-D3

Measurement repeatability

Box Culvert Lime Stabilized Subgrade

CBR (%)

0 10 20 30 40 50 60

Dep

th (m

m)

0

200

400

600

800

Point 13

CBR (%)

0 10 20 30 40 50 60

Dep

th (m

m)

0

200

400

600

800

Point 12

DCP refusal(Box Culvert)

CBR (%)

0 10 20 30 40 50 60

Dep

th (m

m)

0

200

400

600

800

Point 5

CBR (%)

0 10 20 30 40 50 60

Dep

th (m

m)

0

200

400

600

800

Point 1

Point 1

Point 5

Point 12

Point 13

w = 29.5%γ d = 13.8 kN/m3

ELWD‐Z2 = 11.6 MPa

ELWD‐Z2 = 58.4 MPaEV1 = 96.9 MPaEV2 = 381.1 MPaEFWD‐D3 = 145 MPaED‐SPA = 88 MPa

w = 20.8%γ d = 16.0 kN/m3

ELWD‐Z2 = 61.1 MPa

ELWD‐Z2 = 47.5 MPaEV1 = 42.1 MPaEV2 = 121.1 MPaEFWD‐D3 = 57 MPaED‐SPA = 44 MPa

Box Culvert

Lime Stabilized Subgrade

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 10

w (%)

16 18 20 22 24 26 28 30 32

k SIP

D (M

N/m

)

10

15

20

25

30

35

40

EV2 (MPa)

100 200 300 400 500 600 70010

15

20

25

30

35

40ELWD-Z2 (MPa)

0 20 40 60

k SIP

D (M

N/m

)

10

15

20

25

30

35

40

CBR (%)

0 5 10 15 2010

15

20

25

30

35

40

γd (kN/m3)

12 13 14 15 16 17 1810

15

20

25

30

35

40R2 = 0.55n = 63

EV1 (MPa)

50 100 150 200 25010

15

20

25

30

35

40

EFWD-D3 (MPa)

40 80 120 160 200

k SIP

D (M

N/m

)

10

15

20

25

30

35

40

ED-SPA (MPa)

20 30 40 50 60 70 80 90 10010

15

20

25

30

35

40

R2 = 0.59n = 27

R2 = 0.21n = 45

R2 = 0.54n = 45

R2 = 0.53n = 16

R2 = 0.53n = 16

R2 = 0.64n = 18

R2 = 0.38n = 18

Correlations between kSΙPD and in-situ point measurements a = 1.0 mm, f = 35 Hz, and v = 3.2 km/h)

Lime Stabilized Subgrade

Padfoot Vs. Smooth Drum Padfoot Vs. Smooth Drum MeasurementsMeasurements

kSΙSDmap; nominal a = 1.10 mm, f  = 30 Hz, and v = 3.5 km/h

kSΙPDmap; nominal a = 0.80 mm, f  = 35 Hz, and v = 3.2 km/h

kSIPD

(MN/m)

0 10 20 30 40 50 60 70 80

k SIS

D (M

N/m

)

0

10

20

30

40

50

60

70

80Padfoot a = 0.8 mm, f = 35 HzSmoothdrum a = 1.1 mm, f = 30 HzPadfoot a = 1.3 mm, f = 35 HzSmoothdrum a = 1.1 mm, f = 30 HzPadfoot a = 1.0 mm, f = 35 HzSmoothdrum a = 1.5 mm, f = 35 Hz

Lime Stabilized Subgrade

Map 3 Auto Setting 5

a(max) = 2.4 mm

Map 2 Manual Setting 3

a = 1.1 mm

Map 1 Manual Setting 2

a = 0.9 mm

CMV

0 10 20 30 40 50 60 70 80 90 100

CM

V

0102030405060

EFW

D-D

3 (M

Pa)

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100

CM

V

0102030405060

EFW

D-D

3 (M

Pa)

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100

CM

V

0102030405060

EFW

D-D

3 (M

Pa)

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100

CM

V

0102030405060

EFW

D-D

3 (M

Pa)

50

100

150

200

250

CMV (a = 0.9 mm)EFWD-D3

CMV (a = 1.1 mm)

Distance (m)

0 10 20 30 40 50 60 70 80 90 100

CM

V

0102030405060

EFW

D-D

3 (M

Pa)

50

100

150

200

250

Lane 1

Lane 2

Lane 3

Lane 4

Lane 5

Flex Base

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 11

KSDOT IC DemoKSDOT IC Demo

US 69, Pleasanton, KSUS 69, Pleasanton, KSCohesive SG, and Aggregate SBCohesive SG, and Aggregate SB

MN

KS

TXMS

IN

NY

PA

VA

MD

ND

GA

WI

 

Material Index Properties

Parameter Lean Clay Subgrade

Fat Clay Subgrade

Weathered Shale

Subgrade

Lean Clay Subgrade

Soil ID Soil # 1 Soil # 2 Soil # 3 Soil # 4

Gravel Content (%) 13 0 11 7

Sand Content (%) 30 4 18 21

Silt Content (%) 36 47 46 39

Clay Content (%) 21 49 25 33

Liquid Limit, LL (%) 28 54 35 36

Plasticity Index, PI 12 34 17 20

AASHTO A-6(4) A-7-6(36) A-6(10) A-6(12)USCS CL CH CL CL

0 10 20 30 40 50

CC

V

1234567

0 10 20 30 40 50 0 10 20 30 40 50

ELW

D-Z

2 (M

Pa)

0

20

40

60Pass 1

Lane 2: a = 0.93 mm, v = 6 km/h, f = 33 Hz (Low amp setting)

Pass 4 Pass 13

0 10 20 30 40 50

CC

V

1234567

0 10 20 30 40 50 0 10 20 30 40 50

γ d (kN

/m3 )

14

15

16

17

18

19

20Pass 1 Pass 4 Pass 13

Dist 1 vs Pass 1 Dist 1 vs Pass 1

0 10 20 30 40 50

CC

V

1234567

0 10 20 30 40 50 0 10 20 30 40 50

w (%

)

5

10

15

20

Pass 1 Pass 4 Pass 13

Dist 1 vs Pass 1 Dist 1 vs Pass 1

0 10 20 30 40 50

CC

V

1234567

0 10 20 30 40 50 0 10 20 30 40 50

CBR

(%)

0

10

20

30

40

50Pass 1 Pass 4 Pass 13

Dist 1 vs Pass 1 Dist 1 vs Pass 1

Distance (m)

0 10 20 30 40 50

CC

V

1234567

0 10 20 30 40 50 0 10 20 30 40 50

E FWD

-D4.

5 (M

Pa)

0

30

60

90

120

150Pass 1 Pass 4 Pass 13Avg. F = 27 kN

LWD

Nuke DD

Nuke w%

DCP - CBR

FWD

Cohesive Subgrade

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 12

Compaction CurvesCompaction Curves

Pass

0 2 4 6 8 10 12 14

CC

V

1

2

3

4

5

6

7

Pass

0 2 4 6 8 10 12 14E

LWD

-Z2 (

MP

a)0

10

20

30

40

50

60

Pass

0 2 4 6 8 10 12 14

γ d (kN

/m3 )

10

12

14

16

18

20

Pass

0 2 4 6 8 10 12 14

CB

R (%

)

0

5

10

15

20

Values corrected using w% values after Pass 1

TB 4 Lane 3: a = 2.19 mm, v = 6 km/h, f = 26 Hz (High amp setting)

Cohesive Subgrade

Padfoot vs. Smooth DrumPadfoot vs. Smooth Drum

Weathered Shale(Stiff)

Clay Subgrade

Padfoot CCV Smooth Drum CCV

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 13

Correlations: Padfoot CCV vs. InCorrelations: Padfoot CCV vs. In--situ Point Measurementssitu Point MeasurementsLean Clay and Weathered Shale Subgrade Lean Clay and Weathered Shale Subgrade

a a = 2.19 mm, = 2.19 mm, f f = 26 Hz= 26 Hz

EV2(MPa)

0 40 80 120 160

CC

VP

D

0

4

8

12

16

20

γd (kN/m3)

14 15 16 17 18 19 20 21

CC

VP

D

0

4

8

12

16

20

ELWD-Z2 (MPa)

0 20 40 60 80 100

CC

VP

D

0

4

8

12

16

20

TB1TB3 (Lift 4)TB4TB6TB7

EFWD-D4.5 (MPa)

0 50 100 150 200 250

CC

VP

D

0

4

8

12

16

20

EV1(MPa)

0 10 20 30 40 50 60

CC

VP

D

0

4

8

12

16

20

γd (kN/m3)

0 5 10 15 20 25 30 35 40

CC

VP

D

0

4

8

12

16

20

CCVPD = 1.76 + 0.14 ELWD-Z2

R2 = 0.75n = 57

CCVPD = 2.03 + 0.07 EFWD-D4.5

R2 = 0.82n = 28

CCVPD = -13.52 + 1.09 γd

R2 = 0.61n = 40

CCVPD = -0.24 + 0.24 EV1

R2 = 0.80n = 15

CCVPD = 0.41 + 0.11 EV2

R2 = 0.72n = 15

CCVPD = 2.84 + 0.19 CBRR2 = 0.78n = 21

MDP for Pass Number1 2 3

Elevation (Pass #3)

Elev. (m)>245.67245.67245.06244.45243.84243.23242.62<242.62

Passes>987654321

280

m

Pass Number1 2 3MDP80

>1401351301251201150

Production AreaCompactionFat Clay and Lean Clay Subgrade

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 14

165

m

Elev. (m)>245.67245.67245.06244.45243.84243.23242.62<242.62

Passes>987654321

MDP80 Measurement

Passes 1-2

MDP80 MeasurementPasses 3-4

Clay Fill

Shale Fill

Total # Passes after Measurement Passes 1-2 for Clay

Total # Passes after Measurement

Passes 3-4 for Shale

... afterMeasurement

Passes 3-4for Clay

... after Measurement

Passes 1-2 for Shale

Wet Zone

RollingDirection

MDP80

>1401351301251201150

Pass

Ave

rage

MD

P80

80

90

100

110

120

130

140

150

Clay FillShale Fill

1xσ

1-2 3-4

Wet Zone

Elev. (m)>245.67245.67245.06244.45243.84243.23242.62<242.62

125

m

MDP80 Measurement Pass

1 2-3 4-7

Passes>987654321

MDP80

>1401351301251201150

RollingDirection

Shale Fill Clay Fill

Pass

0 1 2 3 4 5 6 7 8

Ave

rage

MD

P80

80

90

100

110

120

130

140

150

Clay FillShale Fill

1xσ

Production AreaCompactionLean Clay Subgrade

NYSDOT IC DemoNYSDOT IC Demo

US 219, Springville, NYUS 219, Springville, NYNonNon--cohesive SG, and Aggregate SBcohesive SG, and Aggregate SB

MN

KS

TXMS

IN

NY

PA

VA

MD

ND

GA

WI

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 15

Material Index Properties

ParameterEmbankment

Granular Subgrade

Aggregate Base

Gravel Content (%) 24 46Sand Content (%) 55 44Silt Content (%) 15 7Clay Content (%) 6 3

Liquid Limit, LL (%) 16 15

Plastic Limit, PL (%) Non-PlasticAASHTO Classification A-1-b A-1-aUSCS Classification SM GW

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 16

CMVPass 2

a = 0.90 mm

CMVPass 3

a = 0.90 mm

200

m

MDP40

Pass 1Static

MDP40

Pass 2a = 0.90 mm

MDP40

Pass 3a = 0.90 mm

MDP40

>145140135130125120

CMV>100806040200

In-SituTest

Locations

(1)

(2)

(3)

(4) (5)

(6)

(7)

(8)(9)

(10)

ELWD-Z2 (MPa)

0 100 200 300 400

CM

V

0

20

40

60

80

100

CBR300

0 50 100 150 200

ELWDCBR CMV - ELWDCMV-CBR

R2 = 0.68

R2 = 0.85

ELWD-Z2 (MPa)

0 100 200 300 400

CM

V

0

20

40

60

80

100

CBR300

0 20 40 60 80 100 120

ELWDCBR CMV - ELWDCMV - CBR

R2 = 0.54

R2 = 0.30

Embankment Granular Subgrade

CMVPass 2

Low

71 m

MDP40

Pass 1Static

MDP40

Pass 2a = 0.90 mm

MDP40

>145140135130125120

CMV>100806040200

Embankment subgrade material underlain by

rubber tire fill

Embankment Granular Subgrade

Truck traffic contributing to

compaction

MDP40

>140130120110100900

76 m

CMV>100806040200

Passes>987654321

MDP40 Final PassPass Count CMV Final Pass

Area withtruck traffic

Aggregate Base

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 17

Map 1Manual

a = 0.70 mm

Map 2Auto

amax = 1.90 mm

Map 5 Lane 3Manual

a = 0.70 mm

Map 6 Lane 3Manual

a = 1.10 mm

Lane 1234

5

Map 3 Lane 3Manual

a = 0.70 mm

Map 4 Lane 3Manual

a = 0.70 mm

Track ModeGPS Mode GPS Mode

0 10 20 30 40 50 60 70 80 90 100

EV

IB (M

Pa)

0

100

200

300

Jum

p

0

1

2

0 10 20 30 40 50 60 70 80 90 100

EV

IB (M

Pa)

0

100

200

300

Jum

p

0

1

2

0 10 20 30 40 50 60 70 80 90 100

EV

IB (M

Pa)

0

100

200

300

Jum

p

0

1

2

0 10 20 30 40 50 60 70 80 90 100

EV

IB (M

Pa)

0

100

200

300

Jum

p

0

1

2

Distance (m)

0 10 20 30 40 50 60 70 80 90 100

EV

IB (M

Pa)

0

100

200

300

Jum

p

0

1

2

0 10 20 30 40 50 60 70 80 90 100

EV

IB (M

Pa)

0

100

200

300

Jum

p

0

1

2

Pass 1: Manual a = 0.70 mm

Pass 2: Auto

Pass 3: Manual a = 0.70 mm

Pass 4: Manual a = 1.10 mm

Pass 5: Manual a = 0.70mm

Pass 6: Manual a = 1.10mm

Embankment Subgrade

Embankment SubgradeEmbankment Subgrade

Distance (m)

0 10 20 30 40 50 60 70 80 90 100

EVI

B (M

Pa)

50

100

150

200

250

300

350

ELW

D-Z

2 (M

Pa)

0

100

200

300

400

500

Pass 4: Manual a = 0.7 mm

Distance (m)

0 10 20 30 40 50 60 70 80 90 100

EVI

B (M

Pa)

50

100

150

200

250

300

350

ELW

D-Z

3 (M

Pa)

50

100

150

200

250

Pass 4: Manual a = 0.7 mm

Distance (m)

0 10 20 30 40 50 60 70 80 90 100

EVI

B (M

Pa)

50

100

150

200

250

300

350

Jum

p

-1

0

1

2

3

Pass 4: Manual a = 0.7 mm

300 mm Zorn LWD

Jump

200 mm Zorn LWD

Depth of influenceDepth of influence

2m wide trench

1m wide trench

Lane # 1# 2# 3

Plan View

10 m

~60 m

Trench widths = 1 m and 2m

Loose trenches

#1 #2 #3

Embankment Granular Subgrade

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 18

MSDOT IC DemoMSDOT IC Demo

US 84, Wayne County, MSUS 84, Wayne County, MSNonNon--cohesive SG, Aggregate SB, STBcohesive SG, Aggregate SB, STB

MN

KS

TXMS

IN

NY

PA

VA

MD

ND

GA

WI

MaterialsGranular Subgrade (Fine sand w/ clay):

Cement-stabilized and unstabilized

Granular subbase (Fine sand): Cement-stabilized and unstabilized

Granular SubgradeStabilization Process

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 19

Effect of Time DelayEffect of Time Delay

Time (minutes)

0 50 100 150 200 250 300

Dry

Den

sity

(pcf

)

114

116

118

120

122

124

126

128Stabilized BaseStabilized Subgrade

In-situ Sample Proctor (Approx. 1.5 hr after placement and 30 to 40 min after mixing):Stabilized Subgrade: 122.8 pcf @ w = 10%Stabilized Base: 120.5 pcf @ 11.4%

ks

Amp. (mm)

Freq. (Hz)

Amp. Freq.

Manual Mode - TB4Shortly after stabilization

ks Amp. Freq.

AFC Mode - TB9After 2-day cure

ks (MN/m)

304

m

ks Amp. Freq.

Manual Mode - TB9After 2-day cure

Static pass after vibratory compaction pass

Granular SubgradeShortly after stabilization and after 2-day cure

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 20

ks

Amp. (mm)

Freq. (Hz)

Amp. Freq.

Manual Mode - TB3Shortly after stabilization

ks Amp. Freq.

Manual Mode - TB8After 2-day cure

ks (MN/m)

201

m

213

m

ks Amp. Freq.

AFC Mode - TB8After 2-day cure Granular Subbase

Shortly after stabilization and after 2-day cure

109.

5 m

MDP40

>140140130120110100<100

CMV>2020151052<2

MDP40 CMV ks

Amp. (mm)

Freq. (Hz)

Amp. Freq. ks Amp. Freq.Manual Mode AFC Mode

Static pass after vibratory compaction pass

Granular Subgrade Unstabilized

Summary & CommentsSummary & Comments

TRB IC Workshop

Intelligent Compaction for Soils, Subbase, & Stabilized Base Field Demo Results - 21

Key FindingsKey FindingsConstruction processConstruction process--control control greatlygreatlyimprovedimprovedICIC--MVsMVs correlate to various incorrelate to various in--situ point situ point measurementsmeasurementsMeasurement influence depth varies Measurement influence depth varies depending on technology and site depending on technology and site conditionsconditionsMachine operation parameters influence Machine operation parameters influence MVsMVs

Key FindingsKey FindingsNeed better data visualization, Need better data visualization, correlation, transfer, archiving correlation, transfer, archiving tools/capabilitiestools/capabilitiesImplementation: (1) use ICImplementation: (1) use IC--MVsMVs as part of as part of ““intelligent QC/QAintelligent QC/QA””; (2) Link IC; (2) Link IC--MVsMVs to to mechanistic QA parameters in top 1~3 mmechanistic QA parameters in top 1~3 mStatistical analysis tools/protocols Statistical analysis tools/protocols –– need need to better understand link to performance!to better understand link to performance!

2010 Projects 2010 Projects -- SuggestionsSuggestionsEvaluate Implementation Approaches: Evaluate Implementation Approaches: –– (1) Use IC(1) Use IC--MVsMVs as part of as part of ““intelligent QC/QAintelligent QC/QA””; ; –– (2) Link IC(2) Link IC--MVsMVs to mechanistic QA to mechanistic QA

parameters in top 1~3 mparameters in top 1~3 mStatistical analysis tools/protocols Statistical analysis tools/protocols –– need need to better understand link to performance!to better understand link to performance!–– Need to start planning some longNeed to start planning some long--term case term case

studiesstudies–– Organize committee to review analysis Organize committee to review analysis

approachapproach