integrated photonic systems for applications in … photonic systems for applications in...

58
Integrated photonic systems for applications in telecommunications applications in telecommunications and biosensing Andrew Kirk [email protected] Department of Electrical and Computer Engineering McGill University McGill University McGill Institute for Advanced Materials

Upload: doantuyen

Post on 10-Apr-2018

220 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Integrated photonic systems for applications in telecommunicationsapplications in telecommunications 

and biosensingAndrew Kirk

[email protected]

Department of Electrical and Computer EngineeringMcGill UniversityMcGill University

McGill Institute for Advanced Materialsf

Page 2: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

McGill UniversityFounded in 1813 Situated in heart of Montreal

Montreal

Has about 30,000 studentsInstruction is in English

Andew Kirk, June 2010 2Integrated photonic systems

Page 3: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Integrated Nanophotonics Research Group May 2010

Amir Jafari

Eric Waldman Mohamed NajihPhilip Roche Amin Khorshidahmad

Arya Fatehi

Venkat Veerasubramanian

Roy Zhang

Songzhe WongJeremy Wong

Ahmed Abumazwed

Imran Cheema Shaz TaslimiAndrew  Kirk Sandrine Cote

Venkat Veerasubramanian

Andew Kirk, June 2010 3Integrated photonic systems

Page 4: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Integrated Nanophotonics Research Group Current projects

Planar waveguide devices Biosensors

• Etched grating demultiplexer• Photonic crystal superprism

• Integrated SPR• Grating‐enhanced SPR

• Photonic crystal wavelength conversion

• Spectro‐angular SPR• Plasmonic polymer

• Hybrid laser integration• Fabry‐Perot comb filter switch

• Cavity ring down resonant sensing 

• Nano crystalline cellulose• Nano‐crystalline cellulose

Andew Kirk, June 2010 4Integrated photonic systems

Page 5: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Integrated Nanophotonics Research Group Current projects

Planar waveguide devices Biosensors

• Etched grating demultiplexer• Photonic crystal superprism

• Integrated SPR• Grating‐enhanced SPR

• Photonic crystal wavelength conversion

• Spectro‐angular SPR• Plasmonic polymer 

• Hybrid laser integration• Fabry‐Perot comb filter switch

• Cavity ring down resonant sensing 

• Nano crystalline cellulose• Nano‐crystalline cellulose

Andew Kirk, June 2010 5Integrated photonic systems

Page 6: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Distributed Etched Diffraction Grating (DEDG) 

• Deeply etched sidewalls replaced by distributed reflector  – E. Bisaillion and A.Kirk, IEEE‐LEOS Annual meeting 2006, g

• Single  shallow etch depth simplifies fabrication– J . Brouckaert et. al. IEEE PTL Vol. 2, No. 4, 2008

Output Waveguides

• Dispersive and reflective properties tailored individually– This work

Input Waveguide

Si core

Si core

Distributed etched diff iSi core

Oxide

Substrate

diffraction grating

Andew Kirk, June 2010 6Integrated photonic systems

Page 7: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Distributed Etched Diffraction GratingReflective propertiesReflective propertiesR fl ti it d b d idth

Dispersive propertiesDispersive propertiesl f l

Distributed Etched Diffraction Grating

Reflectivity and bandwidth determined by

– Etch depth (index contrast)

Resolution, free spectral range, number of channels:

– Operating diffraction order– Bragg order (periodicity )– Number of periods

– Periodicity (d)– Facet size (s)– Number of periodsNumber of periods– Blaze angle– Focal length

Diff t d li ht

Etch depthIncident lightReflected light

d

s

Incient lightDiffracted light

Andew Kirk, June 2010 7Integrated photonic systems

Page 8: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Experimental demonstration in SOIp4 channel, CWDM, 3rd order gratings

Waveguides

200 m

Waveguide aperture 5µm 

Shallow etched (70nm) DBR

Input waveguide

Deep etchedFabricated  at IMEC (ePIXfab) via deep UV lithography

Deep etched (220nm) trenches

Andew Kirk, June 2010 8Integrated photonic systems

Page 9: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

PerformancePerformance

• 4 channel CWDM• TE polarization• 5 dB insertion loss• 25 dB crosstalk

Andew Kirk, June 2010 9Integrated photonic systems

Page 10: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Spectral engineeringl b d ( l )E.g. Dual band operation (simulation)

1550‐nm band1300‐nm band

1300‐nm band 1550‐nm band

A.Jafari and A.G.Kirk, ‘Distributed Etched Diffraction Grating Demultiplexer with Engineered Response’, Proc. IEEE‐LEOS Annual Meeting 2008, Newport Beach, CA, 2008

Andew Kirk, June 2010 10Integrated photonic systems

Page 11: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Integrated Nanophotonics Research Group Current projects

Planar waveguide devices Biosensors

• Etched grating demultiplexer• Photonic crystal superprism

• Integrated SPR• Grating‐enhanced SPR

• Photonic crystal wavelength conversion

• Spectro‐angular SPR• Plasmonic polymer 

• Hybrid laser integration• Fabry‐Perot comb filter switch

• Cavity ring down resonant sensing 

• Nano crystalline cellulose• Nano‐crystalline cellulose

Andew Kirk, June 2010 11Integrated photonic systems

Page 12: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Interferometric electro‐optic switchesInterferometric electro optic switches• Integrated Mach‐Zender

waveguide switches developed 30  1 1’g pyears ago, demonstrated in LiNbO3

• Scaling beyond 8x8 challenging due to waveguide bend limits 2 2’g

• Electro‐optic switches based on Fabry‐Perot etalon filters are

2 2

Fabry Perot etalon filters are typically narrow band due to small n

• However there is the possibility of eHowever there is the possibility of using free‐space slab approach for better scalability

ansm

ittan

ce VTra

WavelengthAndew Kirk, June 2010 12Integrated photonic systems

Page 13: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Filter Design: Comb ResponseFilter Design: Comb ResponseNegative voltage

Odd

In

Odd Even

lPositive voltage

In

Even Odd

• EO effect shifts the filter response by 1 nm only• Reduced the filter free‐spectral range to create a

In

Reduced the filter free spectral range to create a comb filter with a 200 GHz Spacing

• Bandwidth > 30 nmM.Menard, A.G.Kirk ,’Integrated Fabry‐Perot Comb Filters for Optical Space Switching’, J.Lightwave Technol., 28, pp 768‐775, 2010

Andew Kirk, June 2010 13Integrated photonic systems

Page 14: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Four coupled cavities, 2nd order mirrorsFour coupled cavities, 2 order mirrors

Chromatic dispersion (simulated):

Spectral response (simulated):

Page 15: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Integrated 2 x 2 optical switchIntegrated 2 x 2 optical switch

GaAs material systemy

M.Menard, A.G.Kirk, ‘Integrated Fabry‐Perot Optical Space Switches ‘,Optics Express, 17pp 17614‐17629, 2009

Andew Kirk, June 2010 15Integrated photonic systems

Page 16: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Prototype Spectral Response

• Fabrication errors shifted the response to the L band and• Fabrication errors shifted the response to the L‐band and reduced cavity coupling

• High loss (20 dB) due to misalignment of the input/output d dd l l d f l dwaveguides. Additional loss due to filters < 1dB

Andew Kirk, June 2010 16Integrated photonic systems

Page 17: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Prototype Channel PerformancePrototype Channel Performance

• Fluctuation in crosstalk and extinction ratio due to i l i h l hripples in the wavelength response

Andew Kirk, June 2010 17Integrated photonic systems

Page 18: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Prototype 10 Gb/s BERTPrototype 10 Gb/s BERT

• Transmission power penalty caused by the combination of collimation & radiation, which brought the output power below the SOA sensitivity floor

Andew Kirk, June 2010 18Integrated photonic systems

Page 19: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Switch Fabric LayoutsSwitch Fabric Layouts

3x3 Crossbar 4x4 Shuffle BenesBenes

Andew Kirk, June 2010 19Integrated photonic systems

Page 20: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Integrated Nanophotonics Research Group Current projects

Planar waveguide devices Biosensors

• Etched grating demultiplexer• Photonic crystal superprism

• Integrated SPR• Grating‐enhanced SPR

• Photonic crystal wavelength conversion

• Spectro‐angular SPR• Plasmonic polymer 

• Hybrid laser integration• Fabry‐Perot comb filter switch

• Cavity ring down resonant sensing 

• Nano crystalline cellulose• Nano‐crystalline cellulose

Andew Kirk, June 2010 20Integrated photonic systems

Page 21: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Photonic biosensor TypesPhotonic biosensor Types

SPR Biosensor Interferometer Biosensor Photonic Crystal Biosensor

Waveguide Biosensor Optical Fiber Biosensor Micro‐Cavity BiosensorWaveguide iosensor Optical Fiber iosensor Micro Cavity iosensor

Andew Kirk, June 2010 21Integrated photonic systems

Page 22: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

MotivationMotivation1. Improving Sensitivity for Biomarker‐Based Diagnosis

2. Drug discoveryAndew Kirk, June 2010 22Integrated photonic systems

Page 23: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Motivation:Improving Sensitivity for Biomarker‐Based Diagnosisp g y g

Biosensor RequirementsBiosensor Requirements

• Multiple biomarker detection for effective diagnosis• Small proteins (< 100 kDa)• Low concentration pg – ng /mLpg g /• Require Real‐time sampling and on‐going measurement for fluctuations

• Label free

Biofunctionalised Surface

Transducer• Integrated biosensor

Nanostructure and NanoparticlesNanostructure and Nanoparticles Disease

Signal AmplificationTreatmentTreatment

Page 24: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Transduction mechanismsTransduction mechanisms• Affinity of sensor is determined by functionalized surface

• Many transduction mechanisms exist:• Mass sensingMass sensing

– E.g. Quartz crystal microbalance

• Electrical sensing

Biofunctionalised Surface

Transducer• Electrical sensing– E.g. capacitative sensing

• Optical sensing

Transducer

Measure change in mass, l i l i l• Optical sensing

– Evanescent wavesensorsSurface plasmon resonance (SPR) sensors

electrical, optical properties

– Surface plasmon resonance (SPR) sensors

Page 25: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Surface plasmon polaritonSurface plasmon polariton• Surface plasmon: electron density wave 

on a metal, excited by incident light • Plasmon excited when momentum of 

incoming wave matches that of plasmon• Results in reflectance dipf p

Plasmon Dielectric

mDk

Dm Metal

Plasmon momentum:

Incident Reflected

mDsp c

k

f di l t i t t d f li ht

Incident light

Incident dielectric

Reflected light

: frequency, : dielectric constant: c: speed of light

Andew Kirk, June 2010 25Integrated photonic systems

Page 26: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Surface Plasmon Resonance SensingSurface Plasmon Resonance Sensing• Label‐free sensing technique• Picomolar concentrations detectable

10 6 10 8 f ti i d it

Reflection dip

ance

• 10‐6 – 10‐8 refractive index units

Wavelength, Incident Angle

Refle

cta

n

Surface plasmonBiomarkers

n

1 1sin M Dres

S M Dn

PrismGold/Silver

Probes

ctance

elen

gth

nce An

gle

Refle

cWave

Resonan

Time

Andew Kirk, June 2010 26Integrated photonic systems

Page 27: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Commercial SPRCommercial SPRSeveral commercial SPR analysis systems exist

Biacore

SPREETA (SensataInc)

Andew Kirk, June 2010 27Integrated photonic systems

Page 28: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Angle scanning sensorsAngle scanning sensors

• E g BiacoreE.g. BiacoreReflection dip

ceRe

flectanc

n

Incident Angle

laser

28

detectorAndew Kirk, June 2010 Integrated photonic systems

Page 29: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Angular spectrum sensorAngular spectrum sensor

• SPREETA sensorSPREETA sensor

Andew Kirk, June 2010 29Integrated photonic systems

Page 30: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Integated SPR sensorIntegated SPR sensor• Angle sensing SPR

• Objective: Replace external focusing optics with moldable diffractive elements ondiffractive elements on disposable sensor head

Side

Top

W‐Y Chien, M. Z. Khalid, X.D. Hoa, A. G. Kirk, ‘Monolithically Integrated Surface Plasmon Resonance Sensor Based on Focusing Diffractive Optic Element for Optofluidic Platforms’,  J.Sensors and Actuators B, 138, 441‐445, 2009

Andew Kirk, June 2010 30Integrated photonic systems

Page 31: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Fabricated deviceFabricated device

S f l8‐level diffractive cylindrical mirror etched in fused silica

Etch profile(800 nm depth)

2 m• Surface plasmon resonance sensing

• Complete optical system integrated onto sensor chipintegrated onto sensor chip

Andew Kirk, June 2010 31Integrated photonic systems

Page 32: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Results: Refractive index measurement (NaCl solution)

Noise limit: 2.5 x 10‐5 RIU 

W‐Y Chien, M. Z. Khalid, X.D. Hoa, A. G. Kirk, ‘Monolithically Integrated Surface Plasmon Resonance Sensor Based on Focusing Diffractive Optic Element for Optofluidic Platforms’,  J.Sensors and Actuators B, 138, 441‐445, 2009

Andew Kirk, June 2010 32Integrated photonic systems

Page 33: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Integrated Nanophotonics Research Group Current projects

Planar waveguide devices Biosensors

• Etched grating demultiplexer• Photonic crystal superprism

• Integrated SPR• Grating‐enhanced SPR

• Photonic crystal wavelength conversion

• Spectro‐angular SPR• Plasmonic polymer 

• Hybrid laser integration• Fabry‐Perot comb filter switch

• Cavity ring down resonant sensing 

• Nano crystalline cellulose• Nano‐crystalline cellulose

Andew Kirk, June 2010 33Integrated photonic systems

Page 34: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Enhancing SPR responseEnhancing SPR response

• To increase SPR sensitivity we need to amplify the y p yeffects of small changes in refractive index at the surface

• Sensitivity is measured as either• Sensitivity is measured as either:– Change in dip angle vs. refractive index (RIU) or– Change is dip wavelength vs. refractive index a ge s d p a e e g s e ac e de(RIU)

• Two possible approaches:I fi ld t ti d t ti (– Increase field concentration and penetration (e.g. use nanoparticles)

– Use optically resonant structures

Andew Kirk, June 2010 34Integrated photonic systems

Page 35: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Periodic metallic gratingsPeriodic metallic gratings

Flat surface dispersion curve

Incident light

Flat surface dispersion curve1

Prism/Si

Metal film SP

0

Andew Kirk, June 2010 35Integrated photonic systems

Page 36: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Periodic metallic gratingsPeriodic metallic gratings• Creates bandgap in dispersion curve

10 nm grating dispersion curve

Incident light

110 nm grating dispersion curve

Prism/Si

Metal film SP

Wavelength =850 nmPeriod =300 nm

0

Bandgap appears at Bragg wavelength:2sp

B

2B

Andew Kirk, June 2010 36Integrated photonic systems

Page 37: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Effect of gratingEffect of grating• Plasmon propagation is forbidden at the bandgap• Creates plasmon standing waves:

– Increases electric field penetration into dielectric– Increases speed at which dip moves as a function of refractive index– Increases speed at which dip moves as a function of refractive index

• Results in increased sensitivity

Rigorous coupled lwave analysis 

simulation for one period of grating

Magnetic field

Andew Kirk, June 2010 37Integrated photonic systems

Page 38: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Sensitivity enhancementSensitivity enhancementSinusoidal gratings show a 6 x increase in sensitivity vs. flat surface

f l h l d bHowever, for a given wavelength, range is limited. Increase range by measuring in two‐dimensions (wavelength and angle)

C.J. Alleyne, A.G. Kirk, R.C. McPhedran, N‐A.P. Nicorovici, and D. Maystre, ‘Enhanced SPR sensitivity using y , , , , y , y gperiodic metallic structures’, OSA Optics Express, 15, pp 8163‐1869, 2007 

Andew Kirk, June 2010 38Integrated photonic systems

Page 39: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Experimental evaluation: Grating + patterned surface chemistry

Protein Repellent Chemistr

Protein Absorption Chemistry

• Enhanced SPR response

• Increased electromagnetic

Protein Repellent Chemistry

• Increased electromagneticgradients

• Surface receptors withP iGold p

optimized orientation, densityand non‐specific absorption

Prism

• Generate biochemical optical contrast

Antigen ‐ Biomarker

Antibody ‐ ProbeProtein ASelf‐Assembled Monolayer

X.D. Hoa, M. Tabrizian, A. G. Kirk, Enhanced SPR Response from Patterned Immobilization of Surface Bioreceptors on Nano‐gratings, J.Biosensors and Bioelectronics, 24 (2009) 3043–3048, 2009.

Andew Kirk, June 2010 39Integrated photonic systems

Page 40: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Rigorous Coupled Wave Analysis Modellingg p y g

Uniform Mesa Trough

25nm5x10nm

Displacement

25nm5x10nm

Displacement

25nm125nm250nm

25nm125nm250nm

X.D. Hoa, M. Tabrizian, A. G. Kirk, ‘Rigorous Coupled‐Wave Analysis of Surface Plasmon Enhancement from Patterned Immobilization on Nano‐Gratings’, J.Biosensors, doi:10.1155/2009/713641, 2009.

Page 41: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Microfabrication and Surface Chemistry1. Patterned PMMA on gold Protein Repellent Chemistry (PASSIVE)

Protein Absorption Chemistry (ACTIVE)Au (Grating)

Cr

2. Deposition of gold

CrAu (Underlaying)

SF11 SubstrateCr

3. Surface functionalisation 1• 1mM of PEO in water• Overnight incubation

4. Removal of PMMA in solvent

• Overnight incubation

• 1H in Acetone/MEK• 1 min ultrasonication

4. Surface functionalisation 2

• 1 min ultrasonication

• 1mM of MCHA in ethanolb• 3H incubation time

Andew Kirk, June 2010 41Integrated photonic systemsX.D. Hoa, M. Tabrizian, A. G. Kirk, Enhanced SPR Response from Patterned Immobilization of Surface Bioreceptors on Nano‐gratings, J.Biosensors and Bioelectronics, 24 (2009) 3043–3048, 2009.

Page 42: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Characterization via SPR‐ImagingCharacterization via SPR ImagingPrism Coupler

Au (Grating)CrAu (Underlaying)Cr

Mesa Trough

InletOutlet

SF11 SubstrateCr

Mesa Trough

LED

PolarizerLens

Fluidic Cell

Prism

Uniform Control ‐ Flat

Motorized Mirror

Lens

SampleSample

Andew Kirk, June 2010 42Integrated photonic systems

Page 43: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Injection of Anti‐TNF‐αInjection of Anti TNF α1 μg/mL anti‐TNF‐α

0 160.180.2

)2 μg/mL anti‐TNF‐αMesaTrough

0.080.1

0.120.140.16

lar S

hift

(Deg

)2 μg/mL anti TNF α ougUniformControl

00.020.040.06

Ang

u

0 1 2

Andew Kirk, June 2010 43Integrated photonic systems

Page 44: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

SPR‐Imaging – Injection of TNF‐αSPR Imaging  Injection of TNF α

0.5

0.5 μg/mL TNF‐α (PBS)

0 2

0.3

0.4

0.5

r Shi

ft (D

eg)

0

0.1

0.2

Nano-grating with Planar surface

Ang

ula

Nano grating withfunctionalized mesas

Planar surface

• Mapped immobilization is advantageous• Mapped immobilization is advantageous• Functionalized trough configuration shows weak response• Significant improvement is measured in the angular sensitivity• Increased accessibility of antigen to surface immobilized antibodyIncreased accessibility of antigen to surface immobilized antibody

Andew Kirk, June 2010 44Integrated photonic systems

Page 45: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Integrated Nanophotonics Research Group Current projects

Planar waveguide devices Biosensors

• Etched grating demultiplexer• Photonic crystal superprism

• Integrated SPR• Grating‐enhanced SPR

• Photonic crystal wavelength conversion

• Spectro‐angular SPR• Plasmonic polymer 

• Hybrid laser integration• Fabry‐Perot comb filter switch

• Cavity ring down resonant sensing 

• Nano crystalline cellulose• Nano‐crystalline cellulose

Andew Kirk, June 2010 45Integrated photonic systems

Page 46: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

2D vs. 1D SPRWhy use 2D SPR?Why use 2D SPR?

Possibility of using image analysis techniques.1D 2D1D 2D

ctivity

or

Refle

c

Image analysis

or  

Dip finding Algorithms

Image analysis techniques

Page 47: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Image Analysis Technique

Andew Kirk, June 2010 47Integrated photonic systems

Page 48: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Image Analysis Technique

nn

aa

ww 111

Associate the weights wi with initial index ni

10-4

NNN n

n

a

a

w

w222 Precision < 10‐8 RIU

Low resolution camera

erro

r (R

IU)

6

10-5

NNN naw

Absolute Estimate

High resolution camera

16 bit data

8 bit data

Est

imat

ion

e

10-7

10-6

Spline interpolation of w

16 bit data

RM

S E

10-9

10-8

0 2 4 6 8 10 12jection w

nestimate

0 2 4 6 8 10 12Standard deviation of noise (bits)

Refractive index

Proj

ai or ni

C.J. Alleyne, A. G. Kirk, P.G. Charette, ‘Numerical method for high accuracy index of refraction estimation from surface plasmon photonic bandgap structures.’, OSA Optics Express 16 (24) pp 493‐503, 2008

Page 49: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Experimental ImplementationDual channel spectro angular configuration for measuring SPR in 2DDual channel spectro‐angular configuration for measuring SPR in 2D.

•The second channel is used as a reference for drift elimination

Andew Kirk, June 2010 49Integrated photonic systems

Page 50: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Real‐Time Data Analysis

• Real‐time output of index estimate (15 frames/sec, 2‐4 seconds/sample)

• Monitoring of dip quality in both channels.

Channel 1 •SPR dip (top)•DPM projection s (bottom)

• Monitoring of DPM projection curve in both channels.

•DPM projection, s (bottom)

Andew Kirk, June 2010 50Integrated photonic systems

Page 51: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Spectro‐Angular experimental resultsM i i SAM d i i d BSA bi diMonitoring SAM deposition and BSA binding

SignalReference

2D image% Diff

Image slice

DPM projections

Andew Kirk, June 2010 51Integrated photonic systems

Page 52: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Spectro‐Angular as Biosensing Platform• Oxacillin (mw 441)injections were introduced to flowcell containing BSA:SPR chip

• RIU shift relative to quantity of drug bound

• Illustrates instrument’s utility for drug binding h BSA i b tit t f HSAassays where BSA is a substitute for HSA.

Andew Kirk, June 2010 52Integrated photonic systemsC.Alleyne, P.Roche, A.G.Kirk, ‘Spectro‐angular surface plasmon biosensor applied to drug binding assays’, Proc. IEEE‐Photonics Society Annual Meeting, WR3, Antalya, Turkey, 2009

Page 53: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Localised surface plasmon resonanceLocalised surface plasmon resonance

Andew Kirk, June 2010 Integrated photonic biosensors 53

Lycergus cup (British museum)

Page 54: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Collective resonance of nanorodsCollective resonance of nanorodsNanofabricated gold nanorods (500 nm x 50 nm)

30 000 nm/RIU

shift (n

m) 30,000 nm/RIU 

(10 x SPR)

eflectivity

 sRe

Refractive index change (RIU)

Andew Kirk, June 2010 Integrated photonic biosensors 54

Page 55: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Nanorods in sol‐gelNanorods in sol gelGold 

nanorods(a) (b)

‘Plasmonic sol‐gel’: A N d b d iAu Nanorods bound into porous polymer matrix

500nm

(c)

PRoche and A Kirk

Andew Kirk, June 2010 Integrated photonic biosensors 55

P.Roche and A.Kirk, unpublished work

Page 56: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Plasmonic polymer: Sensitivity to d hindex change

9y = 656.07x ‐ 867.318 4

8.9

a.u)

(b) Peak Absorbance (a) Longitude LSPR shift

7

8

9

744nmR² = 0.8271

5.96.46.97.47.98.4

ised

 Absorba

nce (a

5

6

bance(a.u) 732nm

4.95.4

1.3299 1.3319 1.3339 1.3359Normal

Refractive index

(c) Peak Wavelength

2

3

4

Absorb

Water (RI = 1.33)

N Cl l i

Δλ = 11.69nm

738740742744746

ength (nm)

( ) g

0

1

650.00 700.00 750.00 800.00

NaCl solution (RI=1.335)

730732734736

1.3299 1.3319 1.3339 1.3359

Wavele

P.Roche and A.Kirk, unpublished work

Andew Kirk, June 2010 Integrated photonic biosensors 56

Wavelength (nm) Refractive index

Page 57: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

SummarySummary

• Applications of slab mode propagation inApplications of slab mode propagation in waveguides:– Distributed etched grating demultiplexerg g p– Integrated comb filter switch

• Surface plasmon resonance sensorsp– Integrated systems– Applications of nanostructures and patterned pp pchemistry

– Spectro‐angular (2‐D) system

Andew Kirk, June 2010 57Integrated photonic systems

Page 58: Integrated photonic systems for applications in … photonic systems for applications in telecommunications ... Amir Jafari Philip Roche ... Focusing Diffractive Optic Element for

Training program in Integrated Sensor SystemsTraining program in Integrated Sensor Systems

• Multidisciplinary training f i th d i

McGill, Ecole Polytechnique, Sherbrooke, INRS

program focusing on the design, fabrication, integration and packaging of sensors

• 104 graduate and undergraduate104 graduate and undergraduate students to be trained over 6 years

• Extensive hands‐on training in 

Microfluidics

design, fabrication and characterization

• International exchange and industrial internships form a keyindustrial internships form a key part of the program

• First graduate trainees will commence in September 2010

Optical sensors

p• Director: Andrew Kirk Andew Kirk, June 2010 58Integrated photonic systems