institute for immunobiology

85
INSTITUTE FOR IMMUNOBIOLOGY 适适适适适适适适适 适适适适适适适适适 :T :T 适适适适 适适适适 Institute for Immunobiology Department of Immunology Center for Gene Immunization and Vaccine Research Fudan University 洪洪洪021-54237362 [email protected] Shanghai, China

Upload: moke

Post on 05-Jan-2016

63 views

Category:

Documents


9 download

DESCRIPTION

INSTITUTE FOR IMMUNOBIOLOGY. 适应性免疫应答细胞 :T 淋巴细胞 Institute for Immunobiology Department of Immunology Center for Gene Immunization and Vaccine Research Fudan University 洪晓武: 021-54237362 [email protected]. Shanghai, China. T 淋巴细胞. 一、 T 淋巴细胞的表面分子及其作用 二、 T 淋巴细胞亚群 三、 T 淋巴细胞功能. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: INSTITUTE FOR IMMUNOBIOLOGY

INSTITUTE FOR IMMUNOBIOLOGY

适应性免疫应答细胞适应性免疫应答细胞 :T:T 淋巴细胞淋巴细胞

Institute for ImmunobiologyDepartment of Immunology

Center for Gene Immunization and Vaccine ResearchFudan University

洪晓武: [email protected]

Shanghai, China

Page 2: INSTITUTE FOR IMMUNOBIOLOGY

T 淋巴细胞

一、 T 淋巴细胞的表面分子及其作用

二、 T 淋巴细胞亚群

三、 T 淋巴细胞功能

Page 3: INSTITUTE FOR IMMUNOBIOLOGY

T 细胞是由一群功能不同的异质性淋巴细胞组成,由于它在胸腺内分化成熟故称为 T 细胞。

成熟 T 细胞由胸腺迁出,移居于周围淋巴组织中淋巴节的副皮质区和脾白髓小动脉的周围。

T 细胞执行特异性细胞免疫应答

并在 TD-Ag 诱导的体液免疫应答中发挥重要作用

Page 4: INSTITUTE FOR IMMUNOBIOLOGY

一、 T 淋巴细胞表面分子

Page 5: INSTITUTE FOR IMMUNOBIOLOGY

1. TCR - CD3 复合物

TCR 可分为 TCRαβ 和 TCRγδ 两种类型

结构相似两条异源二聚体肽链藉二硫键组成的跨膜分子每条肽链含 V 、 C 区,类似 Ig 结构

Page 6: INSTITUTE FOR IMMUNOBIOLOGY

TCR-CD3 复合物

是 T 细胞抗原受体与一组CD3 ( γGamma δDeltaεEpsilon ζZeta ηEta

)分子以非共价键结合而形成的复合物,是 T 细胞识别抗原和转导信号的主要单位。 TCR 特异识别由MHC 分子提呈的抗原肽,CD3 分子转导 T 细胞活化的第一信号

Page 7: INSTITUTE FOR IMMUNOBIOLOGY

CD4 主要分布于成熟 Th细胞、巨噬细胞、 DC细胞等表面;是 HIV受体,与 APC表面MHC-II分子非多态区结合

CD8 主要分布于成熟 Tc细胞表面,与 APC表面MHC-I分子非多态区结合

既能加强 T 细胞与 APC 或靶细胞的相互作用,又能参与抗原刺激 TCR-CD3 分子信号转导

2. CD4 和 CD8 分子

Page 8: INSTITUTE FOR IMMUNOBIOLOGY

加强 T 细胞与 APC 或靶细胞的相互作用

通过胞浆区的 CxCP 基序与p56lck(Src family tyrosine kinase LCK)

酪氨酸激酶相连,参与 T

细胞活化和增殖信号转导

CD4 和 CD8 - T 细胞辅助受体

Page 9: INSTITUTE FOR IMMUNOBIOLOGY

3. 协同(辅助)信号分子

协同信号分子

TCR-CD3 复合分子可提供第 1 信号

协同刺激信号 (costimulatouy signal) 或第2 信号

参与 T 细胞活化的协同刺激信号主要是CD28--CD80/86 , CTLA4--CD80/86 给予已活化 T 细胞抑制信号。

Page 10: INSTITUTE FOR IMMUNOBIOLOGY

CD40L

T APC

CD28CD80/86

CTLA4

CD40LFA - 1 ICAM - 1

LFA - 2 LFA - 3

1 、 CD28 和 CTLA-4

(intercellular adhesion molecule-1)

Page 11: INSTITUTE FOR IMMUNOBIOLOGY

T 细胞与 APC 细胞间的主要辅助分子

Page 12: INSTITUTE FOR IMMUNOBIOLOGY

2 、 ICOS

3 、 CD40L

4 、 CD2

5 、 LFA-1 和 ICAM-1

Page 13: INSTITUTE FOR IMMUNOBIOLOGY

4. 其它一些受体

丝裂原受体 细胞因子受体 病毒受体

Page 14: INSTITUTE FOR IMMUNOBIOLOGY

二、 T 细胞分化发育

thymic corpuscle

Page 15: INSTITUTE FOR IMMUNOBIOLOGY

胸腺微环境是诱导并调控 T细胞分化发育的关键因素 胸腺基质细胞( TSC ) 细胞因子 胸腺激素

Page 16: INSTITUTE FOR IMMUNOBIOLOGY

双阴性期( DN ) 原 T 细胞( pro-T )、前 T 细胞( pre-T )αβTCR - 、 CD3 - 、 CD4 - 、 CD8 -

双阳性期( DP )αβTCR + 、 CD3low 、 CD4 + 、 CD8 +

单阳性期( SP )αβTCR + 、 CD3 + 、 CD4 +

αβTCR + 、 CD3 + 、 CD8 +

成熟 T 细胞,具有识别抗原、介导免疫应答及参与免疫调节的功能

Page 17: INSTITUTE FOR IMMUNOBIOLOGY

1. T 细胞发育的阳性选择( positive selection )

CD4+CD8+T 细胞+胸腺基质细胞(表面 MHC 分子)

如果与 MHC-I结合,最终分化为 CD8+T 细胞

如果与 MHC-II结合则最终分化为 CD4+T 细胞

如果与 MHC 分子不结合则在胸腺皮质中凋亡

胸腺细胞经阳性选择赋予成熟 T 细胞在识别抗原时具有 MHC 限制性

Page 18: INSTITUTE FOR IMMUNOBIOLOGY

2. T 细胞发育的阴性选择( negative selection )

其 TCR 识别胸腺基质细胞表面高亲和力的 MHC 或 MHC- 自身抗原肽的 T 细

胞克隆将发生凋亡

经阴性选择可清除自身反应性 T 细胞克隆

获中枢耐受

DP 或经阳性选择的 SP 的 T 细胞

Page 19: INSTITUTE FOR IMMUNOBIOLOGY

T 细胞在胸腺中的阳性选择和阴性选择

Page 20: INSTITUTE FOR IMMUNOBIOLOGY

三、 T 细胞亚群

1 )根据 TCR 种类 αβT 、 γδT 细胞

在末梢血主要为 αβT 细胞可占 95% ,而 γδT 细胞只占 1% ~ 10% 。 αβT 细胞为主要参予免疫应答的 T 细胞,两者特性和功能均不相同。

Page 21: INSTITUTE FOR IMMUNOBIOLOGY

TCRαβT 和 TCRγδT 细胞

TCR

分布

表型

识别抗原

MHC 限制

功能

TCRαβT TCRγδT

极大多样性

60-70 % , 外周淋巴组织

成熟 CD2CD3CD4/CD8

8 - 17aa

经典 MHC

Th 、 Tc

较少多样性

5-15 % , 粘膜上皮

成熟大多数 CD2CD3

简单多肽、 HSP 、脂类、多糖

MHC 样分子

Tc

Page 22: INSTITUTE FOR IMMUNOBIOLOGY

2 )根据 T 细胞是否表达 CD4 或 CD8 分类 CD4+ T 细胞或 CD8+ T 细胞

TCRαβTCD4+ 细胞: CD2+ 、 CD3+ 、 CD4+ 、 CD8-

TCR 识别抗原是 MHCⅡ类分子限制性

TH0 、 Th1 和 Th2 、行使 Tc 、 Ts

功能

TCRαβTCD8+ 细胞: CD2+ 、 CD3+ 、 CD4- 、 CD8+

TCR 识别抗原是 MHCI 类分子限制性

行使 Tc 、 Ts 功能

Page 23: INSTITUTE FOR IMMUNOBIOLOGY

• Th 细胞 根据所分泌的细胞因子不同,将其分为 Th0 、 Th1 和 Th2 亚型。

• Tc 细胞 杀伤、分泌 IFNγ 、 IL-4 、 IL-5 和 IL-10

• Ts 细胞 • TDTH 主要为 CD4 + Th1

3 )功能性亚群: Th 、 Tc 、 TDTH 、 Ts

Page 24: INSTITUTE FOR IMMUNOBIOLOGY

4 )初始 T 细胞和记忆性 T 细胞 记忆性 T 细胞表达 CD45RO ,而初始 T 细胞表达 CD45RA

5 ) NK1.1 T 细胞 其 TCR 识别的抗原是由 CD1 分子提呈的脂类和糖脂类抗原

Leukocyte Common antigen

Page 25: INSTITUTE FOR IMMUNOBIOLOGY

1 )免疫调节功能( Th1 、 Th2 、 Th3 、 Ts 、 Treg )

2 )特异性杀伤功能( CTL 、 Th1 、 γδT )

3 )介导超敏反应( TDTH )

4) 新型效应T细胞: Th17

四、 T 细胞功能

Page 26: INSTITUTE FOR IMMUNOBIOLOGY

Naturally occurring CD4+CD25+ Treg cells (5–6%) GITR and Foxp3 a cell–cell contact mechanismAntigen-induced Tr1 and Th3 cells (IL-10) and/or (TGF-b) ck-dependent mechanism no specific marker has been identified.

Adaptively induced CD4+ Treg cells GITR and Foxp3 a cell contact dependent or soluble factor-dependent (other than IL-10and/or TGF-b) mechanism

glucocorticoid-induced TNFRfamily related gene (GITR)

CD8+ Treg cells

NKT regulatory T cells

Multiple subsets of Treg cells

Page 27: INSTITUTE FOR IMMUNOBIOLOGY

Naturally occurring CD4+CD25+Foxp3+ Tregs

Development and function of naturally occurring CD4+CD25+ FoxP3+ regulatory T cells (nTregs). Development:bone marrow-derived CD4+ T cell precursors develop naturallyinto nTregs upon beneficial TCR engagement by self-peptide–MHC complexes and Foxp3 induction in the thymus. Upon instruction in the thymus, nTregs emigrate into the periphery asfunctionally fully competent cells. Mode of action: upon TCR cross-linking, peripheral nTregs suppress the proliferation and IL-2 production by responder CD25–CD4+ or CD8+ T cells in acontact-dependent manner either (a) directly or (b) indirectly via the APC. In addition: nTregs may (c) condition DC to become tolerogenic and turn down the response of conventional T cellson her part

Page 28: INSTITUTE FOR IMMUNOBIOLOGY

Extrathymic induction and function of adaptive regulatory T cells. Adaptive regulatory T cells (aTregs) differentiate from naive conventional CD4+ T cells either as a result of suboptimal antigenic stimulation by resting/immature DC, theinfluence of suppressive cytokines like IL-10, TGF-b or cell contact-dependent interaction with activated nTregs (infectious tolerance). Their mode of action involves both cell contactdependent (Tr1 cells) and contact-independent suppressive activities (Th3 cells). Through the production of IL-10 and TGF-b they convert immature DC into tolerizing APC

Page 29: INSTITUTE FOR IMMUNOBIOLOGY

Fig. 3 Role of Tregs in early and late stages of microbial infections. In the stages of an immune response against a microbial infection Tregs behave differently. A Throughout the early phase of the response the suppressive activity of Tregs is turned down by effector T cell-derived IL-2 and microbial components such as TLR-ligands. Tregs respond to the stimulation by mature DC and proliferate.

Page 30: INSTITUTE FOR IMMUNOBIOLOGY

b At the late stage of the response, when the invading organism is cleared from the host, Tregs regain their suppressive function and participate in the silencing of the T cell response by acting on effector T cells and DC. Possibly, this late activity is also for the proper development ofmemory T cells

Page 31: INSTITUTE FOR IMMUNOBIOLOGY

Treg-based immune intervention strategies. Selective manipulation of Treg function is an emerging target for immune intervention strategies to either boost responses in cancer and microbial diseases or suppress those unwanted in autoimmunity, allergy, transplantation and pregnancy disorders. The transientdepletion of Tregs as well as their modulation by microbial agents may allow a transient reduction of Treg activity and enforce anti-tumor responses and immunity against viral infections. On the other hand their selective activation could diminishchronic pathological immune responses

Page 32: INSTITUTE FOR IMMUNOBIOLOGY

Generation and conversion of Treg cells in the tumor microenvironment

Tumor cells not only provide antigenic stimulation for T cell activation but also interact with tumor-infiltrating innate immune cells to secrete crucial cytokines for T-cell differentiation. Naı¨ve CD4+ T cells can be differentiated into different subsets of CD4+ T cells, including Th1, Th2, Treg and IL-17-producing T cells (Th17), depending upon the strength of antigen stimulation and cytokine milieu. It is known that combination of suboptimal antigen stimulation with TGF-b favors the conversion of naive T cells into Treg cells but blocks the generation of Th1 or Th2 cells. However, TGF-b plus IL-6 facilitate the conversion of naive T cells intoTh17 cells. Alternatively, naturally occurring CD4+CD25+ Treg cells directly derived from the thymus can cross-react with some antigens expressed by cancer cells, thus promoting their expansion and accumulation in the tumor microenvironment.

Page 33: INSTITUTE FOR IMMUNOBIOLOGY

T-helper-cell differentiation

Page 34: INSTITUTE FOR IMMUNOBIOLOGY

Human IL-17 and IL-17R key features

a Two isoforms (long and short).

Page 35: INSTITUTE FOR IMMUNOBIOLOGY

Therapeutic targets for autoimmune inflammatory diseases are associated preferentially with the IL-23/Th17 pathway

Page 36: INSTITUTE FOR IMMUNOBIOLOGY

The pathogenic role for IL-23, not IL-12, in mouse models of autoimmunity

Studies by Cua and co-workers have demonstrated that disease development requires IL-23, but not IL-12, in EAE and CIA. Compared with wild-type susceptible mice, mice deficient for IL-23 (Il23p19/) and both IL-23 and IL-12 (Il12p40/) failed to develop disease after antigenic challenge, whereas mice deficient for IL-12 (Il12p35/) developed more severe disease.

Page 37: INSTITUTE FOR IMMUNOBIOLOGY

Model of Th1 versus Th17 lineage development from naive CD4 T cell precursors (Tn)

This model emphasizes the distinct lineages leading to mature Th1 and Th17 effector cells (see main body of text for details). Question marks denote speculative or unknown aspects of Th17 differentiation that are yet to be defined.

Page 38: INSTITUTE FOR IMMUNOBIOLOGY

Antagonistic cytokine networks control CD4 effector T-cell differentiation

Recent studies have established that Th1 and Th2 effector cytokines, IFNg and IL-4, respectively, potently inhibit Th17 development. Furthermore, TGF-b, a cytokine previously implicated in Treg development and function, appears to be required for Th17 development, both through indirect effects (blockade of IFNg and IL-4 production by cells of the innate immune system) and through direct effects on naive CD4 T-cell precursors (Tn).

Page 39: INSTITUTE FOR IMMUNOBIOLOGY

CD4+T 细胞分化和免疫调节细胞因子网络模式简图

Page 40: INSTITUTE FOR IMMUNOBIOLOGY

Although functional CD4 T cell development has been dominated by the Th1-Th2 paradigm for nearly two decades, the number of defined lineages has now increased. The cytokines associated with arrows indicate dominant cytokines involved in specification of each of the indicated lineages. The cytokines listed below each cell type indicate key effector or regulatory cytokines produced by differentiated cells of that lineage or, in the case of nTreg, a contact-dependent mechanism of suppression. Tn: naive, postthymic CD4 T cell precursors; Tp: thymic precursors.Dotted lines represent less well-defined lineage relationships.

Diversification of CD4 T Cell Lineages

Page 41: INSTITUTE FOR IMMUNOBIOLOGY

Model of Branching Th17 and Adaptive Treg Lineage Development

This model emphasizes distinct pathways leading to mature Th17 effector cells or Foxp3+ adaptive Tregs (aTreg), induced by a common requirement for TGF-b but differential effects of IL-6 and IL-23. Naive CD4 T cells (Tn) activated by antigen presented on immature DCs that do not produce IL-6 production are induced by TGF-b to express Foxp3 and develop into aTregs (top panel). Tns activated bymature,TLR-activatedDCsthat produceIL-6 are induced by TGF-b to upregulate IL-23R and become competent for IL-17 production and IL-23 signaling. IL-23 signaling induces responsiveness to IL-18 and IL-1, which can act synergistically with IL-23 to induce Th17 cytokineproductionindependently ofTCRstimulation.Alternatively, TCR stimulation by antigen can induce Th17 cytokine production directly,without a requirement for IL-23, IL-1, or IL-18.Dotted lines indicate possible positive feedback loops by which cytokine products of Th17 (IL-6) or aTreg cells (TGF-b1) may reinforce lineage development.

Page 42: INSTITUTE FOR IMMUNOBIOLOGY

1. CD4 +辅助性 T 细胞

2. CD8 +杀伤性 T 细胞

Page 43: INSTITUTE FOR IMMUNOBIOLOGY

细胞因子对 Th1 和 Th2 细胞的调节作用

Page 44: INSTITUTE FOR IMMUNOBIOLOGY
Page 45: INSTITUTE FOR IMMUNOBIOLOGY

3. 抑制性 T 细胞

4. 迟发型超敏反应性 T 细胞( TDTH )

5. NK1.1 + T 细胞

Page 46: INSTITUTE FOR IMMUNOBIOLOGY

• 掌握 TCR 分型与结构• 掌握 T 细胞分群及不同亚群的生物学特性• 掌握 T 细胞发育过程• 熟悉 T 细胞表面主要膜分子及其作用• 了解 TCRγδT 细胞和 TCRαβT 细胞的异同点

Page 47: INSTITUTE FOR IMMUNOBIOLOGY

T 淋巴细胞对抗原的识别及免疫应答

一、 T 细胞对抗原的识别

二、 T 细胞活化的过程

三、效应性 T 细胞的应答效应

Page 48: INSTITUTE FOR IMMUNOBIOLOGY

免疫应答的基本过程

抗原识别 抗原受体与抗原的特异性结合

免疫应答 抗原识别、反应、效应的全过程

免疫反应 免疫效应物质与抗原结合的过程

Page 49: INSTITUTE FOR IMMUNOBIOLOGY

一、 T 细胞对抗原的识别

T 细胞抗原受体及其识别抗原的特点

只识别表达于 APC 表面并与 MHC 分子结合 成复合物的多肽 只识别氨基酸一级序列的多肽线性决定簇

TCR 识别抗原受到 MHC 的限制—— CD4+T 只识别与 MHC-II 分子结合的肽段 CD8+T 只识别与 MHC-I 分子结合的肽段

Page 50: INSTITUTE FOR IMMUNOBIOLOGY

T 细胞与 APC 间的相互作用

Page 51: INSTITUTE FOR IMMUNOBIOLOGY

(一) T 细胞与 APC 的非特异性结合

Page 52: INSTITUTE FOR IMMUNOBIOLOGY

T 细胞与 APC 的非特异性结合

Page 53: INSTITUTE FOR IMMUNOBIOLOGY

(二) T 细胞与 APC 的特异性结合

Page 54: INSTITUTE FOR IMMUNOBIOLOGY

TCR 与 APC 的特异性稳定结合

Page 55: INSTITUTE FOR IMMUNOBIOLOGY

(三) T 细胞和 APC 表面共刺激分子的结合

CD28/B7 、 LFA-1/ICAM-1 、 CD2/CD58 等

Page 56: INSTITUTE FOR IMMUNOBIOLOGY

(四)免疫突触( immunological synapse )

中心是 TCR 和抗原肽 -MHC 复合物

周围是细胞黏附分子对

“ 筏”状结构,相互靠拢成簇

Page 57: INSTITUTE FOR IMMUNOBIOLOGY

(一) T 细胞活化的第一信号

二、 T 细胞活化的信号要求

Page 58: INSTITUTE FOR IMMUNOBIOLOGY

CD4+T 细胞的双识别

Page 59: INSTITUTE FOR IMMUNOBIOLOGY

(二) T 细胞激活的第二信号

CD28/B7

LFA-1/ICAM-1 或 ICAM-2

CD2/LFA-3

CD40/CD40L 等

Page 60: INSTITUTE FOR IMMUNOBIOLOGY

T 细胞活化的双信号

Page 61: INSTITUTE FOR IMMUNOBIOLOGY

CD28/B7 促进 IL-2 基因转录、合成

缺乏时, T 细胞失能( anergy )

CTLA4 与 CD28 高同源性,与 B7 亲和力比 CD28 高 20倍,结合后启动抑制信号,有效制约特异性 T 细胞克隆的过度增殖

Page 62: INSTITUTE FOR IMMUNOBIOLOGY

(三)细胞因子促进 T 细胞充分活化

IL-1 、 IL-2 、 IL-6 、 IL-12 等细胞因子

Page 63: INSTITUTE FOR IMMUNOBIOLOGY

三、 T 淋巴细胞活化信号的转导过程

抗原作用下跨膜分子及信号转导成分的多聚化

多聚作用( multimerization ) :

TCR/CD3 、辅助受体 CD4 或 CD8 、 CD45 等相互靠拢成簇( clustering )

Page 64: INSTITUTE FOR IMMUNOBIOLOGY

免疫受体酪氨酸激活基序

( immunoreceptor tyrosine-based activation motif, ITAM )

……D/Exx YxxL/V x(7~11) YxxL/V ……

Y :酪氨酸 L :亮氨酸

V :缬氨酸 D :天冬氨酸

E :谷氨酸

Page 65: INSTITUTE FOR IMMUNOBIOLOGY

T细胞活化的信号传导

Page 66: INSTITUTE FOR IMMUNOBIOLOGY

四、转录因子活化及基因表达

(一)转录因子活化

AP-1 (Fos 、 Jun)

NF-B

Oct-1

NFAT (nuclear factor of activated T cell )

Page 67: INSTITUTE FOR IMMUNOBIOLOGY

(二) T 细胞基因表达

细胞因子基因 细胞因子受体基因 黏附分子基因 MHC

Page 68: INSTITUTE FOR IMMUNOBIOLOGY

(三) T 细胞克隆性增殖和分化

CD4 + T 细胞的增殖分化 CD8 + T 细胞的增殖分化

Page 69: INSTITUTE FOR IMMUNOBIOLOGY

五、效应 T 细胞的作用

Th0 细胞Th2 细胞--介导体液免疫

Th1 细胞--介导细胞免疫IL-12

IL-4

Page 70: INSTITUTE FOR IMMUNOBIOLOGY

诱导迟发型超敏反应,活化招募Mφ在炎症局部浸润

活化增强 APC表达MHC分子或其他粘附分子表达

活化 CD8 + T、 NK细胞,增强杀伤活性

1. Th1型 CD4 + T细胞的作用

Page 71: INSTITUTE FOR IMMUNOBIOLOGY

TH1细胞免疫应答的效应阶段

TH1

IL-2IFN- TNF-GM-CSFIL-3 等

巨噬细胞、中性粒

细胞等活化、聚集、

局部浸润

迟发型 超敏反应

巨噬细胞活化增强

MHC-II 和粘附分子

表达

更有效的 APC形成

激活巨噬细胞 NK 细胞 Tc 细胞 TH 细胞

更有效的发挥细胞免疫功能记忆

性 TH

Page 72: INSTITUTE FOR IMMUNOBIOLOGY

Th1 细胞激活巨噬细胞的机制

Page 73: INSTITUTE FOR IMMUNOBIOLOGY

Th1 细胞所产生的细胞因子及其生物学作用

Page 74: INSTITUTE FOR IMMUNOBIOLOGY

调节Mφ(招募、抑制: IL-10/FasL/TGF-)

活化 B细胞,诱导 Ig类型转换

2. Th2型 CD4 + T细胞的作用

Page 75: INSTITUTE FOR IMMUNOBIOLOGY

Th2 型 CD4+ T 细胞与 B 细胞

Page 76: INSTITUTE FOR IMMUNOBIOLOGY

坏死、凋亡、非溶解性途径

Activation Induced Cell Death

3. CD8 +细胞毒性 T细胞的作用

Page 77: INSTITUTE FOR IMMUNOBIOLOGY

CD8+CTL 胞毒效应示意图

Page 78: INSTITUTE FOR IMMUNOBIOLOGY

• 释放颗粒物质释放颗粒物质 穿孔素(穿孔素( perforinperforin ))

颗粒酶颗粒酶激活激活 caspase 10 caspase 10

• 释放释放 TNTNFF• 启动凋亡信号传导途径启动凋亡信号传导途径 FasLFasL与靶细胞与靶细胞 FasFas死亡结构域死亡结构域→→ Caspase8→ Caspase8→ 激活激活 DNA DNA 内切酶内切酶

CD8+T细胞免疫应答的效应阶段

Page 79: INSTITUTE FOR IMMUNOBIOLOGY

穿孔素 - 颗粒酶系统的胞毒作用

Page 80: INSTITUTE FOR IMMUNOBIOLOGY
Page 81: INSTITUTE FOR IMMUNOBIOLOGY

T 细胞介导免疫应答及其免疫学效应

• 诱导抗原: 诱导抗原: TD-AgTD-Ag• 参与细胞: 参与细胞: TT 细胞和细胞和 APCAPC• 效应产物: 效应产物: Th/CTLTh/CTL (( TcTc ))• 免疫学效应:免疫学效应:主要抗细胞内感染主要抗细胞内感染

抗肿瘤抗肿瘤 免疫损伤免疫损伤 迟发型超敏反应迟发型超敏反应

(delayed type hypersencitivity, DTH)(delayed type hypersencitivity, DTH) 移植排除反应移植排除反应 某些自身免疫性疾病某些自身免疫性疾病

Page 82: INSTITUTE FOR IMMUNOBIOLOGY

IL-3IL-2

IL - 2 IFN-TNF

IL-2IFN-TNF

IL-2IFN-TNF

IL-2IL-4IL-5IL-10

效应 T 细胞的作用

Page 83: INSTITUTE FOR IMMUNOBIOLOGY

六、活化 T 细胞的转归

(一)活化 T 细胞转变为记忆性 T 细胞,参与再次免疫应答

(二)活化 T 细胞发生凋亡,及时终止免疫应答

1. 活化诱导的细胞死亡( activation induced cell death, AICD )

2. 被动细胞死亡( passive cell death, PCD )

Page 84: INSTITUTE FOR IMMUNOBIOLOGY

淋巴细胞凋亡的两种机制

Page 85: INSTITUTE FOR IMMUNOBIOLOGY

• 掌握 T 细胞对抗原的识别以及识别抗原的特点• 掌握 T 细胞活化的条件• 掌握效应性 CD4+T 细胞和 CD8+T 的功能• 了解 T 细胞活化信号转导过程