uv/h2o2 oxidation: kinetics, mechanism, and degradation … · 2019. 10. 30. · uv/h2o2 oxidation:...

42
S1 Supporting Information Influence of solution pH on degradation of atrazine during UV and UV/H 2 O 2 oxidation: Kinetics, mechanism, and degradation pathways Yucan Liu a* , Kai Zhu b* , Miaomiao Su a , Huayu Zhu c , Jianbo Lu a , Yuxia Wang d , Jinkun Dong a , Hao Qin a , Ying Wang a and Yan Zhang a a School of Civil Engineering, Yantai University, Yantai 264005, China. b College of resources and environment, Linyi University, Linyi 276000, China. c School of chemistry & chemical engineering, Linyi University, Linyi 276000, China. d School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China Corresponding author: Yucan Liu Ph.D. School of Civil Engineering, Yantai University 30 Qingquan Road, Yantai, 264005, China E-mail: [email protected] Tel: +86 0535 6902606 Fax: +86 0535 6902606 Mobile: +86 15853588482 Kai Zhu Ph.D. College of resources and environment, Linyi University Shuangling Road, Linyi, 276000, China E-mail: [email protected] Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Upload: others

Post on 25-Jan-2021

99 views

Category:

Documents


0 download

TRANSCRIPT

  • S1

    Supporting Information

    Influence of solution pH on degradation of atrazine during UV and

    UV/H2O2 oxidation: Kinetics, mechanism, and degradation pathways

    Yucan Liua*, Kai Zhub*, Miaomiao Sua, Huayu Zhuc, Jianbo Lua, Yuxia Wangd, Jinkun Donga,

    Hao Qina, Ying Wanga and Yan Zhanga

    aSchool of Civil Engineering, Yantai University, Yantai 264005, China.

    bCollege of resources and environment, Linyi University, Linyi 276000, China.

    cSchool of chemistry & chemical engineering, Linyi University, Linyi 276000, China.

    dSchool of Environmental and Municipal Engineering, North China University of Water

    Resources and Electric Power, Zhengzhou, 450046, China

    Corresponding author:

    Yucan Liu Ph.D.

    School of Civil Engineering, Yantai University

    30 Qingquan Road, Yantai, 264005, China

    E-mail: [email protected]

    Tel: +86 0535 6902606

    Fax: +86 0535 6902606

    Mobile: +86 15853588482

    Kai Zhu Ph.D.

    College of resources and environment, Linyi University

    Shuangling Road, Linyi, 276000, China

    E-mail: [email protected]

    Electronic Supplementary Material (ESI) for RSC Advances.This journal is © The Royal Society of Chemistry 2019

  • S2

    Contents

    Text S1 Parameters of UPLC and MS for identifying UV photo-oxidation products..................................4

    Fig. S1 Emission spectrum of the low-pressure mercury UV lamp. ...........................................................5

    Fig. S2 Schematic diagram of photochemical reactor. ..............................................................................6

    Fig. S3 Distribution for protonated and deprotonated ATZ species as a function of solution pH. ............7

    Fig. S4 The EIC of photo-degradation intermediates of ATZ in solution during sole-UV treatment..........8

    Fig. S5 Molecular structure and MS/MS spectrum of P1 (ESI+, CE=22 eV)................................................9

    Fig. S6 Molecular structure and MS/MS spectrum of P2 (ESI+, CE=22 eV)..............................................10

    Fig. S7 Molecular structure and MS/MS spectrum of P3 (ESI+, CE=0 eV)................................................11

    Fig. S8 Molecular structure and MS/MS spectrum of P4 (ESI+ and ESI-, CE=23 eV)................................12

    Fig. S9 Molecular structure and MS/MS spectrum of P5 (ESI+ and ESI-, CE=16 eV)................................13

    Fig. S10 Molecular structure and MS/MS spectrum of P6 (ESI+ and ESI-, CE=24 eV)..............................14

    Fig. S11 Molecular structure and MS/MS spectrum of P7 (ESI+, CE=26 eV)............................................15

    Fig. S12 Molecular structure and MS/MS spectrum of P8 (ESI+, CE=22 eV)............................................16

    Fig. S13 Molecular structure and MS/MS spectrum of P9 (ESI+, CE=22 eV)............................................17

    Fig. S14 Molecular structure and MS/MS spectrum of P10 (ESI+, CE=12 eV)..........................................18

    Fig. S15 UV-vis absorbance spectra of ATZ and its products in aqueous solutions at different pH values

    during sole-UV process. ...........................................................................................................................19

    Fig. S16 UV-vis absorbance spectra of ATZ and its products in aqueous solutions at pH of 7.0 during

    UV/H2O2 process......................................................................................................................................20

    Fig. S17 Degradation of H2O2 in UV/H2O2 process and the dark controls at pH of 7.0............................21

    Fig. S18 Effect of H2O2 does and irradiation time on degradation of ATZ (5 mg L-1) in aqueous solution

    at pH of 4.0 during UV irradiation treatment. .........................................................................................22

    Fig. S19 Effect of H2O2 does and irradiation time on degradation of ATZ (5 mg L-1) in aqueous solution

    at pH of 10.0 during UV irradiation treatment. .......................................................................................23

  • S3

    Fig. S20 UV-vis absorbance spectra of ATZ and its products in aqueous solutions at pH of 4.0 during

    UV/H2O2 process......................................................................................................................................24

    Fig. S21 UV-vis absorbance spectra of ATZ and its products in aqueous solutions at pH of 10.0 during

    UV/H2O2 process......................................................................................................................................25

    Fig. S22 Degradation of H2O2 in UV/H2O2 process and the dark controls at pH of 4.0............................26

    Fig. S23 Degradation of H2O2 in UV/H2O2 process and the dark controls at pH of 10.0..........................27

    Fig. S24 The EIC of photo-degradation intermediates of ATZ in aqueous solution at 90 min of UV

    irradiation in UV/H2O2 process under different H2O2 dose. ....................................................................28

    Fig. S25 Molecular structure and MS/MS spectrum of P12 (ESI+, CE=20 eV)..........................................29

    Fig. S26 Molecular structure and MS/MS spectrum of P13 (ESI+, CE=15 eV)..........................................30

    Fig. S27 Molecular structure and MS/MS spectrum of P14 (ESI+ and ESI-, CE=20 eV)............................31

    Fig. S28 Molecular structure and MS/MS spectrum of P15 (ESI+ and ESI-, CE=20 eV)............................32

    Fig. S29 Molecular structure and MS/MS spectrum of P16 (ESI+, CE=15 eV)..........................................33

    Fig. S30 Molecular structure and MS/MS spectrum of P17 (ESI+, CE=18 eV)..........................................34

    Fig. S31 Molecular structure and MS/MS spectrum of P18 (ESI+, CE=17 eV)..........................................35

    Fig. S32 Molecular structure and MS/MS spectrum of P16 (ESI+, CE=15 eV)..........................................36

    Fig. S33 Molecular structure and MS/MS spectrum of P20 (ESI+ and ESI-, CE=20 eV)............................37

    Fig. S34 Molecular structure and MS/MS spectrum of P21 (ESI+ and ESI-, CE=20 eV)............................38

    Table S1 Pseudo-first-order reaction rate constants (kobs) of ATZ at different pH values in sole-UV

    process.....................................................................................................................................................39

    Table S2 Retention time (RT) and MS spectral information in full scan modes of ATZ and its intermediates.

    .................................................................................................................................................................40

    Table S3 Pseudo-first-order reaction rate constants (kobs) of ATZ (initial pH of 7.0) at different H2O2

    does in UV/H2O2 process. ........................................................................................................................41

    Table S4 Retention time (RT) and MS spectral information in full scan modes of ATZ and its intermediates.

    .................................................................................................................................................................42

  • S4

    Text S1 Parameters of UPLC and MS for identifying UV photo-oxidation products.

    The binary mobile phase was composed of methanol (mobile phase A) and ultrapure water (mobile

    phase B), and the flow rate was 0.2 mL min-1. The elution started with 10% A for 3 minutes, the

    concentration of A was increased to 70% within 18 minutes, and then the concentration of A was

    increased to 100% within 22 minutes and retained for 3 minutes, finally it was dropped back to 10%

    and run for 3 minutes for equilibrium before the next injection. A total acquisition time of one run

    analysis was 28 min. The column temperature was maintained at 35 ºC and the injection volume was

    10 μL. The source temperature and desolvation temperature were 110 ºC and 350 ºC, the capillary

    voltage was 3.3 kV, and the cone voltage was 35 V. Desolvation gas (nitrogen gas) and cone gas

    (nitrogen gas) flows were set at 500 L h-1 and 30 L h-1, respectively. Full scan data were acquired from

    m/z 50 to 300 at an acquisition rate of 0.2 sec scan-1 in both positive electrospray ionization (ESI+)

    mode and negative electrospray ionization (ESI-) mode. In order to obtain further information for

    analyzing the structure of intermediates, collision induced dissociation (CID) experiments in daughter

    scan were also conducted. Argon was used as collision gas in daughter scan model and its flow rate

    was at 0.12 mL min-1. The collision energy for each product was optimized in the range from 15 to 35

    eV.

  • S5

    Fig. S1 Emission spectrum of the low-pressure mercury UV lamp.

  • S6

    Fig. S2 Schematic diagram of photochemical reactor. (1) low-pressure mercury UV lamp; (2) quartz glass well; (3) sampling point; (4) magnetic stirrer; (5) magnetic stirrer apparatus; (6) thermostatic water recirculation system; (7) silicone tube. All dimensions are in millimeter (mm).

  • S7

    Fig. S3 Distribution for protonated and deprotonated ATZ species as a function of solution pH. CTotal= CDeprotonated form + CProtonated.

  • S8

    Time6.00 8.00 10.00 12.00 14.00 16.00

    %

    0

    7.39

    Time6.00 8.00 10.00 12.00 14.00 16.00

    %

    07.41

    Time6.00 8.00 10.00 12.00 14.00 16.00

    %

    0

    7.45

    Time6.00 8.00 10.00 12.00 14.00 16.00

    %

    07.41

    Time6.00 8.00 10.00 12.00 14.00 16.00

    %

    09.95

    (A) pH=4.0

    (B) pH=5.5

    (C) pH=7.0

    (D) pH=8.5

    (E) pH=10.0

    P1P2 P3

    P4

    P5 P6

    P7 P9P8

    P1P2 P3

    P4

    P5P6

    P7 P9P8

    P1 P2 P3

    P4

    P5 P6P7

    P9P8

    P1P2 P3

    P4

    P5 P6P7

    P8

    P1P2 P3

    P4

    P5 P6P7

    P8

    P9

    P9P11

    P10 P11

    P10 P11

    P10 P11

    P10 P11

    P10 P11

    Time7.00 8.00

    %

    0

    100 7.38

    7.32

    Time7.00 8.00

    %

    0

    100 7.42

    6.68 8.28 8.79

    Time7.00 8.00

    %

    0

    100 7.43

    7.158.52

    8.06

    Time7.00 8.00

    %

    0

    100 7.41

    7.148.05

    Time4.50 5.00 5.50

    %

    0

    100 5.02

    4.19 5.55

    Time4.50 5.00 5.50

    %

    0

    100 5.02

    4.355.42

    Time4.50 5.00 5.50

    %

    0

    100 5.02

    Time4.50 5.00 5.50

    %

    0

    100 5.04

    5.61

    Time4.50 5.00 5.50

    %

    0

    100 5.01

    5.55

    5.315.64

    Time7.00 8.00

    %

    0

    100 7.50

    7.35

    Fig. S4 The EIC of photo-degradation intermediates of ATZ in solution during sole-UV treatment.

    Raw ATZ solution: 5 mg L-1; irradiation time: 120 min. (A) pH 4.0; (B) pH 5.5; (C) pH 7.0; (D) pH 8.5; (E)

    pH 10.0.

  • S9

    P1 (4-Isopropylamino-6-amino-s-triazine)

    N N

    N NH2HNCH3

    CH3CH

    ESI+ mode

    m/z60 80 100 120 140 160

    %

    0

    100 70

    68

    112

    85154NH N

    N NH2H2N

    NH N

    N NH2HNCH3

    CH3CH

    NH

    NH2HN

    CHN

    NC

    HN

    HN

    NH

    HN

    CHN

    Fig. S5 Molecular structure and MS/MS spectrum of P1 (ESI+, CE=22 eV).

  • S10

    P2 (2-Methoxy-4-methylamino-6-isopropylamino-s-triazine)

    N N

    N NHHN

    OH

    CH3

    CH3CH CH3

    ESI+ mode

    m/z60 80 100 120 140 160 180 200

    %

    0

    100 114

    699771

    184156142

    NH N

    N NHHN

    OH

    CH3

    CH3CH CH3

    NH N

    N NHHN

    OH

    H3C CH3

    N HN

    N NHH2N

    OH

    CH3

    HN

    NH3C

    H2C

    NH N

    NH2N

    NH NH

    N NH2H2NNNH

    CH CH2

    Fig. S6 Molecular structure and MS/MS spectrum of P2 (ESI+, CE=22 eV).

  • S11

    P3 (2-Hydroxy-4-isopropylamino-6-vinylamino-s-triazine)

    N N

    N NHHN

    OH

    CH3

    CH3CH CH CH2

    ESI+ mode

    m/z60 80 100 120 140 160 180 200 220

    %

    0

    100 196

    6557

    718997 183145104 121 129 181153 216205

    NH N

    N NH2HN

    OH

    CH3

    CH3CH CH CH2

    Fig. S7 Molecular structure and MS/MS spectrum of P3 (ESI+, CE=0 eV).

  • S12

    P4 (2-Hydroxy-4-ethylamino-6-isopropylamines-s-triazine)

    N N

    N NH CH2 CH3HNCH3

    CH3CH

    OH

    ESI+ mode

    m/z60 80 100 120 140 160 180 200

    %

    0

    100 15686

    6971

    11497

    128 198

    NH N

    N NH CH2 CH3HNCH3

    CH3CH

    OH

    NH N

    N NH CH2 CH3H2N

    OH

    NH N

    N NH2H2N

    OH

    NH NH

    N NH2H2N

    N HN

    N NH2

    NH

    NH3C

    H2C

    NH2

    NNH

    CH CH2

    ESI- mode

    m/z60 80 100 120 140 160 180 200

    %

    0

    100 83

    69 84 125111 154 196168

    N

    NH3C

    H2C

    N NH

    N NH2N N

    N NH CH3

    O

    N N

    N NH2

    O

    N N

    N NH CH2 CH3H2N

    O

    N N

    N NH CH2 CH3HNH3C

    O

    N N

    N NH CH2 CH3HNCH3

    CH3CH

    O

    Fig. S8 Molecular structure and MS/MS spectrum of P4 (ESI+ and ESI-, CE=23 eV).

  • S13

    P5 (2-Hydroxy-4-acetamido-6-ethylamino-s-triazine)

    N N

    NHN NHCH2CH3

    OH

    C CH3

    O

    ESI+ mode

    m/z60 80 100 120 140 160 180 200

    %

    0

    100 113

    71

    68

    8596 103

    114198

    156139

    N N

    NHN NH2CH2CH3

    OH

    C CH3

    O

    NH N

    NHN NH2CH2CH3

    OHNH

    NCH2

    NC

    CH2

    H

    NH

    N HH3C

    H2C

    N NH

    N NH2

    H

    NH N

    N NH2

    OH

    NH N

    NHNCH

    OH

    H2C

    ESI- mode

    m/z60 80 100 120 140 160 180 200

    %

    0

    100 111

    69 83 196137

    N N

    NHN NHCH2CH3

    O

    C CH3

    ON NH

    N NH2NH3C

    H2CN

    N N

    NHNCH

    O

    H2C

    N N

    N NH2

    O

    Fig. S9 Molecular structure and MS/MS spectrum of P5 (ESI+ and ESI-, CE=16 eV).

  • S14

    P6 (2-Hydroxy-4-(2-hydroxy-ethylamino)-6-vinylamino-s-triazine)

    N N

    N NH CH CH3HN

    OH

    OH

    CHCH2

    ESI+ mode

    m/z60 80 100 120 140 160 180 200

    %

    0

    100 85

    716958

    127

    113 198156153

    N N

    N NH2 CH CH3HN

    OH

    OH

    CHCH2

    N N

    N NH2 CH2 CH3H2N

    OH

    NH N

    N NH CH3

    OH

    NH N

    N NH2

    OH

    NH NH

    N NH2

    NH

    NH3C

    H2C

    HN NH

    HN

    N N

    N CH3H2N

    OH

    CHCH2

    ESI- mode

    m/z60 80 100 120 140 160 180 200

    %

    0

    100 125

    83 111 196151

    N N

    N NH CH CH3HN

    O

    OH

    CHCH2

    N N

    N NH CH3

    O

    N N

    N NH2

    O

    N NH

    N NH2

    N N

    N CH3HN

    O

    CHCH2

    Fig. S10 Molecular structure and MS/MS spectrum of P6 (ESI+ and ESI-, CE=24 eV).

  • S15

    P7 (2-Hydroxy-4-acetamido-6-isopropylamino-s-triazine)

    N N

    N NHHN

    OH

    C CH3

    OCH3

    CH3CH

    ESI+ mode

    m/z60 80 100 120 140 160 180 200 220

    %

    0

    100 86

    8568

    128

    170212

    N N

    N NH2H2N

    OH

    C CH3

    O

    NH N

    N NH2H2N

    OH

    NC

    HN

    HN

    N N

    N NH2HN

    OH

    C CH3

    OCH3

    CH3CH

    NH

    NH3C

    H2C

    NH2

    Fig. S11 Molecular structure and MS/MS spectrum of P7 (ESI+, CE=26 eV).

  • S16

    P8 (2-Methoxy-4-isopropylamino-6-ethylamino-s-triazine)

    N N

    N NH CH2 CH3HN

    O CH3

    CH3

    CH3CH

    ESI+ mode

    m/z60 80 100 120 140 160 180 200 220

    %

    0

    100 170

    10097

    7571

    5786

    83

    142114 128

    212182

    N N

    N NH2 CH2 CH3HN

    O CH3

    CH3

    CH3CH

    N N

    N NH2 CH2 CH3HN

    H

    CH3

    CH3CH

    N N

    N NH2 CH2 CH3H2N

    O CH3

    NH N

    N NH2H2N

    O CH3

    NH N

    N NH2H2N

    OH

    N NH

    N NH CH3H2NN HN

    N NH2

    Fig. S12 Molecular structure and MS/MS spectrum of P8 (ESI+, CE=22 eV).

  • S17

    P9 (2-Chloro-4-ethylamino-6-isopropylamino-s-triazine)

    N N

    NHNCH3

    CH3NH CH2 CH3CH

    Cl

    ESI+ mode

    m/z60 80 100 120 140 160 180 200 220

    %

    0

    100 174

    96

    79

    716890

    104 146132110 138 216

    N N

    NHNCH3

    CH3NH2 CH2 CH3CH

    Cl

    N N

    NH2N NH2 CH2 CH3

    Cl

    NH N

    NH2N NH2

    Cl

    NC

    HN

    HN

    NH

    NH3C

    H2C NH

    NCH2

    NC

    CH2

    H

    Fig. S13 Molecular structure and MS/MS spectrum of P9 (ESI+, CE=22 eV).

  • S18

    P10 (2-Hydroxy-4-vinylamino-s-triazine)

    OH

    N N

    N NH CH CH2

    ESI+ mode

    m/z50 60 70 80 90 100 110 120 130 140 150

    %

    0

    100 139

    81

    72

    NH

    HN NH2

    H2C

    OH

    NH N

    N NH CH CH2

    NH

    N

    C

    H

    Fig. S14 Molecular structure and MS/MS spectrum of P10 (ESI+, CE=12 eV).

  • S19

    Fig. S15 UV-vis absorbance spectra of ATZ and its products in aqueous solutions at different pH values

    during sole-UV process.

  • S20

    Fig. S16 UV-vis absorbance spectra of ATZ and its products in aqueous solutions at pH of 7.0 during

    UV/H2O2 process.

  • S21

    Fig. S17 Degradation of H2O2 in UV/H2O2 process and the dark controls at pH of 7.0.

  • S22

    Fig. S18 Effect of H2O2 does and irradiation time on degradation of ATZ (5 mg L-1) in aqueous solution

    at pH of 4.0 during UV irradiation treatment.

  • S23

    Fig. S19 Effect of H2O2 does and irradiation time on degradation of ATZ (5 mg L-1) in aqueous solution

    at pH of 10.0 during UV irradiation treatment.

  • S24

    Fig. S20 UV-vis absorbance spectra of ATZ and its products in aqueous solutions at pH of 4.0 during

    UV/H2O2 process.

  • S25

    Fig. S21 UV-vis absorbance spectra of ATZ and its products in aqueous solutions at pH of 10.0 during

    UV/H2O2 process.

  • S26

    Fig. S22 Degradation of H2O2 in UV/H2O2 process and the dark controls at pH of 4.0.

  • S27

    Fig. S23 Degradation of H2O2 in UV/H2O2 process and the dark controls at pH of 10.0.

  • S28

    Time4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

    %

    0

    100

    15.45

    P10P12 P11 P1

    P2

    P14 P15P3

    P4

    P5P6

    P7

    P8 P9P13

    P16

    Time4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

    %

    0

    100 15.46

    P10P1 P2 P3

    P4

    P5P6

    P7 P8

    P9

    Time7.00 8.00

    %0

    100 7.42

    6.68 8.28 8.79

    P11

    (A) pH=7.0, H2O2=0 mg/L

    (B) pH=7.0, 5 mg/L

    Time4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

    %

    0

    100 15.44

    15.40(C) pH=7.0, 15 mg/L

    P10

    P11

    P1 P2

    P4

    P5P6

    P7

    P8

    P9

    Time4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

    %

    0

    10015.41(D) pH=7.0, 30 mg/L

    P10 P2

    P4

    P5P6

    P7

    P8

    P9

    Time4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

    %

    0

    100 15.4415.40(E) pH=7.0, 50 mg/L

    P10 P1 P2

    P4

    P5 P6

    P7

    P8

    P9

    Time15.00 16.00 17.00 18.00

    %

    0

    100 16.6616.4416.31

    16.1715.96

    15.6315.1614.79

    16.7816.90

    18.0717.50

    Time4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

    %

    0

    100 15.41(F) pH=4.0, 30 mg/L

    P10

    P9

    P8

    P7P6

    P5

    P4

    P3P2

    Time4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

    %

    0

    10015.41(G) pH=10.0, 30 mg/L

    P10

    P11 P1

    P9

    P8P7

    P6P5

    P4

    P3

    Time9.60 9.80 10.00 10.20

    %

    0

    100

    P16P13P12P14

    P15P3

    P11

    P1

    P12 P13 P14

    P15P3 P16

    P12P11 P13 P14

    P15P3 P16

    P1

    P12P11

    P14

    P15P16

    P12

    P21

    P13

    P2P20

    P19P17 P18

    Fig. S24 The EIC of photo-degradation intermediates of ATZ in aqueous solution at 90 min of UV

    irradiation in UV/H2O2 process under different H2O2 dose.

    (A) pH=7.0, 0 mg L-1 H2O2; (B) pH=7.0, 5 mg L-1 H2O2; (C) pH=7.0, 15 mg L-1 H2O2; (D) pH=7.0, 30 mg L-1

    H2O2; (E) pH=7.0, 50 mg L-1 H2O2; (F) pH=4.0, 30 mg L-1 H2O2; (G) pH=10.0, 30 mg L-1 H2O2.

  • S29

    P12 (2-Hydroxy-4-acetamido-6-isopropenylenylamino-s-triazine)

    N N

    N NH

    OH

    HN C

    O

    CH3 C

    CH2CH3

    ESI+ mode

    m/z100 120 140 160 180 200 220

    %

    0

    100 167

    98

    97

    101

    152123115

    166 210168 209

    N N

    N NH2

    OH

    HN C

    O

    CH3 C

    CH2CH3

    NH N

    NHNHC

    CH2

    NH N

    N NH2HNCH3 C

    CH2

    168 NH N

    N NH2

    OH

    HNCH3 C

    CH2

    Fig. S25 Molecular structure and MS/MS spectrum of P12 (ESI+, CE=20 eV).

  • S30

    P13 (4-acetamido-s-triazine)

    N N

    N NH C CH3

    O

    ESI+ mode

    m/z50 60 70 80 90 100 110 120 130 140 150

    %

    0

    100 139

    60

    5797

    897162 8774 84 90119104 108 132121

    140148

    N N

    N NH2 C CH3

    ONH N

    N NH2

    Fig. S26 Molecular structure and MS/MS spectrum of P13 (ESI+, CE=15 eV).

  • S31

    P14 (2-Hydroxy-4-acetamido-6-(2-hydroxyisopropylamino)-s-triazine)

    N N

    N NH CH CH2HN

    OH

    C

    OH

    CH3

    CH3

    ESI+ mode

    m/z60 80 100 120 140 160 180 200 220

    %

    0

    100 142

    756858 10085

    170

    212184

    NH N

    N NH CH CH2HN

    OH

    C

    OH

    CH3

    CH3

    NH N

    N NH CH CH2HNH2C

    OH

    OH

    NH N

    N NH2HNH2C

    OH

    NH N

    N NH2HNC

    OH

    CH3

    CH3

    NH NH

    N

    OH H

    NC

    HN

    HN

    N NH

    N NH2

    H

    ESI- mode

    m/z60 80 100 120 140 160 180 200 220

    %

    0

    100 81

    66

    58

    72

    115

    9883

    111

    181

    166136

    210182

    N N

    N NH CH CH2HNH3C

    O

    N N

    N CH CH2HN

    O

    C

    OH

    H

    CH3

    N N

    N NH CH CH2HN

    O

    C

    OH

    CH3

    CH3N N

    NH2N NH CH CH2

    N N

    N NH2

    O

    N NH

    N

    O H

    N N

    N NH2

    ON

    CHN

    N

    Fig. S27 Molecular structure and MS/MS spectrum of P14 (ESI+ and ESI-, CE=20 eV).

  • S32

    P15 (2-Hydroxy-4-ethylimine-6-(2-hydroxyisopropylamino)-s-triazine)

    N N

    N N CH CH3HNC

    OH

    CH3CH3

    OH

    ESI+ mode

    m/z60 80 100 120 140 160 180 200 220

    %

    0

    100 170

    10386

    212

    NH

    NH3C

    H2C

    NH2

    NH

    NH NH2H2N

    CH3N N

    N NH CH2HNC

    OH

    H

    H

    OH

    N N

    N NH CH CH3HNC

    OH

    CH3CH3

    OH

    ESI- mode

    m/z60 80 100 120 140 160 180 200 220

    %

    0

    100 66167

    9897

    73 81

    101

    152123115

    166 210168 209

    NC

    HN

    N

    N N

    NHN

    O

    CH

    N

    NH NH2H2N

    CH3

    N N

    N N CH CH3HNC

    OH

    CH3CH3

    O

    N N

    NHNCCH3CH3

    H

    O

    CH3N N

    N N CH2

    O

    HNCH3

    Fig. S28 Molecular structure and MS/MS spectrum of P15 (ESI+ and ESI-, CE=20 eV).

  • S33

    P16 (2-Chloro-4-vinylamino-6-acetamido-s-triazine)

    N N

    NHNC

    O

    CH3

    Cl

    NH CH CH2

    ESI+ mode

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 21460

    5817374

    88 14711197 131 151 194 226 235 257261

    N N

    NH2NC

    O

    CH3

    Cl

    NH CH CH2

    N N

    NH2NC

    O

    CH3

    Cl

    Fig. S29 Molecular structure and MS/MS spectrum of P16 (ESI+, CE=15 eV).

  • S34

    P17 (2-Hydroxy-4-(2-hydroxy-ethylamino)-6-isopropylamino-s-striazine)

    N N

    N

    OH

    HN NH CH

    OH

    CH3CH3

    CH3CH

    ESI+ mode

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 192

    129

    907362 81 127105

    170

    143171

    214

    193196 236

    NH N

    N

    OH

    HN NH CH

    OH

    CH3CH3

    CH3CH

    NH N

    N

    O Na

    HN NH CH

    OH

    CH3CH3

    CH3CH

    196 NH NN

    OH

    HN NH CH CH2CH3

    CH3CH

    NH N

    N

    OH

    NH CH2

    OH

    H2N NH

    HN

    OH

    NH CH CH2

    NH N

    N NH CH2 CH3

    OH

    HNCH3

    Fig. S30 Molecular structure and MS/MS spectrum of P17 (ESI+, CE=18 eV).

  • S35

    P18 (2-Hydroxy-4-ethylamino-6-(2-hydroxyisopropylamino)-s-triazine)

    N N

    N

    OH

    NH CH2 CH3NHCCH3CH3

    OH

    ESI+ mode

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 214

    7460 76 89 118 171130 155179 196 256250217

    N N

    N

    Cl

    HN NH2 CH CH2CH3

    CH3CH

    Fig. S31 Molecular structure and MS/MS spectrum of P18 (ESI+, CE=17 eV).

  • S36

    P19 (2-Hydroxy-4-ethylamino-6-isopropenylenylamino-s-triazine)

    N N

    N NHHN

    OH

    C

    CH2CH3 CH2 CH3

    ESI+ mode

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 196

    60 74 1547684 127 179218200 254

    NH N

    N NH2HN

    OH

    C

    CH2H

    NH N

    N NH CH3

    OH

    NH N

    N NHHN

    O Na

    C

    CH2CH3 CH2 CH3

    NH N

    N NHHN

    OH

    C

    CH2CH3 CH2 CH3

    Fig. S32 Molecular structure and MS/MS spectrum of P16 (ESI+, CE=15 eV).

  • S37

    P20 (2-Hydroxy-4-(2-hydroxy-ethylamino)-6-amino-s-triazine)

    N N

    N NH CH

    OH

    CH3

    OH

    H2N

    ESI+ mode

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 172

    7460 13011410188 160140

    184

    194

    203 223 244

    NH N

    N NH CH

    OH

    CH3

    OH

    H2N

    NH N

    N NH CH

    OH

    CH3

    O Na

    H2N

    ESI- mode

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 170

    6159 75 1179985 164147

    183241202 207

    N N

    N NH CH

    OH

    CH3

    O

    H2N

    Fig. S33 Molecular structure and MS/MS spectrum of P20 (ESI+ and ESI-, CE=20 eV).

  • S38

    P21 (2-Chloro-4-vinylamino-6-amino-s-triazine)

    N N

    N NH CH CH2

    Cl

    H2N

    ESI+ mode

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 172

    130

    60 7411989 92 133151170

    194

    183 212 223

    N N

    N NH2 CH CH2

    Cl

    H2N

    M+Na

    ESI+ mode

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 170

    6158 7571 11586 100 122132 154

    171260178 190

    N N

    N NH C CH2

    Cl

    H2N

    Fig. S34 Molecular structure and MS/MS spectrum of P21 (ESI+ and ESI-, CE=20 eV).

  • S39

    Table S1 Pseudo-first-order reaction rate constants (kobs) of ATZ at different pH values in sole-UV

    process.

    Initial solution

    pH values

    Final solution

    pH valuesLinear correlation

    coefficient (r2)

    Reaction rate

    constants kobs(min-

    1)

    Half-life time

    t1/2 (min)

    4.0 4.03 0.989 0.0076 91.2

    5.5 5.51 0.986 0.0113 61.3

    7.0 6.98 0.987 0.0150 46.2

    8.5 8.46 0.989 0.0140 49.5

    10.0 9.95 0.985 0.0134 51.7

    Note: initial ATZ concentration: 5 mg L-1.

  • S40

    Table S2 Retention time (RT) and MS spectral information in full scan modes of ATZ and its intermediates.

    Name RT/min MS spectral (ESI+) MS spectral (ESI-)

    P1 7.42

    m/z60 80 100 120 140 160 180 200 220

    %

    0

    100 154

    7165 8974 121102 198187183 221

    P2 9.89

    m/z60 80 100 120 140 160 180 200 220

    %

    0

    100 184

    6557 1199771 8976 115 133 153 171 206187

    P3 11.90

    m/z60 80 100 120 140 160 180 200 220

    %

    0

    100 196

    6557

    718997 183145104 121 129 181153 216205

    P4 12.60

    m/z50 100 150 200 250 300 350 400 450 500

    %

    0

    100 198

    395220 417

    m/z50 100 150 200 250 300 350 400 450 500

    %

    0

    100 196

    393

    P5 14.06

    m/z50 100 150 200 250 300 350 400 450 500

    %

    0

    100 220

    198

    11371

    417

    395252 318 433m/z

    50 100 150 200 250 300 350 400 450 500

    %

    0

    100 196

    111

    75 89 137 415250218 393

    P6 14.46

    m/z50 100 150 200 250 300 350 400 450 500

    %

    0

    100 220198

    12765

    417

    395300242 252 318m/z

    50 100 150 200 250 300 350 400 450 500

    %

    0

    100 196

    125

    61 415250218

    P7 14.88

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 212

    19865

    234220

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 210

    1257560 83 99 112

    196136 178166

    223236 259

    P8 15.20

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 212

    198129976574 121 193 220

    P9 15.44

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 216

    218

    238m/z

    50 75 100 125 150 175 200 225 250

    %

    0

    100 214

    7560 8984 196127111 143 168

    216243 259

    P10 5.02

    m/z50 60 70 80 90 100 110 120 130 140 150

    %

    0

    100 139

    12996 151

    P11 7.54

    m/z50 100 150 200 250 300 350 400

    %

    0

    100 198

    71 128 154395220 417

    m/z100 150 200 250 300 350 400

    %

    0

    100 196

    123 181151 284245199 381321 393

  • S41

    Table S3 Pseudo-first-order reaction rate constants (kobs) of ATZ (initial pH of 7.0) at different H2O2

    does in UV/H2O2 process.

    Initial H2O2

    concentration

    Final solution

    pH values

    Linear correlation

    coefficient (r2)

    Reaction rate constants

    kobs(min-1)

    Half-life time

    t1/2 (min)

    0 6.98 0.983 0.0145 46.2

    5 6.95 0.979 0.0165 42.0

    15 6.88 0.988 0.0118 58.7

    30 6.82 0.991 0.0108 64.2

    50 6.68 0.995 0.0097 71.5

  • S42

    Table S4 Retention time (RT) and MS spectral information in full scan modes of ATZ and its intermediates.

    Name RT/min MS spectral (ESI+) MS spectral (ESI-)

    P12 6.70

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 210

    7157 1078974 121 135 160141 173 179 207 232 243 258

    P13 8.58

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 139

    60

    97897187 104 119 149 159171 205

    P14 11.38

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 212

    60234

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 210

    62 89 181115212

    P15 11.64

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 212

    17060 8974 105 131

    234

    m/z50 75 100 125 150 175 200 225 250

    %0

    100 210

    62 1018985 167150138 174

    211

    213 248

    P16 16.60

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 21460

    5817374

    88 14711197 131 151 194 226 235 257261

    P17 3.92

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 192

    129

    62 78 83 12110790170

    135 159 177

    214

    203215

    236

    196

    P18 7.90

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 214

    7460 76 89 118 171130 155179 196 256250217

    P19 9.20

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 196

    60 74 1547684 127 179218200 254

    P20 9.77

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 172

    7460 13011410188 160140

    184

    194

    203 223 244m/z

    50 75 100 125 150 175 200 225 250

    %

    0

    100 170

    6159 75 1179985 164147

    183241202 207

    P21 9.95

    m/z50 75 100 125 150 175 200 225 250

    %

    0

    100 172

    130

    60 7411989 92 133151170

    194

    183 212 223m/z

    50 75 100 125 150 175 200 225 250

    %

    0

    100 170

    6158 7571 11586 100 122132 154

    171260178 190