innovative approaches for cigs solar cells · 2016-09-26 · proof of concept of nanostructured...

42
Daniel Lincot Institut Photovoltaïque Ile de France (IPVF) Institut de Recherche et Développement sur l’Energie Photovoltaïque IRDEP CNRSEDFCHIMIE PARISTECH, Chatou Daniel[email protected] Innovative approaches for CIGS Solar Cells

Upload: others

Post on 24-Apr-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

Daniel LincotInstitut Photovoltaïque Ile de France (IPVF)

Institut de Recherche et Développement sur l’Energie Photovoltaïque IRDEP CNRS‐EDF‐CHIMIE PARISTECH, Chatou

Daniel‐[email protected]

Innovative approaches for CIGS Solar Cells

Page 2: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

Institut Phovoltaïque Ile de FranceInstitute for the Energy Transition

Both academic and industrial partners : CNRS, Ecole Polytechnique, EDF, TOTAL, Air Liquide, Horiba Jobin Yvon, Riber

Web site :www.ipvf.fr

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 3: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

Associated laboratories

Research programs :Silicon, thin films, New Concepts, characterization and theory, economic and social aspects

« 30/30/30 for modules »

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 4: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

New building in construction (mid 2017 ‐ 8000 m2)

D Lincot IW‐CIGSTech 7 23‐06‐2016 EUPVSEC

Page 5: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

CIGS 22.6 %

Looking to the past for the future : An evolutionaryapproach- CIGS a case exemple !

potassium

gradientsCBD CdSSodiumtemperaturegallium

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 6: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

Verre

Mo (0,5 m)

P CuInSe2 (2 m)

N+ CdS:In/Ga (1‐2 m) 

Not to scale

N type layerEvaporation

P type  layerEvaporation

Contacts

Back contact

Substrate

<1980

8%

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 7: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

Verre

Mo (0,5 m)

P Cu(In,Ga)Se2 (2 m)

N+

(Cd,Zn)S:In/Ga (1‐2 m) 

6

Not to scale

N type layerEvaporation

P type  layerEvaporation

Contacts

Back contact

Substrate

1985

12%

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 8: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

Verre

Mo (0,5 m)

P Cu(In,Ga)Se2

ZnO(Al)

6

Not to scale

ZnO(Al)By Sputtering

P type  layerBy coEvaporation3 stage process

Contacts

Back contact

Substrate

1994

Ga Rich

In rich

Ga rich

CdS by Solution (CBD)

15%

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 9: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

Glass or metal/plastic foil

Mo (0,5 m)

P CuIn0.7 Ga0.3 Se2 (2 m)

N‐ CdS  10‐ 50nm

N++ ZnO : Al (1 m) 

Not to scale

Window Layer

Buffer layer 

Absorber layer

Contacts

Back contact

Substrate

N‐ ZnO (100 nm)

P+ Mo(S,Se)2 (10‐100 nm)

2010‐2015

N Cu(In,Ga)3Se5 (?)

Na+

Ga

Ga

In

20%

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 10: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

6

Verre/polymère/métal

Mo (0,5 m)

P CuIn0.7 Ga0.3 Se2 (2 m)

N‐ CdS ou Zn(O,S)  10‐ 50nm

N++ ZnO : Al (1 m) Couche fenêtreconductrice

Couche tampon

Couche absorbante

Contacts

Contact arrière

Substrat

N‐ ZnO (100 nm)

P+ Mo(S,Se)2 (10‐100 nm)

2016

N GIGS + K 

Na+

Ga

Ga

In

K+

22%

Page 11: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

11

Selected innovative approaches

‐ Low indium consumption with high efficiencies‐ Microcell concept‐ Ultrathin CIGS

‐ New deposition methods‐ Electrodeposition

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 12: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

12

New  Concept : CIGS microcells under concentrationIntroduced by IRDEP in 2010

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 13: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

21,3 %

2013

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016,EUPVSEC 

Page 14: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

14

Addressing the concept of separated microcells

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 15: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

15

Good edge passivation

Edge recombination < 1.3 104 cm/s

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 16: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

16D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 17: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

17

S. Jutteau et al. (2015)

Design of the optical component

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 18: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

18

S. Jutteau et al. (2015)

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 19: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

19

‐ Last results presented at IEEE (2016) and EMRS, to be published)‐ studies of electrodeposited microcells(bottom up) 

‐ HZB : Spatially controlled microcells by coevaporation (APL 2016)‐ ZSW : 23% from top down CIGS (poster this conference)

On going :

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 20: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

Ultrathin Cu(In,Ga)Se2 based solar cells

N. Naghavi1,4, F. Mollica2,4, J. Gofard3,4, J. Possada1,4, A. Duchatelet2,4, M. Jubault2,4, F. Donsanti2,4, A. Cattoni3,4, S. Collin3,4, P.P. Grand2,4, J. J. Greffet5, D. Lincot1,4

1 CNRS, IRDEP – UMR 7174, 6 quai Watier, 78400 Chatou, France2 EDF R&D, IRDEP, 6 quai Watier, 78400 Chatou, France3 Laboratoire de Photonique et de Nanostructures (LPN,CNRS), Marcoussis, France4 IPVF, Institute Photovoltaïque d’Ile de France, 8 rue de la Renaissance, 92160 Antony, France5Institut d’Optique CNRS, Campus Polytechnique, RD 128, 91127 Palaiseau cedex, France

E‐MRS spring meeting 2016

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 21: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

Influence of back contact on 0.1 micron thick cells

Conditions Voc Jsc FF Efficiency

W/O mirror 0.44 15.2 73.9 4.97

W mirror 0.45 21.6 74.2 7.24

W mirror + BSF 0.66 21.6 77.6 11.1

W mirror+ BSF + p++

0.77 20.8 77.3 11.9

With ligthtrapping*(Ref 2 micron)

0.77(0.6)

30(32.5)

77(79.6)

17(15.7)

* Estimated values

From: D. Lincot, 7th International Symposium on Innovative Solar CellsJanuary 19‐20, 2015

Tokyo, Japan

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 22: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

What is our goal ?

22

To explore the possibility of reducing the thickness CIGS layer down to 0.2µm while maintaining a high efficiency level of solar cells. 

Reducing the thickness by 10: Release of In shortage issues & faster Industrial processes

But : fundamental scientific challenges

To maintain high efficiencies : Deposition of hight quality ultrathin CIGS  Absorption of light: optical management

Extraction of the charge carriers : electrical management

N. Naghavi ‐ EMRS – 08/05/2016

2‐2,5 µm0,1‐0,2  µm

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 23: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

0.4‐0.5 µm

0.3 µm

0.2 µm

2‐2.5 µm

What has been done ?

23

Can we really reach similarefficiencies with a thin CIGS absober<300 nm compared

to a thick one ?

N. Naghavi ‐ EMRS – 08/05/2016

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 24: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

0.4‐0.5 µm

0.3 µm

0.2 µm

2‐2.5 µm

What has been done ?

24

N. Naghavi ‐ EMRS – 08/05/2016

*Vermang & al; Prog. Photovolt: Res. Appl. (2014)DOI: 10.1002/pip.2527*Vermang & al; IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 4, NO. 6, NOVEMBER 2014

Introduction of Al2O3 rear surface passivation layer with nanosizedlocal point contacts to reduce recombination at the standardMo/CIGS rear interface

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 25: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

Calculated Jsc as function of dCIGS for different BC

25

Mo

Mo

CIGS

CdSi‐ZnO

ZnO:Al

50 nm70 nm

400 nm

Mo BC : Jsc with thickness

N. Naghavi ‐ EMRS – 08/05/2016N. Dahan & al., Optic express, OPTICS EXPRESS,21/3, 2563‐2580 (2013)

Use of the radiative transfer equation (RTE).

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 26: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

Deposition process

High efficiencyLow cost

Co‐evaporation2 step process

Electrodeposition+ heat treatement

23

Reactive sputtering1 step process:

Providing uniform coatings over large areas. 

Comparaison of two CIGS thicknesses : 500 & 300 nm

N. Naghavi ‐ EMRS – 08/05/2016

P4.31.Posada & al. May 5, 2016, 16h

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 27: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

Solar cell characterizations

27

300 nm

370 nm

650 nm

280 nm

550 nm

470 nm

N. Naghavi ‐ EMRS – 08/05/2016

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 28: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

28

Comparaison with the litterature

J. Peterson et al., IEEE J. Photovolt., Vol. 3, no. 4, 2013B. Vermang et al., Prog. Photovolt: Res. Appl. 2014K. Kim et al., IEEE J. Photovolt., vol. PP, no. 99, pp. 1 –5, 2012

N. Naghavi ‐ EMRS – 08/05/2016

Sample Process CGI/GGI Thickness(nm)

Efficiency(%)

Jsc(mA.cm‐2)

Voc(mV)

FF (%)

This studyED 

+ Se annealing0.94/0.6 370 8.7 19 685 66.8

Petterson, 2013

Coevaporation 0.87/0.46 300 8.3 16.7 672 74.6

Vermang,2014

Coevaporation 0.85‐90 /0.3 400 9.1 23.2 576 67.7

Kim, 2013PVD

+H2Se/H2S annealing

0.87/0.22 250 9.1 21 612 71.1

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 29: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

Proof of concept of nanostructured mirrors

29

1 µm1 µm

500 nm

Nanoimprint lithography Residual layer removing Au deposition

1 µm 1 µm

N. Naghavi ‐ EMRS – 08/05/2016

GlassGlue

ZnO:Al/iZnO/CdS300 nm CIGS

Spin coatedTiO2Au

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 30: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

Flat versus nanostructured mirrors

30

N. Naghavi ‐ EMRS – 08/05/2016

Jsc 2.3 mA/cm² (from 13.7 to 16 mA/cm²)

Efficiency 30% (from 5 to 6.5%)

dCIGS=300 nm

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 31: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

Light management in ultra-thin CIGS solar cellsby substituting the back contact

with a TCO-based reflector

Fabien MOLLICA1,4, Marie JUBAULT1,4,  Frederique DONSANTI1,4,  Anaïs LOUBAS3,4, Muriel BOUTTEMY3,4,  Arnaud ETCHEBERRY3,4,  Negar NAGHAVI2,4

E‐MRS spring meeting 2016

1 EDF R&D, IRDEP, 6 quai Watier, 78400 Chatou, France2 IRDEP ‐ CNRS – UMR 7174, 6 quai Watier, 78400 Chatou, France3 Lavoisier Institute of Versailles (ILV) – UMR 8180 CNRS – UVSQ, 45 avenue des Etat‐Unis, 78035 Versailles, France4 IPVF, Institute Photovoltaïque d’Ile de France, 8 rue de la Renaissance, 92160 Antony, France

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 32: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

• CIGS/SnO2:F with CuMirror

300 nm thick CIGS

Fabien Mollica et al.32

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 33: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

What about unconventional deposition methods ?

• Historical view :  Chemical bath deposition now a standard ALCVD  becoming a standard?

• What about Printing, ElectrodepositionPrinting  of CIGS : New results solar frontier (this conference 18.7%)Electrodeposition of CIGS  : Nexcis (2015) 17.3 % cell and 14% modules

Emerging fields : 

Electrodeposition of buffer and TCO (IRDEP)Electrodeposition of metallic grids (IRDEP)

33D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 34: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

Zn2+ + ½ O2

ZnO

I

E

II IIII

The photoelectrochemical deposition approach of ZnO

Zone I : kinetic controlZone II: photocurrent generation control-CB injectZone III: Photocurrent + dark current control (defeDecomposition of CIGS)

distance

pote

ntia

l

ZnO

CIGS

I-E cuve

electrolyte

Darklight

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 35: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

2015

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 36: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 37: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

Starting industrial Transfert(2015)

D. Lincot,IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 38: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

38D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 39: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

39

Process

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 40: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

40D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 41: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

41D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC 

Page 42: Innovative approaches for CIGS Solar Cells · 2016-09-26 · Proof of concept of nanostructured mirrors 29 1 µm 1 µm 500 nm Nanoimprintlithography Residuallayer removing Au deposition

42

Conclusions

Besides efficiency perpectivesthe CIGS technology offers wide range of innovative avenues

Two examples presented here :

‐ Low dimensionality solar cells , new paradigm‐ much less indium at higher efficiencies !

‐ Alternative deposition methods : electrodeposition

ThanksADEME, ANR, EU projectsZSW, EMPAIRDEP and IPVF teams  

D. Lincot, IW‐CIGSTech 7 , 23‐06‐2016, EUPVSEC