insight into the oxidation mechanism of uv/free chlorine process · 2018-08-27 · insight into the...

23
Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a , Shiqing Zhou b , Jinming Luo a , John Crittenden a 256 th ACS Conference, Aug 21 th 2018 a Brook Byers Institute for Sustainable Systems Department of Civil and Environmental Engineering Georgia Institute of Technology b Department of Water Engineering and Science College of Civil Engineering Hunan University

Upload: others

Post on 24-Jul-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

Insight Into the Oxidation Mechanism

of UV/Free Chlorine Process

Weiqiu Zhang a, Shiqing Zhou b, Jinming Luo a, John Crittenden a

256th ACS Conference, Aug 21th 2018

a Brook Byers Institute for Sustainable Systems

Department of Civil and Environmental Engineering

Georgia Institute of Technology

b Department of Water Engineering and Science

College of Civil Engineering

Hunan University

Page 2: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

2

OUTLINE

Introduction

Approach

Results and Discussion

Summary

Future Work

Page 3: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

3

INTRODUCTION: Concerns about organic contaminants in water

Organic contaminants in aqueous

phase: Global Challenging

Environmental risks of organic

contaminants:

• persistence in aqueous phase

• bioaccumulation in fish

• toxicity for human health

How to destory organic contaminants in aqueous phase

Fang, C., M. Megharaj, and R. Naidu. "Electrochemical Advanced Oxidation Processes (EAOP) to degrade per-and polyfluoroalkyl substances (PFASs)." Journal of Advanced Oxidation Technologies 20.2 (2017).

Bonito, Lindsay T., Amro Hamdoun, and Stuart A. Sandin. "Evaluation of the global impacts of mitigation on persistent, bioaccumulative and toxic pollutants in marine fish." PeerJ 4 (2016): e1573.

?

CHLDDT

PBDEPCB

Page 4: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

4

INTRODUCTION: Current treatment processes

• Adsorption

• Air Stripping

• Biological treatment: refractory contaminants (e.g. antibiotics)

phase transfer

Complex radical chain reactions

AOPs yield highly reactive radicals at room temperature and pressure

(e.g. HO∙, SO4-∙, Cl∙)

Organic

Contaminants

CO2

H2O

• Advanced oxidation processes (AOPs): effective for refractory organic contaminants

Page 5: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

5

INTRODUCTION: Application of AOPs technologies

• O3/H2O2 process

Conventional AOPs Major Concerns

3 2 2 22O H O 2HO 3O

2 2H O h 2HO

Production of O3 is expensive & inefficient process

H2O2 is expensive, market price $500/ton

residual H2O2 need to be quenched

low energy efficiency (∅H2O2 = 0.5, εH2O2 = 19.6M-1cm-1)

• UV/H2O2 process

Von Gunten, Urs. "Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine." Water Research 37.7 (2003): 1469-1487.

Low Pressure UV/H2O2

O3/H2O2

Page 6: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

6

INTRODUCTION: Application of AOPs technologies

Alternative AOPs

• UV/Persulfate (PS) process

2

2 8 4S O h 2SO

4 2 4HSO O HO HSO

Major Concerns

Most common inorganic anions in water

https://chemlegin.wordpress.com/2012/07/

Cl- reduces the perfluorinated compounds (e.g. PFOA) destruction rate (experimental observe)

Experimental Condition: [R]=150μM, [PS]=15mM

Cl- + SO4-∙ SO4

2- + C𝐥∙ ∙ ∙ ∙ ClO3-

PFOA starts to be destroyed until all Cl- convert into ClO3-

Page 7: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

7

INTRODUCTION: Impact of Chloride Ions on UV/Persulfate Process

Organic compounds (R) can react with SO4-∙, HO∙, Cl∙

Elementary Reactions Network4

4

' ' 'Cl

4 HO /R Cl /RSO /RR

R 4 HO /RSO /R

k [SO ][R] k [HO ][R] k [Cl ] [R]r

r k [SO ][R] k [HO ][R]

Simulation Conditions: [R]=10-4M, [PS]=0.01M, pH=7

SO4

-.

R

H2O

PSSO4

-.

R

H2O

RPS

PS SO4

-.No Cl-

Cl-

H2O

SO4

-.

Cl.

PS

R

Cl-

H2O

PS

R

Cl-

H2O

SO4

-.

Cl.

PS

R

Cl-

H2O

PS

R

R

PS SO4

-.

Cl2

-.Cl.

PS

ClO-3

ClO2

.ClOH-. HO.

Cl- is present

Maximum

Cl

Rr

: Destruction rate of organic contaminant when Cl- is present

(e.g. 0.001 M Cl-)Rr : Destruction rate of organic contaminant when Cl- is not present

Page 8: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

8

C/C0=exp (−kobs×t)

0M Cl- kobs=0.0092s-1

0.01M Cl- kobs=0.0043s-1

0.1M Cl- kobs=0.0023s-1

e.g. Benzoic acid degradation in UV/PS

[R]=10-4M, [PS]=0.01M, pH = 7, [Cl-] = 0M ~ 0.1M

Model Validation

INTRODUCTION: Impact of Chloride Ions on UV/Persulfate Process

Cl- has inhibition impact on UV/Persulfate Process vs. Cl- has negligible impact on UV/H2O2

Zhang, W., Zhou, S., Sun, J., Meng, X., Luo, J., Zhou, D., & Crittenden, J. C. Impact of Chloride Ions on UV/H2O2

and UV/Persulfate Advanced Oxidation Processes. Environmental science & technology. (2018).

Page 9: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

9

INTRODUCTION: UV/Free Chlorine Process

Promising AOPs: UV/Free Chlorine process

Major Advantages

NaOCl is much cheaper, market price $250/ton

No need to quench residual free chlorine

High energy efficiency than UV/H2O2 and UV/PS

(∅HOCl = 0.9, εHOCl = 59M-1cm-1, ∅OCl- = 0.8, εOCl- = 66M-1cm-1)

• H2O2: $500/ton, NaS2O8: $800/ton

Kinetic behavior and mechanism of organic contaminants destruction in UV/Free Chlorine process

(∅H2O2 = 0.5, εH2O2 = 19.6M-1cm-1, ∅PS = 0.5, εPS = 20.8M-1cm-1)

How to appropriately design UV/Free Chlorine process

HOCl / OCl h HO /O Cl 2Cl Cl Cl 2O Cl / H OCl /HO HOCl Cl

Cl- has negligible impact on UV/Free Chlorine

(e.g. Benzoic acid, Clofibric acid, Ibuprofen, Carbamazepine, Caffeine)

Understand

Page 10: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

10

APPROACHES: Modeling Study

AOPs Modeling Study

1. Interpret AOPs

mechanism

2. Predict AOPs

performance

3. Optimize AOPs

operation

Page 11: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

11

APPROACHES- Modeling Methodologies

Identified Elementary Reactions

Reaction Rate Constant

Estimator

ODEs solver

Time-dependent Concentration

Profiles of parent compounds,

byproducts and intermediates

Experimental

Validation

Energy

Efficiency

Estimator

Electrical energy

required

* Elementary Reactions

(Literature Reported)

* Rate Constants Estimator

(Genetic Algorithm)

* Ordinary Differential Equations

(ODEs) Generator and Solver

(Gear’s Algorithm)

Page 12: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

12

Genetic Algorithm

Minimize Objective Function

Fit Experimental Data

2

exp cal exp

1OF C C / C

n 1

OFmin = 0.0732

9 1 1

Cl /R

4 1 1

Cl /R

6 1 1

ClO /R

k 1.03 10 M s

k 5.17 10 M s

k 1.23 10 M s

3-Methylbenzoic Acid

Solve both constrained and

unconstrained optimization

problem based on a natural

selection process that mimics

biological evolution3-Methylbenzoic Acid degradation in UV/Free Chlorine

Experimental Condition:

[BA]= 5×10-6M, pH=7.2

APPROACHES: Determining rate constants

kCl./R kCl2

-./R kClO./R

Page 13: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

13

Stiff ODEs Solver Gear’s Method

'

s

k n k n s n s

k 0

0 0

y f (t, y)

a y h f (t , y )

initial condition : y(t ) y

Experimental Condition:

[BA]= 5×10-6M, pH=7.2

Most Stable Algorithm

Model validation

by comparing with

experimental data

APPROACHES: Ordinary Differential Equations Solver

Page 14: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

14

Results & Discussion

Rate constants of reactive chlorine species (a) 4-Fluorobenzoic Acid concentration vs. time

(b) Concentration Profiles of

2-Chlorobenzoic Acid

(c) Concentration Profiles of

2-Iodorobenzoic Acid

(d) Concentration Profiles of

3-Cyanobenzoic Acid

(e) Concentration Profiles of

3-Nitrobenzoic Acid

Experimental Condition:

[BA]= 5×10-6M, pH=7.2

Page 15: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

15

Results & Discussion

Quantitative Structure Activity Relationship (QSAR)

(a) Linear relationship for kCl./R and σ (c) Linear relationship for kClO./R and σ(b) Linear relationship for kCl2

-./R and σ

Hammett constants (σ) vs. Rate constants

Chemical ActivityChemical Descriptor

logkCl./R =9.05-1.86σ

R2=0.95logkCl2

-./R =4.64-0.84σ

R2=0.83

logkClO./R =6.08-0.48σ

R2=0.82

Page 16: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

16

Results & Discussion

Relative contribution of reactive radicals

dominant contribution

[HO∙] vs. time [Cl∙] vs. time

[ClO∙] vs. time[Cl2-∙] vs. time

Page 17: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

17

Results & Discussion

Elementary reaction network

Experimental Condition:

[R]= 5×10-6 M, [Free Chlorine] = 5×10-6 M − 5.6 ×10-5 M

[Cl-] = 5×10-6 M − 5.6 ×10-5 M, pH = 7.2

Kinetic Data:

2

2 2 2

10 1 1 8 1 1 9 1 1

HO /free chlorine HO /R

9 1 1 9 1 1

Cl / free chlorine Cl /Cl

3 1 7 1 1 9 1 1

Cl /H O 2 Cl /R

4 1

2Cl Cl Cl /H O

k 8.8 10 M s k 10 M s 10 M s

k 8.2 10 M s k 8 10 M s

k [H O] 1.3 10 s k 10 M s 10 M s

k 5.3 10 s k [H O] 1.3

2

3 1

4 1 1 5 1 1 5 1 1 6 1 1

ClO /RCl /R

10 s

k 10 M s 10 M s k 10 M s 10 M s

Page 18: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

18

Energy Efficiency

Electrical Efficiency per log order (EE/O)

0.0022lbgram

i f i f

C EP tEE \ O

V log(C / C ) log(C / C )

Minimize EE/O (0.0009 KWh/L)

Free Chlorine Dosage 0.4mM

UV Intensity 1.2×10-5 Einstein/L.sExperimental Condition:

[BA]= 5×10-6M, pH=7.2

Results & Discussion

Page 19: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

19

SUMMARY

First Principle Kinetic Model for UV/Free Chlorine Process

3. Interpret degradation

mechanisms - radicals make

dominant contribution

1. Estimated reactivities of

reactive chlorine species

4. Optimize UV/free chlorine

process operational process

2. Predict UV/free chlorine

process performance

QSAR models

Page 20: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

20

UV/H2O2 Pretreatment Subsequent Chlorination (Example)

o 70% of Thiamphenicol

(THA) was destroyed by

UV/H2O2 during 90

minutes

o The yields of THMs for

THA kept decreasing for

UV/H2O2 pretreatment

Future Work: What controls the design for practical water treatment?

Micropollutants removal or DBPs formation potential decreases ?

Which AOPs: UV/ H2O2 vs. UV/Free Chlorine processes(1) requires less energy for micropollutants & DBPs formation potential destruction?

(2) chlorate production?

UV/H2O2 & UV/Free Chlorine processes may increase DBPs formation potential Concern

Micropollutants removal controls

(a) Degradation of THA in UV/H2O2 process

Experimental Condition:

[Thiamphenicol]0 = 3 μM, [H2O2] = 0.3 mM

[Cl2] = 1.0 mM

(b) THMs yields for THA with UV/H2O2 process pretreatment

Yin, Kai et. al 2018

Page 21: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

21

References

1. Shore, R. F.; Taggart, M. A.; Smits, J.; Mateo, R.; Richards, N. L.; Fryday, S. Detection and drivers of exposure and effects of pharmaceuticals in higher vertebrates. Phil. Trans. R. Soc. B 2014, 369, 20130570.

2. Boxall, A. B. A. New and emerging water pollutants arising from agriculture. 2012.

3. Wacławek, S.; Lutze, H. V.; Grübel, K.; Padil, V. V.; Černík, M.; Dionysiou, D. D. Chemistry of persulfates in water and wastewater treatment: a review. Chem. Eng. J. 2017.

4. Stuart, M.; Lapworth, D.; Crane, E.; Hart, A. Review of risk from potential emerging contaminants in UK groundwater. Sci. Total Environ. 2012, 416, 1-21.

5. Laville, N.; Aıt-Aıssa, S.; Gomez, E.; Casellas, C.; Porcher, J. Effects of human pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes. Toxicology 2004, 196, 41-55.

6. Rossi, L.; Queloz, P.; Brovelli, A.; Margot, J.; Barry, D. A. Enhancement of micropollutant degradation at the outlet of small wastewater treatment plants. PloS one 2013, 8, e58864.

7. Petrović, M.; Gonzalez, S.; Barceló, D. Analysis and removal of emerging contaminants in wastewater and drinking water. TrAC, Trends Anal. Chem. 2003, 22, 685-696.

8. Rizzo, L.; Selcuk, H.; Nikolaou, A.; Meriç Pagano, S.; Belgiorno, V. A comparative evaluation of ozonation and heterogeneous photocatalytic oxidation processes for reuse of secondary treated urban wastewater. Desalination and Water Treatment

2014, 52, 1414-1421.

9. Crittenden, J. C. H., K.; Hand, D. W.; Trussell, R. R.;Tchobanoglous, G., MWH’s Water Treatment: Principles and Design. John Wiley & Sons: New York,: 2012.

10. Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅ OH/⋅ O− in aqueous solution. J. Phys. Chem. Ref. Data. 1988, 17, 513-886.

11. Armstrong, D. A.; Huie, R. E.; Koppenol, W. H.; Lymar, S. V.; Merényi, G.; Neta, P.; Ruscic, B.; Stanbury, D. M.; Steenken, S.; Wardman, P. Standard electrode potentials involving radicals in aqueous solution: inorganic radicals (IUPAC Technical

Report). Pure Appl. Chem. 2015, 87, 1139-1150.

12. Mitchell, S. M.; Ahmad, M.; Teel, A. L.; Watts, R. J. Degradation of perfluorooctanoic acid by reactive species generated through catalyzed H2O2 propagation reactions. Environ. Sci. Technol. Lett. 2013, 1, 117-121.

13. Qian, Y.; Guo, X.; Zhang, Y.; Peng, Y.; Sun, P.; Huang, C.-H.; Niu, J.; Zhou, X.; Crittenden, J. Perfluorooctanoic Acid Degradation Using UV/Persulfate Process: Modeling of the Degradation and Chlorate Formation. Environ. Sci. Technol. 2015,

50, 772-781.

14. Hori, H.; Hayakawa, E.; Einaga, H.; Kutsuna, S.; Koike, K.; Ibusuki, T.; Kiatagawa, H.; Arakawa, R. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches. Environ. Sci. Technol. 2004, 38, 6118-

6124.

15. Espana, V. A. A.; Mallavarapu, M.; Naidu, R. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA): A critical review with an emphasis on field testing. Environmental.Technol. Innovation. 2015, 4,

168-181.

16. Neta, P.; Huie, R. E.; Ross, A. B. Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data. 1988, 17, 1027-1284.

17. Deng, Y.; Zhao, R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr.Pollution.Rep. 2015, 1, 167-176.

18. Xiao, Y.; Zhang, L.; Yue, J.; Webster, R. D.; Lim, T.-T. Kinetic modeling and energy efficiency of UV/H 2 O 2 treatment of iodinated trihalomethanes. Water Res. 2015, 75, 259-269.

19. Seid-Mohammadi, A.; Asgari, G.; Poormohammadi, A.; Ahmadian, M.; Rezaeivahidian, H. Removal of phenol at high concentrations using UV/Persulfate from saline wastewater. Desalination and Water Treatment 2016, 57, 19988-19995.

20. González, O.; Bayarri, B.; Aceña, J.; Pérez, S.; Barceló, D., Treatment technologies for wastewater reuse: Fate of contaminants of emerging concern. In Advanced Treatment Technologies for Urban Wastewater Reuse, Springer: 2015; pp 5-37.

21. Dodgen, H.; Taube, H. The exchange of chlorine dioxide with chlorite ion and with chlorine in other oxidation states. J. Am. Chem. Soc. 1949, 71, 2501-2504.

22. Naeini, M. R.; Khoshgoftarmanesh, A. H.; Lessani, H.; Fallahi, E. Effects of sodium chloride-induced salinity on mineral nutrients and soluble sugars in three commercial cultivars of pomegranate. J.Plant.Nutr. 2005, 27, 1319-1326.

23. Kelly, W. R.; Panno, S. V.; Hackley, K. The sources, distribution, and trends of chloride in the waters of Illinois; Illinois State Water Survey Bulletin 74: Champaign, Illinois, 2012.

24. Govindaraj, M.; Muthukumar, M.; Bhaskar Raju, G. Electrochemical oxidation of tannic acid contaminated wastewater by RuO2/IrO2/TaO2‐coated titanium and graphite anodes. Environ. Technol. 2010, 31, 1613-1622.

25. Luo, C.; Jiang, J.; Ma, J.; Pang, S.; Liu, Y.; Song, Y.; Guan, C.; Li, J.; Jin, Y.; Wu, D. Oxidation of the odorous compound 2, 4, 6-trichloroanisole by UV activated persulfate: Kinetics, products, and pathways. Water Res. 2016, 96, 12-21.

26. Fang, G.-D.; Dionysiou, D. D.; Wang, Y.; Al-Abed, S. R.; Zhou, D.-M. Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics. J. Hazard. Mater. 2012, 227, 394-401.

27. Zhang, Y.; Zhang, J.; Xiao, Y.; Chang, V. W.; Lim, T.-T. Kinetic and mechanistic investigation of azathioprine degradation in water by UV, UV/H 2 O 2 and UV/persulfate. Chem. Eng. J. 2016, 302, 526-534.

28. Yao, H.; Sun, P.; Minakata, D.; Crittenden, J. C.; Huang, C.-H. Kinetics and modeling of degradation of ionophore antibiotics by UV and UV/H2O2. Environ. Sci. Technol. 2013, 47, 4581-4589.

29. Lou, X.; Xiao, D.; Fang, C.; Wang, Z.; Liu, J.; Guo, Y.; Lu, S. Comparison of UV/hydrogen peroxide and UV/peroxydisulfate processes for the degradation of humic acid in the presence of halide ions. Environ.Sci.Pollut.R. 2015, 1-8.

30. Wang, P.; Yang, S.; Shan, L.; Niu, R.; Shao, X. Involvements of chloride ion in decolorization of Acid Orange 7 by activated peroxydisulfate or peroxymonosulfate oxidation. J.Environ.Sci. 2011, 23, 1799-1807.

31. Zhang, R.; Sun, P.; Boyer, T. H.; Zhao, L.; Huang, C.-H. Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2, and UV/PDS. Environ. Sci. Technol. 2015, 49, 3056-3066.

32. Yang, Y.; Pignatello, J. J.; Ma, J.; Mitch, W. A. Effect of matrix components on UV/H 2 O 2 and UV/S 2 O 8 2− advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities. Water

Res. 2016, 89, 192-200.

Page 22: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

22

References

33. Tan, C.; Fu, D.; Gao, N.; Qin, Q.; Xu, Y.; Xiang, H. Kinetic degradation of chloramphenicol in water by UV/persulfate system. J. Photochem. Photobiol., A. 2017, 332, 406-412.

34. Tan, C.; Gao, N.; Zhou, S.; Xiao, Y.; Zhuang, Z. Kinetic study of acetaminophen degradation by UV-based advanced oxidation processes. Chem. Eng. J. 2014, 253, 229-236.

35. Luo, C.; Ma, J.; Jiang, J.; Liu, Y.; Song, Y.; Yang, Y.; Guan, Y.; Wu, D. Simulation and comparative study on the oxidation kinetics of atrazine by UV/H 2 O 2, and. Water Res. 2015, 80, 99-108.

36. Daneshvar, N.; Behnajady, M.; Asghar, Y. Z. Photooxidative degradation of 4-nitrophenol (4-NP) in UV/H 2 O 2 process: Influence of operational parameters and reaction mechanism. J. Hazard. Mater. 2007, 139, 275-279.

37. Grebel, J. E.; Pignatello, J. J.; Mitch, W. A. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters. Environ. Sci. Technol. 2010, 44, 6822-6828.

38. Luo, C.; Jiang, J.; Guan, C.; Ma, J.; Pang, S.; Song, Y.; Yang, Y.; Zhang, J.; Wu, D.; Guan, Y. Factors affecting formation of deethyl and deisopropyl products from atrazine degradation in UV/H 2 O 2 and UV/PDS. RSC. Adv. 2017, 7, 29255-

29262.

39. Fang, C.; Lou, X.; Huang, Y.; Feng, M.; Wang, Z.; Liu, J. Monochlorophenols degradation by UV/persulfate is immune to the presence of chloride: Illusion or reality? Chem. Eng. J. 2017, 124-133.

40. Park, K.-M.; Lee, H.-K.; Do, S.-H.; Kong, S.-H., Degradation of TCE using persulfate (PS) and peroxymonosulfate (PMS): effect of inorganic ions in groundwater. In Proceedings of the world congress on engineering and computer science., San

Francisco, CA, USA, 2010; Vol. 2, pp 20-22.

41. Jasim, S.; Ndiongue, S.; Alshikh, O.; Jamal, A. Impact of Ozone and Hydrogen Peroxide vs. UV and Hydrogen Peroxide on Chlorine Residual. Ozone: Science & Engineering 2012, 34, 16-25.

42. Crittenden, J. C.; Hu, S.; Hand, D. W.; Green, S. A. A kinetic model for H 2 O 2/UV process in a completely mixed batch reactor. Water Res. 1999, 33, 2315-2328.

43. Fang, J.; Fu, Y.; Shang, C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system. Environ. Sci. Technol. 2014, 48, 1859-1868.

44. Wang, D.; Bolton, J. R.; Andrews, S. A.; Hofmann, R. UV/chlorine control of drinking water taste and odour at pilot and full-scale. Chemosphere 2015, 136, 239-244.

45. Xiang, Y.; Fang, J.; Shang, C. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process. Water Res. 2016, 90, 301-308.

46. Richardson, S. D. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2009, 81, 4645-4677.

47. La Farre, M.; Pérez, S.; Kantiani, L.; Barceló, D. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC, Trends Anal. Chem. 2008, 27, 991-1007.

48. Vinu, R.; Levine, S. E.; Wang, L.; Broadbelt, L. J. Detailed mechanistic modeling of poly(styrene peroxide) pyrolysis using kinetic Monte Carlo simulation. Chem. Eng. Sci. 2012, 69, 456-471.

49. Guo, X.; Minakata, D.; Niu, J.; Crittenden, J. Computer-Based First-Principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous-Phase Advanced Oxidation Processes. Environ. Sci. Technol. 2014, 48, 5718-5725.

50. Guo, X.; Minakata, D.; Crittenden, J. Computer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UV/H2O2 Advanced Oxidation Process. Environ. Sci. Technol. 2014, 48, 10813-10820.

51. Li, K.; Crittenden, J. Computerized pathway elucidation for hydroxyl radical-induced chain reaction mechanisms in aqueous phase advanced oxidation processes. Environ. Sci. Technol. 2009, 43, 2831-2837.

52. Guo, K.; Wu, Z.; Shang, C.; Yao, B.; Hou, S.; Yang, X.; Song, W.; Fang, J. Radical Chemistry and Structural Relationships of PPCP Degradation by UV/Chlorine Treatment in Simulated Drinking Water. Environ. Sci. Technol. 2017.

53. Hammett, L. P. The effect of structure upon the reactions of organic compounds. Benzene derivatives. J. Am. Chem. Soc. 1937, 59, 96-103.

54. Minakata, D.; Crittenden, J. Linear Free Energy Relationships between Aqueous phase Hydroxyl Radical Reaction Rate Constants and Free Energy of Activation. Environ. Sci. Technol. 2011, 45, 3479-3486.

55. Minakata, D.; Kamath, D.; Maetzold, S. Mechanistic Insight into the Reactivity of Chlorine-derived Radicals in the Aqueous-phase UV/chlorine Advanced Oxidation Process: Quantum Mechanical Calculations. Environ. Sci. Technol. 2017.

56. Gear, B. Backward differentiation formulas. Scholarpedia 2007, 2, 3162.

57. Gillespie, D. T. Approximate accelerated stochastic simulation of chemically reacting systems. The Journal of Chemical Physics 2001, 115, 1716-1733.

58. Chaffey-Millar, H.; Stewart, D.; Chakravarty, M. M.; Keller, G.; Barner-Kowollik, C. A parallelised high performance Monte Carlo simulation approach for complex polymerisation kinetics. Macromol. Theory Simul. 2007, 16, 575-592.

59.Wang, L.; Broadbelt, L. J. Tracking explicit chain sequence in kinetic Monte Carlo simulations. Macromol. Theory Simul. 2011, 20, 54-64.

60. Yin, Kai, Lin Deng, Jinming Luo, John Crittenden, Chengbin Liu, Yuanfeng Wei, and Longlu Wang. "Destruction of phenicol antibiotics using the UV/H2O2 process: Kinetics, byproducts, toxicity evaluation and trichloromethane formation

potential." Chemical Engineering Journal 351 (2018): 867-877.

Page 23: Insight Into the Oxidation Mechanism of UV/Free Chlorine Process · 2018-08-27 · Insight Into the Oxidation Mechanism of UV/Free Chlorine Process Weiqiu Zhang a, Shiqing Zhou b,

Thank you!

Question?

Authors contacts:

Weiqiu Zhang

Georgia Institute of Technology

Email: [email protected]

John Crittenden

Georgia Institute of Technology

Email: [email protected]