instabilities driven by streaming energetic particles

21
Interaction between cosmic rays and background plasmas on multiple scales Tony Bell University of Oxford Rutherford Appleton Laboratory

Upload: kipp

Post on 23-Feb-2016

36 views

Category:

Documents


0 download

DESCRIPTION

Interaction between cosmic rays and background plasmas on multiple scales Tony Bell University of Oxford Rutherford Appleton Laboratory. Tycho 1572AD. Kepler 1604AD. Magnetic field due to CR/MHD interaction. SN1006. Cas A 1680AD. Instabilities driven by streaming energetic particles. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Instabilities driven by streaming energetic particles

Interaction between cosmic rays and background plasmas

on multiple scales 

Tony BellUniversity of Oxford

Rutherford Appleton Laboratory

Page 2: Instabilities driven by streaming energetic particles

Instabilities driven by streaming energetic particles

Kepler 1604ADTycho 1572AD

SN1006 Cas A  1680AD

Magnetic field  due toCR/MHD interaction

Chandra observations

Page 3: Instabilities driven by streaming energetic particles

Instability on Larmor scale

thermal Larmor radius   <   scalelength   <   CR Larmor radius

Page 4: Instabilities driven by streaming energetic particles

dB/B>>1 scatters energetic particles

Cavity forms inside spirals

Streaming instability driven by cosmic raysLucek & Bell 2000

CR

Page 5: Instabilities driven by streaming energetic particles

j x Bj x B

Essence of instability:  expanding loops of B

jxB  expands loops      decreases mass attached to field line element

increases jxB/r  acceleration      Loops expand more rapidly

Positive feedback - instability

B

CR current

CR/MHD calculation

|B|

Page 6: Instabilities driven by streaming energetic particles

Conditions for instability

1) loop radius R < CR Larmor radius

2) Mag tension < jxB

RcBCR

BjBB 0

1

3vsCRj r

cBR

jB CR

0

2

0

2

vvs

s

cB r

Saturation mag field

Estimate saturated magnetic field

Consistent with obs. (Vink, Völk, et al)

CR efficiency

CR energy (eV)

jBRB

0

2

ie

Growth requires cjB CR

0

2

Page 7: Instabilities driven by streaming energetic particles

Self-organisation on intermediate  scale

Page 8: Instabilities driven by streaming energetic particles

Filamentation & self-focussing

proton beam  jvelocity vbeam

Bimposed

Page 9: Instabilities driven by streaming energetic particles

Time sequence: magnitude of |B| - across beam

Same results – sections through beam

Page 10: Instabilities driven by streaming energetic particles

Filamentation & self-focussing

proton beam  jvelocity vbeam

E drives turbulence    slows beam

B

R

Magnetic field growth tU

jRtB turb

1~

E=0

E=0

jEtU turb

RE

tB ~

Energy conservation

Maxwell equation

Always focuses CR onto axis

Page 11: Instabilities driven by streaming energetic particles

Saturation power carried by filament/beam

0

2c

I eVAlfven

Power in beam  eVAlfvenAlfven IP

=1015eV AlfvenP 1.7x1028 W  = 3x10-12 Moc2yr-1 =1021eV AlfvenP 1.7x1040 W  = 3 Moc2yr-1

Apply saturation conditions1) Beam radius = CR Larmor radius2) Magnetic tension = jxB

    Beam carries Alfven current

CR energy

Page 12: Instabilities driven by streaming energetic particles

Structures on scale of shock radius

scalelength > CR Larmor radius

CR behaviour: diffusive rather than ballistic

Page 13: Instabilities driven by streaming energetic particles

SN in dense wind with Parker spiral magnetic field

Page 14: Instabilities driven by streaming energetic particles

SN in dense wind with Parker spiral magnetic field

Perpendicular shock

CR drift at perpendicular shock

shock

Page 15: Instabilities driven by streaming energetic particles

CR distribution f0 in a circumstellar wind

,,1

max20 tu

rpp

Ft

fs

Self-similar solution in (r,q)

Radius normalised to shock radius ust

Allows for density ~ r-2latitude

000

00 ...

31. fDfD

pf

pftf

huu

h

Page 16: Instabilities driven by streaming energetic particles

h0=1 h0=3 h0=10

10-2

100

log CR pressure for different collisionalities h0=()max

Self-similar solution for CR distribution

shock

Spiral field deflects diffusive CR flux towards axis

Small B on axis allows escape

Page 17: Instabilities driven by streaming energetic particles

10-6 0 /2 /2 /2q q q

101

h0=1 h0=3 h0=100 0

102

10-2

100.2 100.8

10-210-2

ppmax

CR spectrum (p-4f) at the shockfor different collisionalities h0=()max

pole equator

CR

mom

entu

m

Dominated by highest energy CR at pole

latitude

Page 18: Instabilities driven by streaming energetic particles

CR pressure in Parker spiral

12 rBrr

v.;1v 1 rrr

tP

t cr

Self-similar linear hydrodynamics

Density perturbation near pole

Large CR pressure                polar cavity in B r

crPshock

CR escape along axis

Page 19: Instabilities driven by streaming energetic particles

latitude

pole

equator

radius

rshock

1.3xrshock

non-linear density increase at shock

shockPlasma pushed away from axis

Cavity due to high CR pressure on axis

Density structure in front of shock, h0=10

Unperturbed upstreamplasma, r1=0

10-50% CR efficiencyfull cavity on axis

Page 20: Instabilities driven by streaming energetic particles

Shock around cavity

CR-driven relativistic expansion into low density

Magneticspiral expansion instabilityCR flow into cavity

PCR>rus2

shock

CR acceleration/drift begins at shock breakout• Shock steepens – non-radiation-dominated• Coulomb collisions• Inverse Compton losses• Pair-production• Proton-proton losses

May produce non-thermal effectsanisotropy on SN shock breakouteg x-ray flashes (XRF)

Page 21: Instabilities driven by streaming energetic particles

Summary

Similar effects on many scales

jxB focuses CR flux towards centre of spiral magnetic field

Reactive force:  expands spiral  increases magnetic energy  creates cavity on axis