innerproductspaces 151013072051-lva1-app6892 (1)

24
Government Engineering College , Bhuj

Upload: himanshi-upadhyay

Post on 16-Apr-2017

101 views

Category:

Engineering


2 download

TRANSCRIPT

Page 1: Innerproductspaces 151013072051-lva1-app6892 (1)

Government Engineering College ,

Bhuj

Page 2: Innerproductspaces 151013072051-lva1-app6892 (1)

Topic:

Inner Product spaces

Page 3: Innerproductspaces 151013072051-lva1-app6892 (1)

Contents

1 . Length and Dot Product in Rn

2. Inner Product Spaces 3.Orthonormal Bases: Gram-Schmidt Process4.Mathematical Models and Least Square Analysis5.Applications of Inner Product Spaces

5.3

Page 4: Innerproductspaces 151013072051-lva1-app6892 (1)

5.4

1 Length and Dot Product in Rn

Length :The length of a vector in Rn is given by2 2 2

1 2|| || ( || || is a real number)nv v v v v

Properties of length (or norm)

(1) 0

(2) 1

(3) 0 if and only if

(4) (proved in Theoerm 5.1)c c

v

v v

v v 0

v v

is called a unit vector

),,,( 21 nvvv v

Notes: The length of a vector is also called its norm

Page 5: Innerproductspaces 151013072051-lva1-app6892 (1)

Inner Product Spaces Inner product:

Let u, v, and w be vectors in a vector space V, and let c be any scalar. An inner product on V is a function that associates a real number <u, v> with each pair of vectors u and v and satisfies the following axioms.

(1) (2) (3) (4)

〉〈〉〈 uvvu ,, 〉〈〉〈〉〈 wuvuwvu ,,,

〉〈〉〈 vuvu ,, cc 0, 〉〈 vv 0, 〉〈 vv

Page 6: Innerproductspaces 151013072051-lva1-app6892 (1)

Note:

VRn

space for vectorproduct inner general, )for product inner Euclidean (productdot

vuvu

Note:A vector space V with an inner product is called an inner product space.

, ,V Vector space:Inner product space: , , , ,V

Page 7: Innerproductspaces 151013072051-lva1-app6892 (1)

(Properties of inner products) Let u, v, and w be vectors in an inner product space V, and let c be any real number. (1) (2) (3)(4)(5)

0,, 〉〈〉〈 0vv0〉〈〉〈〉〈 wvwuwvu ,,,

〉〈〉〈 vuvu ,, cc

Norm (length) of u:

〉〈 uuu ,||||

〉〈 uuu ,|||| 2

Note:

, , ,, , ,u v w u w v wu v w u v u w

Page 8: Innerproductspaces 151013072051-lva1-app6892 (1)

u and v are orthogonal if .

Distance between u and v:

vuvuvuvu ,||||),(d

Angle between two nonzero vectors u and v:

0,||||||||

,cosvuvu 〉〈

Orthogonal:

0, 〉〈 vu

)( vu

Page 9: Innerproductspaces 151013072051-lva1-app6892 (1)

5.9

Distance between two vectors:The distance between two vectors u and v in Rn is ||||),( vuvu d

Properties of distance(1)(2) if and only if u = v(3)

0),( vud

0),( vud

),(),( uvvu dd (commutative property (交換律 ) of the distance function)

Page 10: Innerproductspaces 151013072051-lva1-app6892 (1)

5.10

Ex : Finding the distance between two vectors

The distance between u = (0, 2, 2) and v = (2, 0, 1) is

312)2(

)120220(222

||,,||||vu||v),d(u

Page 11: Innerproductspaces 151013072051-lva1-app6892 (1)

5.11

Theorem 5.4: The Cauchy-Schwarz inequality (科西 -舒瓦茲不等式 ) If u and v are vectors in Rn, then ( denotes the absolute value of )

|||||||||| vuvu || vu vu

vuvu

vvuuvu

vu

55511

11

1, 11, 5 u v u u v v

Ex 7: An example of the Cauchy-Schwarz inequality Verify the Cauchy-Schwarz inequality for u = (1, –1,

3) and v = (2, 0, –1)

Sol:

(The geometric interpretation for this inequality is shown on the next slide)

Page 12: Innerproductspaces 151013072051-lva1-app6892 (1)

5.

Dot product in Rn:The dot product of and returns a scalar quantity

Ex : Finding the dot product of two vectors

The dot product of u = (1, 2, 0, –3) and v = (3, –2, 4, 2) is7)2)(3()4)(0()2)(2()3)(1( vu

1 1 2 2 ( is a real number)n nu v u v u v u v u v

),,,( 21 nuuu u ),,,( 21 nvvv v

(The dot product is defined as the sum of component-by-component multiplications)

Page 13: Innerproductspaces 151013072051-lva1-app6892 (1)

5.13

Theorem : Properties of the dot product If u, v, and w are vectors in Rn and c is a scalar, then the following properties are true (1) (2) (3) (4) (5)

uvvu

wuvuwvu )()()()( vuvuvu ccc

2||||vvv 0 vv0vv v 0

※ The proofs of the above properties simply follow the definition of dot product in Rn

(commutative property of the dot product)(distributive property f the dot product over vector addition)

(associative property of the scalar multiplication and the dot product)

if and only if

Page 14: Innerproductspaces 151013072051-lva1-app6892 (1)

Angle between Vectors For any nonzero vectors u and v in an

inner product space, V, the angle between u and v is defined to be the angle θ such that and 0

vuvu,

cos

Page 15: Innerproductspaces 151013072051-lva1-app6892 (1)

Orthogonal vectors:Two vectors u and v in Rn are orthogonal if 0vu

Note:The vector 0 is said to be orthogonal to every vector.

Page 16: Innerproductspaces 151013072051-lva1-app6892 (1)

(Finding orthogonal vectors) Ex. Determine all vectors in Rn that are orthogonal to u=(4, 2).

024

),()2,4(

21

21

vv

vvvu

0

211024

tvtv

21 ,2

Rt,tt

,2

v

)2,4(u Let ),( 21 vvv Sol:

Page 17: Innerproductspaces 151013072051-lva1-app6892 (1)

(The Pythagorean theorem)If u and v are vectors in Rn, then u and v are orthogonalif and only if

222 |||||||||||| vuvu

Page 18: Innerproductspaces 151013072051-lva1-app6892 (1)

Dot product and matrix multiplication:

nu

uu

2

1

u

nv

vv

2

1

v

][][ 22112

1

21 nn

n

nT vuvuvu

v

vv

uuu

vuvu

(A vector in Rn is represented as an n×1 column matrix)

),,,( 21 nuuu u

Page 19: Innerproductspaces 151013072051-lva1-app6892 (1)

GRAM SCHMIDT

PROCESS

Page 20: Innerproductspaces 151013072051-lva1-app6892 (1)

Gram-Schmidt orthonormalization process: is a basis for an inner product

space V},,,{ 21 nB uuu

11Let uv })({1 1vw span

}),({2 21 vvw span

},,,{' 21 nB vvv

},,,{''2

2

n

nBvv

vv

vv

1

1

is an orthogonal basis.

is an orthonormal basis.

1

1 〉〈〉〈proj

1

n

ii

ii

innnnn n

vv,vv,vuuuv W

2

22

231

11

133333 〉〈

〉〈〉〈〉〈proj

2v

v,vv,uv

v,vv,uuuuv W

111

122222 〉〈

〉〈proj1

vv,vv,uuuuv W

Page 21: Innerproductspaces 151013072051-lva1-app6892 (1)

Sol: )0,1,1(11 uv

)2,0,0()0,21,

21(

2/12/1)0,1,1(

21)2,1,0(

222

231

11

1333

vvvvuv

vvvuuv

Ex (Applying the Gram-Schmidt ortho normalization process)Apply the Gram-Schmidt process to the following basis.

)}2,1,0(,)0,2,1(,)0,1,1{(321

Buuu

)0,21,

21()0,1,1(

23)0,2,1(1

11

1222

vvvvuuv

Page 22: Innerproductspaces 151013072051-lva1-app6892 (1)

}2) 0, (0, 0), , 21 ,

21( 0), 1, (1,{},,{' 321

vvvB

Orthogonal basis

}1) 0, (0, 0), , 2

1 ,21( 0), ,

21 ,

21({},,{''

3

3

2

2

vv

vv

vv

1

1B

Orthonormal basis

Page 23: Innerproductspaces 151013072051-lva1-app6892 (1)

Thus one basis for the solution space is

)}1,0,8,1(,)0,1,2,2{(},{ 21 uuB

1 ,2 ,4 ,3

0 1, 2, ,2 9181 0, 8, 1,

,,

0 1, 2, ,2

1

11

1222

11

vvvvuuv

uv

1,2,4,3 0,1,2,2' B (orthogonal basis)

301,

302,

304,

303 , 0,

31,

32,

32''B

(orthonormal basis)

Page 24: Innerproductspaces 151013072051-lva1-app6892 (1)