institute of computational mathematics and mathematical geophysics sd ras, novosibirsk mathematical...

35
stitute of Computational Mathematics and thematical Geophysics SD RAS, vosibirsk Mathematical models for ecological prognosis design and monitoring V.V. Penenko

Upload: logan-oconnor

Post on 22-Dec-2015

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

Institute of Computational Mathematics and Mathematical Geophysics SD RAS,Novosibirsk

Mathematical modelsfor ecological prognosis,

design and monitoringV.V. Penenko

Page 2: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

What is the role of atmospheric chemistry in amplifying or damping climate change?

How will human activities transform the dynamical and chemical properties of the future atmosphere?

How will quality of life change?

Page 3: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

System organizationof environmental modeling

Models of processes•hydrodynamics•transport and transformation of pollutants

Data basesModels of observations

FunctionalsQuality, observations,restrictions, control, cost,etc.

extended:functional +model as integral identity

Solution of forward problems Solution of adjoint problems

Calculation of sensitivity functionsand variations of functionals

Analysis of sensitivity relationsrisk/vulnerability, observability, sources

System of decision making, design

Identification of parameters,decrease of uncertainties,data assimilation, monitoring

Page 4: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

Analysis of the climatic system for constructionof long-term scenarios:

• Extraction of multi- dimentional and multi-component factors from data bases

• Classification of typical situations with respectto main factors

• Investigation of variability

• Formation of “leading” spaces

Approaches and tools

Page 5: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

Scenario approach

Models of hydrodynamics

Models of transport and transformation of pollutants (gases and aerosols)

Sensitivity and observability algorithms

Combination of forward and inverse techniques

Joint use of models and data

Nested models and domains

Page 6: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

M a t h e m a t i c a l m o d e l

0

rfY),( G

tB ,

000

0 YY, ;

)( tD i s t h e s t a t e f u n c t i o n ,

)(Y tD i s t h e p a r a m e t e r v e c t o r . G i s t h e “ s p a c e ” o p e r a t o r o f t h e m o d e l

A s e t o f m e a s u r e d d a t a m , m o n m

tD ,

mm H )]([

i s t h e m o d e l o f o b s e r v a t i o n s .

,,r, a r e t h e t e r m s d e s c r i b i n gu n c e r t a i n t i e s a n d e r r o r s o f t h ec o r r e s p o n d i n g o b j e c t s .

Page 7: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

,01

u

i

i

Fxx

mlvdtdu

,01

v

i

i

Fyy

nludtdv

,0

i

iRT

.0)(

ii Lt

TTBTB ppppp ;/)(;/)(

SBBSB pppppp );1/()(;/)(

)( 1D

)( 2D

Model of hydrodynamics

Page 8: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

ya

myxa

nxmn

F ayiaxi

i

sa

a

F aii

va

1

amav

ynau

xmnaL i

iii

)(

Page 9: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

Transformation of moisture and pollutants

Gases and aerosols

•interaction with underlying surface •dry and wet deposition•condensation and evaporation•coagulation

Model of atmospheric chemistryModel of aerosol dynamicsModel of moisture transformation•water vapour •cloud water•rain water

Page 10: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

Model of transport and transformation

if i s t h e s o u r c e t e r m

iS )( i s t h e t r a n s f o r m a t i o n o p e r a t o r ,};0{ DxttD t .

Boundary and initial conditions

)(x,,)( tii tqR (x))(x, 00 .

0)(x,)(

)gradu(div

iii

iii

rtfSt

Li

{ , , , , , 1, }v c r iq q q c m is the function of pressure

Page 11: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

Model of aerosol dynamics

1 1 1 11 10

( ) 1( ) ( , ) ( )

2

q N Ni

ik k km mk m

qq K q q q q q dq

t

)()(),()( qrq

dqqqqKq ii

q N

kkiki

M

1

0 111

),()()( tqQqRqq iiiii 2

2

11 NNi ;,

},),,({ Nitqi 1 -concentration of particles in volume ;, qqq

),( 1qqK - coagulation kernel;),( tqri - rates of condensation and evaporation;),( tqi - coefficients of diffusive change of particles;),( tqRi - removal parameter;),( tqQi -source term;

},,,{,,, Nmkiikikik 1-parameters of collective interaction of particles

Page 12: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

Hydrological cycle of atmospheric circulation for studying aerosols

If supersaturation -->condensation

rcv qqq ,, - content of water vapor, cloud water and rain water in respectively

Notations:

RCP - autoconversion of cloud water to rain water (*dt)

RAP - accretion of cloud droplets by rain drops (*dt)

REP - evaporation of rain water(*dt)

CONP - condensation (evaporation)(*dt)

3gm

Page 13: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

?0cq ?0cc qq 0RCP

0

0

RA

RC

P

P

Hydrological cycle

RC

calculate

P

REcalculate P ?0rq ?0rq RAcalculateP

0RAP

?cRARC qPP c

RC RA

redistribute q

between P and P?rRE qP

rRE qP 0REP

no no

no

yes

no

yes yes

yes

yes

yes

output

input

no

yes

Page 14: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

G e n e r a l f o r m o f f u n c t i o n a l s

KkdDdttF

tD

kkk ,...,,)(x,)()( 1

kF a r e t h e f u n c t i o n s o f t h e g i v e n f o r m ,

dDdtk a r e R a d o n ’ s m e a s u r e s o n tD , )(*

tk D .

Q u a l i t y f u n c t i o n a l s

KkdDdttMtD

kmT

mk ,...,,)(x,)()()( 1

“ M e a s u r e m e n t ” f u n c t i o n a l s

mtmkmk

D

K

k

DdDdttt

x,)x(x)(x,)( 1

R e s t r i c t i o n f u n c t i o n a l s

0 )(x,(,)(x, tNt k d i s t r i b u t i v e c o n s t r a i n t s

dDdttkk

D

kk

t

)(x,))()(()(

Page 15: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

Functionals of measurements

dDdttxHMH mm

T

Dmm

t

),()()()( 111

dDdttxM mm

T

D

mm

t

),()( 222

2 1( ) ( ) ( , ) , 1,t

m c o

D

x t dDdt nr

2 2( ) ( ) ( , ) , 1,t

m c o

D

x t dDdt nr

, if 0( )

0, otherwise

A AA

Page 16: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

The structure of the source term

K

kkkk kXxtQf

1

1),,()(

)(tQksource power

),( kk Xx source shape

kX reference point of the source

Particular case

))((),( tXxXx kkk

Page 17: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

Functionals for assessment of source parameters

tD

aT

a dtdDffMffJ 11111 )()(

dtMQQJ ak

K

k

t

k 122

1 0

2 )(

dtMXXJK

k

takk 13

1 0

2

3

dtMXXdtd

JK

k

takk 14

1 0

2

4 )(

0)(

,)0(

:0

dtXXd

XX

takka

kk

Page 18: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

T h e v a r i a t i o n a l f o r m u l a t i o n o f t h e p r o b l e mI n t e g r a l i d e n t i t y

0 )f,Y),(()Y,,( G

tBI

)(),( tt DD ),( ba i s i n n e r p r o d u c t o n ],0[ tDD t .

0)Y,,( I ( e n e r g y b a l a n c e e q u a t i o n )

C o n s t r u c t i o n o f t h e d i s c r e t e a p p r o x i m a t i o n s

)()(~ hk

h htD

hI )Y,,( i s e x t e n d e d f u n c t i o n a l .

S t a t i o n a r y c o n d i t i o n s

)(allfor,~

* ht

hhh

DI

0 ( d i r e c t p r o b l e m )

)(allfor,~

ht

hh

D

0 ( a d j o i n t p r o b l e m s )

Page 19: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

E x t e n d e d f u n c t i o n a l f o r t h e m a i n a l g o r i t h m o f i n v e r s e m o d e l i n g

ht

mt D

TD

Thk

h MM r)(r)(.)()(~221150

hDR

TD

Tht

hh MM)(

)()( 4433

htD

hI )Y,,(

)4,1(, iM i a r e t h e w e i g h t m a t r i c e s ,

1,04

1

i

ii a r e t h e w e i g h t c o e f f i c i e n t s ,

, a r e t h e s o l u t i o n s o f t h e d i r e c t a n d a d j o i n t p r o b l e m s

0 )Y,,( hI

Page 20: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

The basic algorithm of inverse modeling

0

rfY),(~

ht

hk GB

0

kkT

kT

t

hk dAB

Y),()(~

)),(.)(( 1150 Md Th

kk

0

ttk (x)001

300 tM ka ),(x,

),(x,)r(x, * tMt k1

2 ka M 14

YY

)Y,,(Y

k

hk I

0

Y),(Y),( hGA

t i s t h e a p p r o x i m a t i o n o f t i m e d e r i v a t i v e s

I n i t i a l g u e s s : aa YY,,r )()()( 00000 0

Page 21: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

0

)Y,Y,(Y),()( kh

khk I

0

)Y,Y,(

Y kh

k I

The main sensitivity relations

The algorithm for calculation of sensitivity functions

}{ kik are the sensitivity functions}{Y iY are the parameter variations

NiKk ,1,,1

NNNdtdY

k ,,1,

The feed-back relations

Page 22: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring
Page 23: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

Factor analysis ( global scale). Reanalysis 1960-1999

hgt 500, june

Page 24: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

West Siberia region

60-105 E, 45-65 N

June, 1960-1999

Page 25: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

1960 1970 1980 1990

0.1555

0.156

0.1565

0.157

0.1575

0.158

0.1585

0.159

Eigenvector N1 (97%), June, Western Siberia1960 1970 1980 1990

0.156

0.1565

0.157

0.1575

0.158

0.1585

0.159

0.1595

Eigenvector N1 (97%), June, Eastern Siberia

West Siberia, 97%

Global, 17%

Eigenfunction N1, June, 1960-1999

Page 26: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

Novosibirsk

Page 27: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

East Siberia Region

90-140 E, 45-65 N

June,1960-1999

Page 28: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

1960 1970 1980 1990

0.156

0.1565

0.157

0.1575

0.158

0.1585

0.159

0.1595

Eigenvector N1 (97%), June, Eastern Siberia1960 1970 1980 1990

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

Eigenvector N1 (17%), June, global scale

Global, 17%

East Siberia, 97%

Eigenvectors N1, June, 1960-1999

Page 29: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

Irkutsk

Page 30: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

. June 16 2003 г

Page 31: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring
Page 32: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

18.06.2003

Page 33: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

n

i D

ikiikiy

ikix

t

ccyc

yc

xc

xc

1

[{

dtdcnc

dDdtcfcS iki

nikiiki

t

])(

}]))(([ dtdcqRccudDcc iki

D

iikintiki

t

00

Kk ,1

Simbol denotes variations of corresponding functions,and coefficients at are the sensitivity functions )(k

Y)),(()( hkY

hk grad

Sensitivity relation for estimation of risk/vulnerability and observability

Page 34: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

Sensitivity function for estimation of risk/vulnerabilitydomains for Lake Baikal

Page 35: Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Novosibirsk Mathematical models for ecological prognosis, design and monitoring

Conclusion

Combination of• forward and inverse modeling• factor and principle component analysis• sensitivity theory on the base of variational principles

gives the possibility for coordinated solutionof the variety of environmental problems, such as

• diagnosis• prognosis• monitoring (mathematical background)• design