infrared - nasa in normal abundance ("oxygen-rich") stars. clearly the 2.7~ water...

54
University of P.!innesotr? School of Physics znC Ast-ronony 116 Church Street, S.E. Minneapolis, rli?nc?soLa 55455 Invited Rcview Papr-r at I.A.U. Syn~osiun ?42 nambera, F!?G Scptcrber 1377 KEY BJORDS: Lntc Typc Stars Infrared Spec trophotonetry Circunstellnr Dust Address for proofs: Uni vcrsit:; of :!i.n~.nso ta School of 2hys.i.c:; an? Astroncny 11G Church Street, S.E. P.!innca?olis, ?,',inrl~~;ot~. 554'-55 https://ntrs.nasa.gov/search.jsp?R=19780013080 2018-06-25T07:58:03+00:00Z

Upload: doque

Post on 18-May-2018

215 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

University of P.!innesotr? School of Physics znC Ast-ronony

116 Church S t r e e t , S . E . M i n n e a p o l i s , rli?nc?soLa 5 5 4 5 5

Invited Rcview Papr-r at I.A.U. Syn~osiun ? 4 2

nambera, F!?G Scptcrber 1377

KEY BJORDS: L n t c Typc S t a r s

Infrared S p e c t r o p h o t o n e t r y

Circunstellnr D u s t

Address for p r o o f s : Uni vcrsit:; o f :!i.n~.nso ta S c h o o l o f 2hys.i.c:; an? A s t r o n c n y 1 1 G Church S t ree t , S.E. P.!innca?olis, ? , ' , i n r l ~ ~ ; o t ~ . 554'-55

https://ntrs.nasa.gov/search.jsp?R=19780013080 2018-06-25T07:58:03+00:00Z

Page 2: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

ABSTRACT

Substanta t ive mass-loss r e su l t i ng i n appreciable

circumstellar dust envelopes is common i n la te- type

stars. The evolut ionary h i s t o r y and physical state of

a cool s tar determine the chentistry wi thin the o u t e r

stellar atmosphere mirrored by t h e molecular and

p a r t i c : ~ l a t e mate r ia l p resen t i n t he envelope. The 9.

b observat ional consequences of t h i s deb r i determined by

moderate s p e c t r a l r e so lu t ion (X /AX - 50-100) i n f r a r e d

spectrophotonetry are reviewed. S ign i f i can t i n f o r m t i o n

is provided by observations of the emergent energy f l u x

of both t h e cool s t e l l a r photosphere and of t h e L

c i r cums te l l a r dus t envelope. While most of t h e i n f r a r e d

f e a t u r e s observed i n l a te - type s t a r s can be p l aus ib ly

i d e n t i f i e d , an as y e t unknown emission mechanism marked

by s t rong in f r a r ed band s t r u c t u r e i s known t o be opera-

t i v e i n a v a r i e t y of i n f r a r ed sources. The observed

range i n &ell o p t i c a l depth i n both M and C s t a r s b

suggests t h a t mass-loss occurs t o some degree through-

o u t la te stellar evolut ionary phases and t h a t occas ional

per iods of high mass-loss are not uncommon. 1

Page 3: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

+- I. INTRODUCTION

The mapping of pathways followed by s t a r s

undergoing post-main-sequence evolut ion is a task

v i t a l to an understanding o f the evolut ionary h i s t o r y

of t h e mat te r i n our galaxy - whether t o be p re sen t ly

aggregated i n t o s t a r s o r d i s t r i b u t e d i n t he form of

gas ancl dust . During t h e red g i a n t phaae t h e o u t e r

atmosphere becomes g r e a t l y d is tended i n response t o

condi t ions Jeep wi thin the stellar i n t e r i o r . Such

cool, tenuous, extended envelopes provide i d e a l .

condi t ions for t h e formation of gaseous molecules and

p a r t i c u l a t e condensates. Apparently appreciable mass

is lost by s t a r s throughout post-main-sequence phases,

whether by t h e quasi-steady outflow from both g i a n t s and

supergiants , t h e impulse dr iven expanding s h e l l s of

p l ane t a ry nebulae, o r t h e explosive events seen i n

novae and supernovae. The f i n a l evolut ionary s t a t e of

a star - be it white dwarf, neutron s t a r o r even black

ho le - may w e l l be. determined by t h e degree t o which t h e

. s t a r is a b l e t o r e t u r n mass t o t h e i n t e r s t e l l a r medium i

: from which it came. The material is re turned metal- i

enr iched by n u c l e i synthesized i n t h e i n t e r i o r and l a t e r j

mixed o u t , so t h a t the d e b r i provide important c l u e s 4 t

about s te l lar s t r u c t u r e and nucleosynthesis . Not t o o j su rp r i s ing ly , these la ter s t ages of stellar evolut ion

*

Page 4: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

a r e o f t e n ve i l ed from explora t ion by standart! o p t i c a l

techniques when d u s t condensation i n the e j e c t e d material

modifies the r ad i a t i on f i e l d of the cen t raS s t a r through

ext i r lc t ion and thermal re-emission. S t a r s undergoing

ex tens ive mass J?ss tend to become in f r a r ed r a t h e r than

o p t i c a l sources. Radio maser l i n e and continuum emission

from the e j ec t ed molecular clouds i s no t uncommon.

t he study of mass l o s s , la te stellar evolut ion and

Thus

nucleosynthesis as interdependent phenomena r equ i r e s

d e f i n i t i v e i n f r a r e d observations.

Present d i f f i c u l t i e s i n developing a cohesive :

t h e o r e t i c a l understanding of the process of l a te stellar

evolu t ion ( including poss ib le a l t e r n a t i v e pathways) have

been exacerbated by a dear th of hard observat ional

evidence t o provide t h e necessary guideposts. However,

r e c e n t advances i n de t ec to r technology have permit ted

high s p a t i a l , temporal and s p e c t r a l r e so lu t ion observa-

t i o n s with s e n s i t i v i t i e s s u f f i c i e n t t o include a l a r g e

and hopefully represen ta t ive sample of l a te - type stars.

Late-type va r i ab l e stars are seen t o be s t rongly

i n t e r a c t i n g wi th t h e i r immediate environment by way of

n e t mass outflow. What, then, i s t h e nature of the

mat te r being returned t o t he i n t e r s t e l l a r medium? What

is t h e nature of the mass l o s s mechanism? Why do sone

o b j e c t s appear t o be almost l i t e r a l l y choked i n t h e i r

--

Page 5: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

own dus t? The presen t paper w i l l attempt t o provide a

b r i e f exp lora t ion of tho observat ional da t a which have

an impact on these quest ions . Since moderato r e s o l u t i o n

spectrophotometry (X/AX - 50-100) has been obta ined f o r

a f a i r l y l a r g e (and hopefully represen ta t ive) sample of

la te - type s t a r s (see Merrill and S te in , 1976a,b,c

( h e r e i n a f t e r WSI, 11, 111) f o r a recen t summary), and 6

&) is most r e a d i l y ava i l ab l e to the author f o r i l l u s t r a t i v e

purposes, t h e p resen t d iscuss ion w i l l d ea l p r imar i ly

wi th such da ta . Except whexe noted, the narrow bandpass

(X /AX - 65) spec t r a ehow were obtained a t t h e Univers i ty

of Minnesota-UCSD M t . Lemon Inf ra red Observing F a c i l i t y .

COOL STELLAR PHOTOSPHERES

Observations of coo l s t e l l a r photospheres provide I

a window i n t o t h e i n t e r i o r s of late- type s t a r s and

r e v e a l the na ture of t h e mate r ia l ava i l ab l e for mass

outflow. i n f o m a t i o n on opac i ty sources and energy b

mechanisms should enable a b e t t e r understanding of

s t a r s undergoing extensive mass loss . The r ap id i nc rease

i n molecular abundances wi th decreasing e f f e c t i v e

temperature r e s u l t s i n complicated o p t i c a l ssectra which

are not y e t understood i n d e t a i l ( F u j i t a , 1970).

Molecular d i s s o c i a t i v e equi l ibr ium c a l c u l a t i o n s ( e g .

T s u i j i , 1973; Scalo, 1974; Johnson, Beebe and Sneden,

Page 6: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

4

1975) sugges t t h a t a f f e c t i v e temperature, luminosi ty

class and relative atomic abundances should produce

observable d i f f e r e n c e s i n t h e emergent photospheric

emiss ion i n l a t e - type stars. I n p a r t i c u l a r , t h e lowering

o f the oxygen/carbon ra t io d i f f e r e l t i a t a s r e d g i a n t s

i n t o s p e c t r a l types M, KS, S, SC, and C. Polyatomic

s p e c i e s are incraasing1.y impor tant a t temperatures below 4. -1 2800K i n comparison to the b e t t e r s t u d i e d diatomic

spec ies . Molecules provide t h e dominant o p a c i t y source.

The o b s e r v a t i o n a l p i c t u r e is summarized by t h e

s p e c t r a i n Figure 1. ( R Lyn and Y Lyn were taken a t

Mt.. Lemon by B. Jones and S. Willner . The rest are i n

MSI.) AS h a s been demonstrated by Baldwin, Frogel and

Perssoa (1973) t h e s t r e n g t h s of t h e absorp t ion bands due

to H 2 0 at 1.9p and CO a t 2 . 3 ~ c o r r e l a t e wi th s p e c t r a l

t y p e .(both deepening wi th dec reas ing temperature) and

luminos i ty i n normal abundance ("oxygen-rich") stars.

C l e a r l y t h e 2 . 7 ~ water absorp t ion band, no t i ceab ly

p r e s e n t a t low r e s o l u t i o n by type M3II1, dominates t h e

s p e c t r a of c o o l semi-regular and Mira M type v a r i a b l e s .

V a r i a t i o n o f the s t r e n g t h of t h e i n f r a r e d steam bands

w i t h phase has been confirmed i n d e t a i l i n t h e 1.2-4.0~

s p e c t r a o f R Cas (S t recker , Ericson, and Witteborn, 1976

aboard t h e NASA Kuiper Airborne Observatory - KRO) i n

agreement w i t h t h e optical results of Spinrad -- et a l ,

Page 7: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

(1966) , Watt-r krbss-rptdiair i n tire! itp per giant. VS Sgr

(Figure 5) i s qui te pros~ounct*d and i s c l t ~ ~ t r l y scbt*n

1,9p i t 1 S t1es (St r ~ l ~ k ~ f : ~k n l 1976) , Mlrr -* '

For aksrs wf t h 0 6 % itoar utrity , t llcz Cc) b.~nd is

incredibly etrorrg 4S1nyt.h .I*u rat: ale, -. 1971). Ubaervafion,ll

coveraga of S stars f a f.lr from complcko (prompting ,\

recant plea fur dntn by Wing and Yorka ( 1 9 7 7 ) ) , f t hi~:t

'i bean suggastad an tha baais of near infrared opt ica l

spaetra that B stars nra water dsf icient: cornparad to

M g ian t s a.P the same tampouattrru (Spinrlsd ut a1 Isf"c<)). rwr -* ,

Certdinly tho MS stars Y Lpn (Ffgura 1) n1k1 Hs Cnc

(Figure 5 ) show w.xt-@r absorption, wllcri~as the stror~g fi

eittrx: R Lyn (Figure 1) olrsws al11y cnttrrut~-rI CO nb::or~~Liot~

a t 2.3 i1 ,

Tltrer sy;recttra of cnrbc.r~~-ricI~ s tars irro market\ by

diskinetivtl? absorption bat~da (Figuru 13 , Tl~c: 3.07tr b.~nt\

(first not-e?d by Jo l ln~on c& 2L. , 19ti.8) c,xn bt~ccamt* qu i te

ilat"p. ~st:'r?nuliv@ 3 p obs~2xvi1tfons (Nnguchi pt ax., 1977: -- Fay arrd Ridgway, 19761 EtSl; ElSXI; PISIIX) rcinforcc Cht*

suggestion og l ~ ~ w at. t \ L . (1970) tlrak C l r i s k.\n~ll i ~ ; - *- clistincCivl~l i n cc.\ul carbon : s t i \ rS i n goxltbr:rl. TIIL* Ll.tn~1

is not.icc.ably c l ~ t i h l r * in O r i , L\co~d i l t ~ i l Cl.ikt. b o t t r ~ m t x i

Zikn t t ~ o 2 . 3t1 CU b*~trii Str st~trti-r1lgul.l: v,\z-int'lo:; ( t i l l A u r )

a11d L I L X ~ ~ i\rrd n.1 rxrtnw .it\ $1 i r.1 v.1 r i,1).8115:: f S:; \ ; 1 ~ - ) . I-3rt%liminnry h igh rasoltlt i ~ ~ r r c~?~:ii.e\.,tt.i~~l\s by i;.C~iq\s.~y t 3 t ,I l . . -... .*...-

Page 8: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

(1976u,b) s~tggost t110 bl\nd i s c u c \ p ~ s i t u -- i n c l u t l i n ~ ;

varying amoutlto or liCN and C2112. Cg nay a l so bc

l o g i c a l l y prlzsont: (1lSI) . 1'110 systemat Cc wotrkcning af

tho 2.3~ CO band i n Mirn varii~blos has teen noted in

d e t a i l (McC;l~r\msn, E!t\nch and N~ucjcbrruar, 1976; Frogol and

Myland, 1972) and i s gonarnlly a t t r i b u t e d to v e i l i n g - p o s s i b l y by thormal amisnion i n n c i r c u ~ n s t a l l ~ r s h a l l .

h $ Other bands n r a also n o t i c e a b l y yrc.st?nt a t low rusolu-

t i o n i n carbon Mfraa. band a t X 2 ,Sir is most

p r ~ b e b l y dua to tirc Av = -1 suqucnco of t h e C2 D ~ l l i c k -

Ramsay aystam (cf. the syn the t i c ! C sttar spectrum of

Q u a r c i ot -- al., 1974) , w h a l l known i n c.trbon stars at

s h o r t e r t~nvs long t l r a (MSI; C i l r n , 1977) . Tim 3 . 9 ~ ba~.rcA

n a y be duo t o S i c Z (NSX; Gi l ro , 1977) s i n c e tho b l e r r i l l -

Sanford electronic absorption bands of SACZ as well an

p a r t i c t t l t ~ t a S I C i n cmi s s ion ( G i l r n , 1372 ; TraEfcra and

Cohen, 1974) are a l r a a d y known t o be p r o s e n t .

Some i m p o r t a n t rrspccts o f t l ~ c 2-411 spectral

nbsorhitnce of c irc~unst~ . l lar material arc? s \~nut \ ; l r i zc~l in

F i g u r e 2 (MSX), where. t h e spectra o f ,\n bl Elira ( o C c t ) ,

n C blircl (SS Vir) and il compact: infracr-d s o u r c u in a

m o l e c u l a r c loud (AGL 989) have been d i v i ~ l c d b.kr appropsiaka

blackbody spac t ra (2200K, 2150K, and 8001i u a s y o c t i v n l y ) .

Page 9: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

sviclont . TI;@ obs~rvod atrangth of such bands cantrains

the degrco of veiling yrosont due to cireumstallar

emission. Such bands arc dotoetabla cven f n the praeenca

of substantial circumst~llar thermal dust emission and

provide n means of identifying late otars in denea

envelopes (&!Sf, MSII, MSIII). Note in particular that

although the carbon star band and the "icen band t

k (apparently seen primarily in objects embedded in dense

molecular clouds; see Morrill, R\rseell, Soifer 1976)

appear at the same wavelength, their spectral shapes are

demonstrably different at modcratc rssolution. It is

interesting to note that the long wavelength wings of

the steam and "ice" bands are similar.

Observations of the XX4-8p spectra of late-type c

and M stars from the ItnO have been shown the prosence

of the CO fundamental at 4.6vm (Russell, Soifar, Farrast

1975; Puetter et &. , 1977; Goebel - ct -* a1 ' 1977). Photospheric blackbody omission is seen in the M super- *

giants a Ori and )1 Cep and the M Mira R Cas near maximum

(Russell - et * I al 1975; Puetter ot - a1 -* 1977). The 6.21t

steam absoxption band i s seen i n the b¶ blirn R A Q ~ noar

imum (Soifax, p.c. ) s~iggest ing that thc non-dctcution

in R Ca8 was probably LIUQ LO t h ~ ? known strang phase

dcpendcncc i n band strertgth, Thc. snroo th spcctrura long

of the 4,Gp CO Eunclarnt?r.tnl for t'tlc C star V Cyg (Ducttcr

Page 10: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

et s., 1977) is consiotont w i t h vailing by circw,stollar

emission (known to be l a r g o , Forreat (1974)) , whorcas

the p o s s i b l e d e t e c t i o n of C j .tbaorption long o f Sp i n

Y CVn (Goebel et aJ., 1977) (with minimal infrared excess

and i n f r a r e d spectrum l i k e UU Aur i n F igure 9) is

c o n s i s t e n t with d e t e c t i o n o f the stel lar photosphere.

The ob'served weakness of the molecular bands long of 2 ~ 1

$1 nay #imply arise as a result of r a d i a t i v e t r a n s f e r

effects i n cool stellar photoepharos or be due to v e i l i n g

by chromospheric (Lambert and S n e l l , 1975) , molecular

or thermal dust emission.

Ul t imate ly hillla spectral r e s o l u t i o n observat ions

w i l l enable t h e i d e n t i f i c a t i o n of weaker molecular

f e a t u r e s i n emission and absorp t ion such as S i O i n M stars

( H i n k h et e., .I9761 Cudaback et 1971, Wollnan e t - -* a1 ' 1973) sand determine t he i s o t o p i c abundance r a t i o s i n

evolved stars (Rank, Gebal le and IJollman 1974; Hall ot a1 - -* ' 1977; Barnes p-$ ale, 1977).

311, CXRCUMSTELLAR DUST ENVELOPES IN LATE-TYPE STARS

A * OrnWIEW

Excess radiation above t h a t expected fzom a cool

s t e l l a r photosphere of t h e temperature indicated by

o p t i c a l s p e c t r a is common among late type variable stars.

Although i t i s general ly be l i eved t h a t much of t h i s

Page 11: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

cxct3un i n ittt.ributabla to tlrormal rc-omidsian by c t rcum-

t i t u l h r dtrat (Woalf, 1373) , pl.~erna proct.u8t*s i t \ tht.

srrvallopc) (Gil~nnn 1974 ) ar clrromrlupl~erf c amis s ion (I,a~;bar t

and S n a l l 1975) may a l s o contr ibute a u b s t n n t i - * l l y to tho

omargent f lux .

O p t i c a l l y thin omiaaian from silicates in N s tars

(~oolf' and Nay, 1969) and silicon c~lrbida i n cartan

%\ etara (C i l rn 1972t Traffers and Cohsn 1 9 7 4 ) nro g o n e r a l l y

recagnized and the spectral shapa of the oxcsss o n i s s f o n

has been examined i n dotnJ 1 a t rrwilurala rosalutiun i n u

large number sf eool variable s tars (Forrest, G i l l c t t and

S t a i n 1 9 7 5 ) . The ncud f a r a fe s tura loas component such

8s carbon in C stake has nlbo been racagnizod (TraEf,-re

and Cohen 1974, Forrust -- a t al. 1975).

Explarat ion of the o p t i c a l l y p e c u l i a r or otlrc?n~ise3

uniduntifiod objects i n s p a t i a l l y unbiased i n f r a r e d survey

c a t s l a g a has pushed tho samplc of Mira class 1uminosit.y

variablo stars o u t to 2 kpc and c n i ~ b l ~ d tho idantif i ca t i on

sf n t v i c l o range in apparent she31 o p t i c a l dcpth i n tlia

c i r c u ~ t s t a l l n r dust c n v ~ ~ l a y c s i n 1 a t ~ t y p c s tars .

Systematic studies OE ~ b j ~ c t s i l l t h e 211 S!cy Survt-y- -

(Neugeb.~uar and Laighton, 1969) by Iiyland ct - - . a1 . (1972) , Strpckcr arrd Ncy (1974;1, b) , PIST J u n ~ l othe~:a ha-l\v citn f irn!txl

nturteronu c l c . . ~ r l y i d t ~ ~ t i f i.lbl c? (tra:;~x3 '711 og t. J.c.11 .~nct n ~ * = \ r

i n f t - a r c 4 t.c~:lini.qtw:;) I . i ~ t . c * - t ~ i l t * st.,lr:; tt'it.11 '?r?n:;c*

Page 12: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

circumstal lar ee.valopes, For the objoctn i n tho rocket-

borne APCRt/AGL Xnfrilrud Sky Surwy (Uulkce and Price, - 19751 Prico and Walker, 197G), although optical techniques

are of ten useful, infrared c l a s s i f icntion techniquoa arc

necessary to i d e n t i f y the staro in the densaat envskopes

(eree Low a., 1976; Gehrz and liackwall 1976; Lobofsky

et a1 1976; Lobofsky and Kleinmann 1976; C o h ~ n and Ruhi, rrll * '

t I)

1976 and 1977, Allan st - -* a1 ' 1977 and MSIII).

As a persepctive on what follows, the broad bandpaso

energy distributions of two extreme classes o f infrared

objscts found to be late-type s t a r s are shown aubjetlt to

arbitrary normalization in Figure 3 Typical c o o l g i a n t s

(FLgure 3a) emit nearly l i k e blackbodies ( sa l id curves)

regardless of O/C ratio. The infrared excess in such

stars contains only a fraction of the t o t a l flux and

photoepheric emission dominates the emergent f l u x . In

sharp contrast, s t a r s which resemble the M stars IK (Nbn)

Tau, V1489 (NMt) Cyg or tho carbon star CW Leo (IRC $10216)

(see e g . Strecker and' Ney 1974a,b) have their energy

dis tr ibut ion over a wide spectral range or resemble cold

blackbodies , Thermalized enorgy rc-distribution by

he energy f l u x XFA = vFv (W/m 2 ) i s also proportional to photons/unit wavelength. Total blackbody emission is 1 . 3 6 times the peak XFA and tho total 10p s i l i ca t e f l u x for o p t i c a l l y thin emission i s ,343 tines t h e peak MA.

Page 13: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

radiative transfer i n cxtanuivo dust env~?lop~as or othax

omionion yroceseao u r o clanrly prcsant. Such bra14 band-

pass spectra hnvo reccrttlp s \ ~ g y ~ s t c d the promr\Cc of it11

additional circumstallar (silica to?) ornloaion b.-ind a t

33y i n 1.i atcrro (Ilagen, Simon and Dyck 1975) and ttrca

possibility of n o n - s i l i c a t e omitrsian i n S stars (Tiromas,

Robinson and Hyland 1976). t \ Figure 4 (MSIXI) illustrates t h ~ energy distributions

of abjocts from the AGL Survey. (Inclividuol spectra arc

identified in Table 5 of MSfII.) Tho objects i n Figure

4a exhibit black body-like spectra and are primarily

cart-.?r, stars while those in Figure 4b sllow evidence of

9.71) s i l i c a t e emi,seion or a t ~ o r p t i o n and arc primarily

M s t a r s . The objects in Figure 4c form a class o f objcct~

embedded in dense circur;lstallar discs of uncertain

~ v o l u t i o n a r y s t a t e and w i l l not be discussed hsrc.

8 SUPERGIANTS

As examples o f o p t i c a l l y t k i n shc13 cm~ssian, thc

A X 2-14~1 spectra aE luminous cool aupcrgiantn i lre shown

in Figure 5. Characteristically broad 2.3~ CO band

absorption is soen i n all. Stcam absorption is present

in the cooler objects (S Per, VS Sgr, RS C n c ) . For the

superpovli t i o n of n, cool blackbocly-1 ikc plro tosp!li?r,? ant?

Page 14: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

optically thin silicate emission closely akin to that

seen in emis~ion near the Trapezium stars in Orion (Ney

and Allen, 1969; Fcrrest et &., 1975). This excess is

strongest for luminosity class fa whereas l e s ~ luminous

etars uuch as CE Tau (M2Ib) show little excess. Wool f

(1973) has discussed the onset of eilicate emission with

8pectral and luminosity class. IRC +60370, a highly

luminous K star (Humphrey. and Ney 19741, has onG of the

mtrongest 9.7~ silicate bands known*

The spectra of S Per and VX Sgr (Figure 5) are

qualitatively different. The overall trend in their

energy distributions toughly parallels a free-free slope.

Not only are the optical lines veiled in these stars

(Hui. '-reye 1974) but at least in S Per (M3eIa) the 2.3p

CO band appears to be weak in comparison with RW Cyg

(M31a). The origin of these differences, whether duo to

radiative tracvfer in dust or some plasma emission

process (~ilman 1974) merits further study. The sharp

upturn near 4pm in the spectra of S Per and IRC +60370

(discussed in MSIII) remains unidentified but might be

due to SiO emission.

C. M STARS

The observed range in apparent shell optical depth

in M stars is summarized i n Figure 6 . (AGL 2205 is from

Page 15: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

P'orrr*t;t pk f~l*, , L977. tt'l\rt !;pa~:t-J'n trot prulat.t~:tr Lrt PIST,

'~lle co;~binvrl CO-1120 abnorpt ion b.\ndu eiyonr i i r rt l l t hu

unambSguauaXy ddanthfiad n@ M t y p 3 vz~riabla stars on tha

1 baais at! optical or nunr i n f r n s d c l n s s i f S a t han txchnhquos,

prassnco of the CO-H20 band sboorptlon.

The 9.714 oi l icnkg band incrdassm Ersm nlodsra ta

(o C s t ) to atrang rzmisaisn in tha Mira '1% Car,\ (or tlm

aupargiank VX Sgr o f F*kgura 5) and s f n r t s into posudbla

aali absorption in XK (NMC) Tau. Aa tho nyparant

1 color turnp~raturn daaroawas, the 9,711 band undergoes I

di stf n e t usXf -absscptf on i n the bnc3 cantar while still

i t r net amiseion in tlza tvhnght in NV Aur ( IRC +!50137) and

V1189 ( N U ) 6yg (alaa i n XRC -10529 and IVS Puo (XRC +3QObl)

(EISXX) sot ahown h a m \ . Xn ACL 2005 and AOL 2290 t h e

9.7)1 band i s daaply into n ~ t absorption. PAnnXXy i n

the apparent 2- l i t solar tawyurnk.ura n chilly 375K. T ~ G ?

Ebuv from a l l t . t l t r t 3 ~ objoet'o vnrit~tt t ~ i t h El.Lra eldsta t i l t \ @

scales. AX1 bttt AGE 2t385 nra re-cngnizc)d Qlf rtiasar rndio

Page 16: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

The 2 - 4 0 ~ spectrum 02 .PGL 2205 i s shown i n Figure

7 (For res t o t al. , 1977) . I n a s i t u a t i o n analogous t o

t h a t of the 9.711 eilicate band in IJtt Aur t h e 1 8 ~ s i l i c a t e

band appears near the poin t of ne t absorption a t t h e band

can te r . The t o t a l f l u x of t h i s star varies on Mira time

rcales. The color temperature decreases and the depth

of t h e 9 . 7 ~ band absorpt ion increases near minimum 4

*) suggesting the o v e r a l l cool ing of dus t i n t h e envelope

i n rerponse t o va r i a t i on8 i n luminosity of t h e c e n t r a l

.tar. As an OH Tye I1 (AnBersson et s., 1974) maser

undergoing c y c l i c bolometric lumfnosity changes, and

possessing a s i l i c a t e dus t envelope through which

remnant CO-H20 absorption can s t i l l be seen, AGL 2205 is

almost c e r t a i n l y an M type va r i ab l e star undergoing

extensive mass loss. The 1800K curve r e s u l t s from a

simple de-reddening of the observed f l u x by t h e observed

2-4p ex t inc t ion curve determined towards VI Cyg 812

( G i l l e t t it al. 1976) and i s p lo t t ed t o i l l u s t r a t e t h e

res idua l ' presence of t h e CO-H20 band. The overall energy

d i s t r i b u t i o n is psedic tz3ly not w e l l f i t by a blackbody.

Recent i n f r a r e d surveys of OH sources by Schultz , Kreysa

and Sherwood (1976) and Evans and Beckwith (1977) suggest

such OH/IR s t a r s i n dense d u s t envelopes are n o t rare.

Other AGL candidates include AGL 230, 1822, 1992, 2019,

2086, 2174, and 2188 t o name bu t a few (see, eg., Lebofsky

Page 17: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

$it.>, r?lt arld l!t.,il to t kt? int e ~ r t t 01 tar l\\w~iunl,

propertias of minaunt a i L i c f i t ~ ~ h a w grn~ lun l ty h ~ d to a * & \ battar understanding of ths circwi\atallux a i l i c a k a barld

tltrPBman 1974 ; tlunt and Salisbury 1974, 1976: Rtiikowsli2

and Knacka 1975; Railkawskl, Knaekt? and Parco 1975:

A ganarably nr\torghaua, rnnd~migod low ardcr c r y s t a l

uCruc tura ae(fbn\~i t.a CCIIRF~ cle~slt?st tm cl\\pkic;z king t l ~ r ? 9.711

nbsorptiun band, Recnn tly Rase (1977a) haa adtQmpt~*d

to &uplicn:.e the infrared ~missian syt3ctrn of coiiwts by

diuoct lahnr;\tory tttacrsi\rr?~11ent:8 of qrain t?lq\i:3~io11.

%'ypir=:ll r@%u'Lts for *d00# grains arcl t;trawr~ in P . i . r l \ \ ~ ~ &I.

TIla 9,711 r ? I R i s ~ i ~ n hatld : ;am .in tho O r i O t l T.~^it;h.*%i\~t\ t " ~ * q i r ? ; l

sl~ofsrr hara for compauisan (riguk*t3 8 ) uc7a:;st1;tbly maLL-han

tka- ubs~*r\*t?d ~ ~ ~ e 9 k . s V ~ ? N ~ U Y ~ C ~ H in El st,^^:; (k'drrc*:qk a* c * t - A. G., 197fi). Mxr~3\-tlcst\t,, f i t s td ttllt* ~>hsel:t*rsrl 9.711 ;ib:;orpt.i.t>l\

.in\ C\ vnr i~? ty uS j,nflra;r\c? sc3tti:~:c~s i t r t? pc~s:fib.l~? f:0r ,111

Page 18: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

assumed 250IC Trapezium omissfan tcmporrrturo (Gillott,

Forrest, ot s., 1975). Aesuming such an isothermal

cloud as a firat approximation (an attempt to allow fox I. r

temperature and density gradients in the Trapezium would

yiold somewhat dif feront results (Dadi jn, 1977) ) , tho 9.7p band translates as indicated from grains at 250K to

350K and 600K. The 0-2p sized Montmorillonito emission

is a very good match. Zaikowski e t al. (1975) have -- previously commented on the close match of such

phyllosiPlcates to observed absorption spectra in n

variety of galactic sources. Rose (1977b) concludes

that several reasonable mixtures of high and low tempera-

ture condensates as amorphous high temperature condensates

provide reasonable fit to the observed comet spectra.

I Such ensembles of varied silicate grain size, shape, and

composition also fit the 9 . 7 ~ emission band (see also 3.

Forrest 1974) as can be inferred from Figure 8.

E. C STARS b

The observed range in slw3.1 optical depth in carbon

stars is shown in Figure 9. (AGL 3099 was taken at

KPNO by Gehrz (p.c.), the rest are from MSI, MSXI, MSXII.)

Cool carbon stars such as UU Aur have black body like

continua. Strong SIC emission is seen near 11.2~ in

UU Aur and the Mira R Lep. The 2 - 4 ~ color temperature

Page 19: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

r ~ d d a n e ae tha energy distribution gradually t hu rmal izas

to a cold S G O O K npparutlt: blackbody tonrpaxntx~ra. T~IQ 3k1

absorption bande are c l e a r l y v i a i b l a . Unlike the M stars,

no new ~ b s o r p t i o n bande appear with increasing ,shell

o p t i c a l depth. SIC is c l e a r l y sosn i n a l l cnoes shown

(AGL 865 data are t o o noisy to t e l l ) . The primary

constituent of the dust i n carbon-rich envelopes is t "1 r e l a t i v e l y featureless ( F o r r e s t st; -- al. 1975) ancl is

g e n e r a l l y cons ide red to be carbon (implying an e m i s s i t y 2 oP &/A for mall g r a i n s ) . !

The propertiara of r i c h tnolacular envsl~pea of stars i l i k e CN Leo (IRC +1021G) have been r e c e n t l y summarized

by M~rria (1975). High r e s o l u t i o n 2p spectroscopy of

CW Lao (EIaLl a t a l . 1977) has datuctad CE) i n the s h e l l -- and a long with data a t 4 . 7 ~ Rank at a l . (1974) and r a d i o

I - I- d a t a are beginning ta e s t a b l i s h i s o t o p e r a t i o s in tho

evolved material. A mass of ~O'~M~ is suggested for t h e t

molecular cloud (Hal l e t -- al. 1977). Again, such dense *

expanding CO c louds axe not rare (Zuckamnn et nl. 1977). -- A s i g n i f i c a n t fraction of tho AGL Survey sourcas are

such carbon stars. Such carbon stars are returning

condensed carbon and Sic, gaseous C 0 , and other metallic

nmlecules Lo the i n t e r s t e l l a r medium.

Page 20: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

ZV. INVIMIa:O gMXS820N DUIIXNG LATG EVU1,UTIONARY PIIASES

A. NOVA (NO) VULPft:CUW\ 1976

%'ha 2-8rtm wgactrum dusing an early stage in the

development of Nova (NQ) Vul 1976 is ohown i n Fiyuro 3 0 .

the X X 2-411 (Prom Mt. Lclriunan, 31 Oct. 1976) and t21a

A X 4-8p (Soi fer , p ,c , from tha KAO, 5 Nov. 1976) spectra

hava bean matchad according to the appropriate over- h

b lapping broad bandpass data. During th io etago the

overall ansEgy distribution showed variable, approximately

frae-free infrared amiaeian and strong viaual flus

(Nay and Makfiald, 1977; Nougabauer, Gehrz, Soifer, p . 6 . ) .

Nun\eroue hydragem lines (probably blanded at t h i s rasalu-

t ion ( X ~ A X - 65) with helium l i n e s ) ate seen, including

the Pfund serics limit The line a t 3.37ki remains

unidentified. As was notad i n Nsvn FN Ssr 1970 (Gaiaal,

-Kluinmann and I B W r 1970) the 14.9pI band was

clearly stranger than could be acco~lnted for by l~ydragon

lines. The X X 4-8p spectrum cortununicatcd by S o i f o r h

(p.c.) clearly exhibits a atrong, braad emission feature

Eram the atmospheric cut-sn at 4.5k1nt t~ 5 . 4 ~ and beyond.

Groundbased Sy spectra by Gahrz (p.c.) confirm tho band

emission. Ovaxlupping broad bandpaas absarvatians an

the twa days suggest the spectra are proporly narrniklizad

t o each other to within about 215%. By comparison w i k h

llumplrreys o r ( M 6 - 5 ) the lrydragan l i n e s ara n minor

paturbation an. the band.

Page 21: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

a. Black (p.c.) has suggested C j e~nission as baing

rosporrsiblcs for this brrt\d. The band diorrpponrod i n tho

broad bandpass dakn just prior to the onset of grain

formation near day 64 (Nay, 1977; Nay and Hatfield 1977).

Later spectra (Gehrz, p.c . ) show a cool blackbody and

are consistent with subsequent broadband data which

indicate approximately 900-1000K blackbody emission.

It is tempting to suggest that a super-sat@*~ated C j vapor

rapidly concensed in to carbon.

B. IIM SAGITIPAE

The remarkable omirzuion-line object WM Sagittae,

first reported by Dakuchaera (1976) as an object which

had brightened over 5 magnitudes in two years, has been

suggested as a planetary nebula i n the early s tages of

Formation akin to V1016 Cyg (Stover and Sivartsen, 1977; \ (i

C i a r t i ot ale 1977). The broad bandpass onaxgy distwibu- -- t i o n during June 1977 is shawn in Figure 11 (Davidson,

Humphreys, and Merxill, 1977) along w i t h that of VlOlG

Cyg and CRL/AGL 1274, a poss ibly r e l a t e d object which is

still v i sual ly fa in t (Allen a t -- ale 1977 and Cohen and

Kuhi 1977). The 9.7~ silicate band (confirmed by selected . narrow bandpass points) is apparently seen i n emission

above a l O O K blackbody-like amission. It is parhnps

significant that the nova NO V u l and HI\I Sge d i f f e r i n

Page 22: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

t he absence and tho presence of mi l ica tas respec t ive ly

bu t are a l i k e i n t h e apparent c o l o r temperature of t h e

bulk of t he obsezved emission. Apparently temperatures

near l O O O K permit s u b s t a n t i a l g r a in condensation.

C, UNXDENTIFXED BAND EMISSION

Having hopefully impressed everyone wi th our t \ a o l l e c t i v e wisdom concerning t h e s t a t e of t h e mate r ia l

r e tu rn ing to the i n t e r s t e l l a r medium through mass loss

from la te- type stars, it is now necessary to impress

upon everyone t h e profound depths of our c o l l e c t i v e

ignorance. The concept of a s so r t ed simple molecules

coex is t ing wi th r e f r ac to ry ma te r i a l s such as silicates,

graphi te , and s i l i c o n carbide (o r poss ibly even poly-

sacchar ides as has been suggested by Hoyle and

Wickramasinghe, 1977) is q u i t e appealing. However w e

are unable to account f o r what is gradual ly becoming

known a s one of t h e more ubiquitous emission processes

observed i n t he infrakedl

In f r a r ed spec t r a of t h e nuc l e i of t he ga l ax i e s M82

and NGC 253, assor ted planetary nebulae and g a l a c t i c

HI1 regions and c e r t a i n pecu l i a r stars are marked by

s t rong , un iden t i f i ed band s t r u c t u r e which o f t e n dominates

t h e observed energy f lux. (cf. G i l l e t t -- et a l . 1973;

G i l l e t t , Kleinmann e t a l . 1975; Grasdalen and Joyce 1976; --

Page 23: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

b1srri11, S o i f s r , Russ011 1975; Cohan st a l . 19751 II-

MSIIZI Kleinmann at &la 19378 Russell, Baifar, Marrill LI-

1977). New sources are cont inua l ly baing confirmed,

represent ing apparent ly d ivereg evolut ionary atatee,

tsmperaturee, d a n e i t i a s and axcitation condit ione. Y e t ,

as is true for the 9.7~ band, tho band cantroide and

opectral shapee appear t o be remarkably constant,

%\ Thia challanging state of affaire is summarized i n

Figure 1 2 where the 2-13p spectra of representative

objects axe ahown. (Data shown o r i g i n a t e d as fol lows

in t h e 2-4p, 4 - 8 ~ and 8-13p regions? HD 44179 (Rueeell,

Soifer, Merrill 1977; Russel l -- et al. 1977b; Cohen at al. -- 1975),-NGC 7027 (Merrill, So i f e r , Russel l 1975; Russel l

et al. 1977a'; Russell et a l . 1977a), and ADL 3053 ( ~ o y c e -- -- (pc, a t KPNO), S o i f e r (pace from the KAO); Marxill,

(unpublished).) The nebula NGC 7027 has always been a

challenge. The observed spectrum is near ly orthogonal

to the an t i c ipa t ed f ree - f ree continuum. Extensive far

i n f r a r e d (Telesco and' Harper 1977) and CO r ad io emission

(Mufson, Lyon and Marionni 1975) are also prcsent . HD

44379 (Cohen et a l . 1975) is an apparent low excitation -- nebular binary system imbedded i n a dense circumstellar

disc . AGL 3053 is a region of extended infrared emission

(Joyce -- et al . 1977) near t h e compact radio source surveyed

by I s r a e l , Habing and do Jong (1373) in Sharpless 159.

Page 24: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

Excltid.incj Erain this discueniota the aa?lsar.'ttbd a t r t n * i c

forbidtton and poxmi t tcd l in~!r; nrrd tl~al~cul'rr hyJrorjc*n l i n ~ u

seen in NGC 7027, I draw your attontian ta b m d s :it 3.3ri

(with ahouldax or soparato band at: 3.411), 6.211, 7 .8 t i f

8.611, and 11.211, Although tho origindl s u g g ~ c t i o n

( G i l l a t t -- o t a1. 1973) that tho 11,211 Pwatura might be

due to mineral cnrbnakas has boon suypcrted by laboratory

investigations (Drogman nird nntrk 1975: Pcr~man l976b) t91o

absence of the strong v3 fundnmcntal nonr 7ktm i s hard to

e x p l a i n and tho a s s o c i a t i o n of the 8.6\1 feature with

mineral su:.fatcjs (Calran st ale 1975) irr s i r n i l a r i l y -."I--

difficult to support . At: sasoltrtion X / A X p 200 botlr

the 8, Gu and 1 1 . 3 ~ Ecaturoa remain coritinuous (Brocgnan

1977, Dregmatr and Rank 1975 ) . T!ra 3,311 Pcclturc dizr;cusr;sd

a t length by Russell, Soifar and Morrill (1977) and

Gradslen and Joyce (1976) ramains continuous at higher

raso luk ion ( X / A X * 300 and p o s s i b l y even a t 300Q). This

l ack of s tructure , a long with t h e observed un i formi ty

of band shape and csxrtroid far an apparently t ~ i d c rango

oE physical condi t i a n s , argue agnina t idsntif iea t ion wi t l a

a molecular band (such as CIVCH' ~~uggestod by Crasdalcn

and Joyco (1976)) . Observations aE NGC 7027 and EID 64t179

from t h e NASA ICAO (Itlurtscll, Saifer, and IVillner 1977i1,h)

have added tha bands at 6,2p and 7,8\1 ta the l ist ,

Page 25: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

The fea ture6 remain t a n t a l f zingly uni den t i f ied.

Although the present s t a t e of affa irs is hardly com~rrroble,

one cannothalp being reminded of tho s i t u a t i o n t h a t

e x i ~ t e d no t 80 very long ago w i t h t h e discovery of

*nebuliumu i n p lane ta ry nebulae. Any ~ u c c e 8 s f u l dezscrip-

t i o n of t h e observed phenomona must account f o r a l l the

data - thr bandr which are n o t prorent as w e l l aa those

t which are present .

V. SUMMARY

Table I sunu~arizeo the p r i n c i p a l w e l l establish&i

i n f r a r e d r igna ture8 c u r r e n t l y reaognized a t moderate

spectral resolution ()i/AA - 50-100). Approximate

centroid., widths ( f o r emiss ion) , whether seen i n

absorption or emiaeion, po88ible cause, and example

sources are l i u t e d . Bands seen only . a t high reoo lu t ion ,

as for example the 4p SiO bandr (Hinkle e t a l e 1977) -- at6 not included here. Even a t such moderate r e s o l u t i o n

b

t h e number of observed bands has continued t o grow.

Besides providing information on the m a t e r i a l s i n the

a circumstellar environment of late-type stare, such band

s t r u c t u r e often facilitates t h e meaningful c l a s e i f i c a t i o n

of otherwioe un iden t i f i ab l e i n f r a r e d sources (MSIII).

Large numbers of la te- type stars are known to be under-

going extensive mass-loss, i r r e s p e c t i v e of photospheric

Page 26: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

chemistry na determined by tho pxoducta of nuclsosyntheaiu.

Tharo i a as yot no roauan to asfltrtl\e that the upper limit

to sholl optical depth and inferrod mass-lose hno yet

been observed. It would appear that mnas-lose occurs

throughout the lntor phases of atellar evolution.

Periods of high maas-loes, markod by dense circumstallar

dust envelopes, may well ba andemic as an evolved star

t adjusts to the changing conditions deep within its \

interior.

The observational consequences of the recycled

material are dibtinctly different both in the photosphere

and in the circumstellnr duet envelope as determined by

impact of the physical etate and the evolutionary history

of the parent star on the chemistry in tho sholl. While

the compoeition of much of this matter is identifiable !

with at least some degree of confidence, the identity of a.

n eignificant fraction of the material is presently un-

clear. An as yat unidentified material of unknown origin

provides the dominant infrared omission mechanism in a

variety of infrared sources.

Much can be learned about the mass-loss phenomenon

in late-type stars on the basis of moderate resolution

infrared spectrophotometry. However, implementation of

new technology will enatlle high spectral resolution

Page 27: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

i n f r a r e d observations t o be used i n conjunction with

improved r ad io d a t a t o i d e n t i f y molecular bands, e s t a b l i s h

iso top ic r a t i o 8 , and monitor r h e l l dynamics. Lunar

occula t ion (Toombm -- a t a l e 1972) and s p a t i a l in te r fe romet ry

(McCarthy, Low and Howell 1977; Button -- e t al . 1976) can

determine t h e angular diamcrrters of c i rcumote l la r d u r t

anveloper. Deta i led r a d i a t i v e tranmfor c a l a u l a t i o n r a 4

? *in4 kinematic r h e l l model8 (much ao ~ e d i j n 1977; Olnon

1977; Pinn and S b n 1977; Apruzese 1976; Goldreich and

Scov i l l e 1976; Joner and Merrill 1976; Taam and Schwaztz

1976; Schmidt-Burgk and Scholz 1976; Dyck and Simon 1975;

Kwok 1975; Sa lpe t e r 1974) w i l l be required to f u l l y

r e a l i z e the physical state of these dusty c i r c u m s t e l l a r

snvelopeo. We have t r u e l y only j u s t begun.

Page 28: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

ACKNOWLEDGEMENTS

Thanks t o B.T. So i fe r r R. Gehrz, be 'Strepker,

G, Neugebauer, E.P. Ney and their colleaguer for com-

municating data i n advance of publicat ion. Spec ia l thanks

go to R,fV. Rusre l l and SOP. Willner f o r t racking down a t

t h s e l u s i v e da t a sheet#. A very s p e c i a l note of

g r a t i t u d e goes to E.P. Ney and W.A, S t e i n f o r t h e i r

t continued rupport and encouragement,

Rerearch i n i n f r a r e d as t rophysics a t the Univere i ty

of Minnesota i r ruppouted by the National Science Founda-

tioar the National Aeronautics and Space Administrat ion

and the A i r Force Geophysical Laboratory.

Page 29: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

Figure 1 - Relative X A 2-41.1 spectrophotomatry of late-

typo stars i l lus t ra t ing the variation i n

photospheric molecular band absorptions with

temperature , luminosity, oxygen/carbon ratio

and variabiliky claes. Shown (top t o bottom)

are: a Boo, 6 V i r , RZ A i r , RX Boo, o Cot,

Y Lyn, R Lyn, GP Ori, UU Aur and SS V i r ,

identified by spectral type and "ariobi.1 ity

class . Figure 2 - Observed A X 2-4v absorptance i n circumstellar

1

i ent-elopes. Spectra (top to bottom) have

been divided by appropriate blackbodies to

better' define band s t r u c t u r e : o Cet (2200K)

an M star8 SS V i r (200K), a C s ta r ; and

AGL 989 (800X) a compact infrared source i n I

\. a molecular cloud with the "interstellar ice"

band.

Figure 3 ' icelative energy flux of late-type stars with

minimal infrared excess consistent w i t h

photospheric emission (Panel a) and with

large infrared excess indicative of thermal-.

ized emission from an extensive dusty

circumstellas envelope [Panel b) . Stars

shown (top to bottom) i n Panel a: a Boo

( K 2 1 1 1 ) , a O r i (M2Ia), UU Aur (C5 ,4 ) , R Lep

Page 30: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

(C7,6t.?), C c t (gbl'lrt) , 10tOOOK dt\J 24001~ blackbodies; Pat\t?l b: CW Lea (apcrr circlas) , IK Tau (fillccl circSas) and V1489 Cyg

(squarae) , 10,0001; and 6001t b l n ~ k b a d i ~ ~ s ,

Figuro 4 - Halativo anorgy f l u x of raprosontb%tivo objocts

in the AGL InPrnrud Sky S t i ~ x from $!S IX1

(individual objocto wrs idant i%ied in Tabla

I of MGIXX.) In Panel a nxc? pritrtnrily C

stars; in Panal b, yrim&rily M stars (or nt

objects w i t h O/C normal) t and in Panel C,

objects sf uncertain avolutisnnry atxta

surroundad by danea circumstollar disc-liko

anvelopes.

raprasantntivc ltunir\ous cool. stars (M and K

suparginnts) . A 33QOK blackbody and a fx~3s- 8

f rna el~prs nra included fox: con\parisorr.

total optical depth in dusky c i r c u m a t u l l c l r

envelopes.

Figuro 7 - Qbsarved X X 2-9011 spactrum AGL 2205

(QN26.5 + 0 . 6 ) from Forrast u k n l . (1977). - ." =-"

A 375K blackbody curvo nad tht* 2-1u s y ~ ? c t r u m

de-rcddaned using tho axt inc t i on law a b a o r v ~ ~ l

towards VX Cyg X12 nro a l so st~awn. .I

Page 31: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

Figure 8 - Observed r e l a t i v e emission spectra f o r small

(0-2p) grains a t -6001{ from the laboratory

meaaurements of Rose (1977) f o r Lunar sol , l

15531 (L) , a melted anorthi te (A) ,, Montmorillonite (M) , Columbia River Basalt

(8) , Dunite ( D l , and amorphous s i l i c a t e (S) . The observed emission from t he Orion Trapezium

i b shown (Forrest -- e t al. 1975) renormalized

from assumed 250K gra ins t o 350s and 600K

gra ins f o r compariaon.

Figure 9 - Relative XA 2 - 1 3 ~ spectrophotometry of C s t a r s

i l l u s t r a t i n g the observed range i n t o t a l

o p t i c a l depth i n c i rcumstel lar dusty envelopes.

Figure 10 - Spectrophotometry of Nova (NO) Vulpecula

1976 during the f ree-f ree emission. phase,

>. taken 31 O c t . 1976 (2 -4~) and 5 Nov. 1976

( 4 - 8 ~ ) . Overlapping broad bandpass da ta

" agree t o +15%. Posit ions of hydrogen l i n e s - are indfiated. Energy f lux a t 3 . 0 ~ i s

3.0 x 10 -I5 PI/cm2.

Figure 11 - Energy f l u x from HM Sge during June 1977

together w i t h possibly similar objects from

Davidson, Humphreys, and l-lerrill (1977).

Page 32: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

30

Figure 11 - Relative A A 2-13~ spectrophotometry o f

representative infrared sources with

unidentified emiesion feoturoe a t 3.3~/3.4p,

6,2p, 7.9p, 8.6~ and 11.2~. Points with

broad horizontal bar8 are broad bandpilss

observations

Page 33: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

1 . . r 4r - * . I

? *j 'a . I . * ' 4 k

lid&----- -- we- &.mMwm!'LIpII/. - --."- - ----- ----

TABLE I

OBSERVED XNFRAlUD BANDS

AT btODERRTE SPECTRAL RESOLUTION

BAND BAND CENTER WIDTH (W) (urn) abs o m CAUSE tJHERE SEEN

1.4,1.9,2.71 6.2 X g:H20 M s t a r s

l i n e s -0 . 05 0 . 2

"0.8 0 .3 0.8 0 .3 - 3+ -1.7 0.4 -0 .3

g:C3rC2H2,HCN~ "ices"

?.

3

s i l i c a t e s s i l i c o n carbide 3

3

cool s t a r s carbon stars carbon s t a r s molecular clouds carbon stars nebula nebulae, pec. s t a r s nebulae, pee. stars carbon s tars , Nova Vul nebulae, pec. s t a r s nebulae, pec. c t a r s nebulae, pec. stars oxygen r i c h s t a r s , ISM

carbon r i c h s t a r s nebulae, pec. s t a r s nebulae

Page 34: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

Allen, D.A., Hyland, A.R., Longmore, A.J., Cnswall,

Anderason, C., Johnnsson, G . E . D . , Goss, W.M., Winnbarg,

A., Nguyen-Qunng-Riaw 1974, Astrun. & Astraphys.,

Apruzsse, J.P. 1976, Ap.J., 207, 799. UI

Bnldwfn, J.R., Frogal, J.A., and Persson, S.E. 1973, ' \ A J ~ J ~ , 184, 427. - -

Barnes, T.G., Beer, R., Hinkla, K . H . and Lambert, D.L.

Bedijn, P.J. 1977, Ph,D. Thesis, University of Leidon.

Bregman, J.D. 1977, Publ. A.S.P., - 89, 335. 7

Bregman, J.D., and Rank,.D.M. 1975, Ap.J. (Letters), - _I_ 195 -

Ciatti, F., Mammano, A,, and Vittono, A. 1977, Astron.

& Astraphys. (in press).

Cohen, M., Anderson, C.M., Cowley, A., Coynw, G.V.,

Pawley, W., Gull, T.R., Hnrlnn, E.A., Herbig, G . I i . ,

Nolden, F., Nudson, M.S., Jnkoubek, R.O., Johnson,

H.M., Morsill, K.M., SchiEEar, F.H. , Soifar, B . T . ,

and Zuckcxman, B. 1975, ~AJ.Y., -- 196, 179. - Cohen, M., and Ruhi, L.V. 1976, Publ. A.S.P. , - 88, 535. -

1977, proprint.

Cudaback, D.D., Gauskad, J.E., and Knncko, R.F. 1971,

Page 35: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

33

Davidson, K., liwnphreys, R.M., and Merrill, K.M. 1977,

A~.J . ( i n p ress ) .

Day, K.L. 1974, A ( L e t t e r . ) , 192, LlS.< - - 1976, Ica rur , 27, 561, -

Day, K.L., Steyer , T.R., and Huffmn, D.R. 1974, AP.J.,

Dokucharrva, OwDw 1976, 1,AoUw Information Bull. Var iable t

? S t a r s , No. 1189. - Dorlrchner, J. 1971, Astron. Wachr., 293, 53. - Dorschner, J., GQrtler, J., and Friedemann, C. 1976,

Astron. Nachr., 293, 159. - Dyck, H.M., and Simon, T. 1975, Ap.J., 195, 689. - Evans, N.J . , and Beckwith, 8. 1977, Ap.J. ( i n p r e s s ) .

Fay, T.D., and Ridgway, 8.T. 1976, Ap.J., 203, 600. - - Finn, G.D., and Simon, T. 1977, Ap.J., 222, 472. - For re s t , W.J. 1974, Ph.D. Thesis, Univers i ty o f C a l i f o r n i a ,

Fo r r e s t , W.J. , G i l l e t t , F.C. and S te in , W.A. 1975,

Fo r r e s t , W 0 J . p G i l l e t t , F.C., H O U C ~ , J .R. , McCarthy, J.,

Merrill, K.M., Pipher, J.L., Pue t t e r , R.C., Russe l l ,

R.W., So i f e r , B.T., and Willnet , ' S.P. 1977, Ap.J.

( i n p ress ) ,

Frogel, J.A., and Hyland, A.R. 1972, Mem. Soc. Royal -- Sciences Liege - 111, 111. -

Page 36: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

Pujito, Y. 1970, -- Intarprotation of Spectra and Atmospheric

Structure in Cool Stars (Daltimorer University Park

Preea) . Gehrz, R.D. and Hackwcrll, J.A. 1976, A h J . (Letters),

206, L161m - - Geisel, B.L., Kleinmnn, D.E., and Low, F.J. 1970, Ap.J.

(Letters), 161, L101. - - t b Gillett, P.C., Forrest, Y.J., and Merrill, K.M. 1973,

ApmJm, 183, 87. - Gillett, F.C., Forreat, N.J., Merrill, K.M., Capps, R.P.,

and Soifer, B.T. 1975, Ap.J., 200, 609. i

- - I

Gillett, F.C., Jones, T.W., Merrill, K.M., and Stein, W.A., i 1976, Astron. & Astrophys., 45, 77. -

i t

- Gillett, F.C., Kleinmann, D.E., Wright, E.L., and Capps,

R.W. 1975, Ap.J. (Letters), 198, 165. 3 ; - - i f Oilman, R.C. 1974, Ap.J., 188, 87. -

1; Gilra, D.P. 1972, in The Scientific Results irom the I '

orbiting Astronomical Observatory (OAO-2) , ed. t

A.D. Code (NASA SP-310) . 1977, in preparation.

i

Goebel, J.H., Bregman, J.D., Strecker, D.W., Witteborn,

F.C., and Erickson, E.F. 1977, Bull. A.A.S., 9, 364. I -

Goldreich, P., and Scoville, N. 1976, Ap.J., 205, 144. - I

Grasdalen, G.L., and Joyce, R.R. 1976, Ap.J. (Letters),

Page 37: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

Hagen, W. , Simon, T., and Dyck, H.M. 1975, Ap.J. (Letters), -

201, L81m = H a l l , D.N.B., Kleinmann, S.G., Ridgway, S . T . , Weinberger,

D.A., and lVojslaw, R.S. 1977 (prepr in t ) . Hinkle, K.H., Barnes, T.G., Lambert, D.L. and Beer, R.

1976, AP:J. (Le t t e r s ) , 210, L141. - noyle, P., and Wickramasinghe, N.C. 1977, Nature - -I 268 - Humphreys, R.M.

Humphreys, R.M., and Ney, E.P.

Hunt, G.R. and Sal isbury, JmHm 1976, Mid-Infrared

Spec t r a l Behavior of Metamorphic Rocks, AFCRL-TR-0003.

1974, Mid In f r a r ed Spec t r a l Behavior of

Igneous Rocks,, AFCRL-TR-0625.

Hyland, A.R., Becklin, E.E., Frogel, J.A., Neugebauer, G.

1972, Astron. & Astrophyu., 16, 204. - - Israel, FOP,, Habing, H.J . , and de Song, T. 1973,

Astron. & ~ s t r o p h y s . , 27, 143. - Johnson, HmLm, Mitchell , R.I., Iriarte, B., and Wisniewski,

W.Z. 1968, Comm. Lunar Planetary Lab., 4, 99. - - Johnson, N.R., Beebe, R.F., and Snsden, C. 1975, Ap.J.

Janes, T.W. and Merrill, K.M. 1976, Ap.J., 209, 5 0 9 , -

Page 38: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

36

Joyce, R . R . , Cappa, R.W., G i l l e t t , F.C., Orasdalen, G.,

Kelinmann, S.G. and Sargent , D.G. 1977, Ap.J.

(Let terr?) , 213, L125. - Rleintnann, S.G., Sargent , D.G., G i l l e t t , P.C., Grasdalen,

G.L., and Joyce, R.R. 1977, Ap.J. ( L e t t e r s ) , 215, - L79 .

Knacke, R.F., and Thompson, R.E. 1973, Publ. A.S,P., '5

b 85, 341. - - Lsmbert, D.L. and S n e l l , R.L. 1975, MNRAS, 172, 277. -a

Lebofsky, M.J. and Kleinmann, S.G. 1976, A.J . , - 81, - 534.

Lebofsky, M.3., Kleinmann, S.G., Rieke, G.H. and Low, F,J.

1976, Ap.J. ( L e t t e r s ) , 206, L157. - fdw, F.J., Johnson, H.L., Kleinmann, D.E., Latham, A.S.,

and Geisel, S.L. 1970, Ap.J., - 160, 531.

Low, F,J., Kurtz, R.F., Vrba, F.3. and Rieke, G.H. 1976,

Ap.J. ( L e t t e r s ) , 206, L153. - McCmmon, D. , Mitnch, G., 8 and Neugebauer , G. 1967, Ape J, ,

147, 575. - McCarthy, D.W., Low, F.J., and Howell, R. 1977, Ap.J.

( L e t t e r s ) 214, L85. --' - - Merrill, K.M., Russe l l , R.W., and Soifer, B.T. 1976,

Ap.J., 207, 763. - Merrill, K.M., Soifer, B.T. and Russe l l , R.W. 1975,

Ap.J. (~e t t er s ) , 200, L37. -

Page 39: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

Me(erri3.1, K.M., and S t a i n , Y1.A. :976a, fxbl. A.S.P.,

88, 205. (M81). II -

1976b, m, - 294 (MSII) . 1 9 7 6 ~ , $bidet 874 (MSIII)

Morris, Me 1975, Ap.J. , z, 603. CI-

Muison, S.L., Lyon, J . , and Marionni, P.A. 1975,

Ap.3. (Letters) 201, L85m - t leugebauer, 0. . and Loighton, R.B. 1969, Wo-Nicron b

Sky Survey (NASA SF-3047, Washington, D.C.) . Nay, E.P. 1977, B u l l . h.A.8. . ma 9, 316.

NayI E.P., and Al lon , D.A. 1969, Ap.J. (Lcttcra) , E, q -

L19tm f i

Ney, E.P., and Batfield, B.F. L977, &.J. (Letters) i (eubmitted) . f

i

Noguchi, K., blaihara, T . , Okuda, He, Snta, S . , and Mukni,

T. 1976, B u l l . AeAmS*, - 8, 526.

Olnon, F.M. 1977, Ph.D. Thceis, University of Leiden.

Pennan, J.M. 1976a. M.N.R.A.S.. z, 149 . - 1976bI M:N.R.A*S, , 176, 5 3 9 . -

Perry, C.H., A r w l D . K . , Anaetoesakis, E., Lowndus,

R o p e , Rastogi, R . , and Tornberg, N.E. 1972, The

4 , 315, - .-

Pol lack , J.D. , Toon, O . B . and Khare, B.N. 1973, ;cart~~,

19, 372. .-).- --.-

Page 40: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

P r i c e , S.D., and Walker, R.G. 1976, Tho AFGL Four Co lo r I

I n f r a r e d Sky SU~V~J!~ AFGL-TR-0208.

P u e t t e r , R.C., Ru r r e l l , R.fV., Se l lg ren , K. ,- and S o i f e r ,

8.T. 1977, Publa AeS*P*, 89, 320, - Quarc i , P., Querci, M., and Tmuiji, T. 1974, Astron, C

Rank, D.M., Geballe , T.R., and Wollmn, E.R. 1974,

t b Ap.J. ( L e t t e r r ) , x, L111. -

Ridgway, S.T., Carbon, D.F., and Hall, D.N.B. 1976,

I Ridgway, S.T., Hall, D.N.B., Kleinmann, S.G., Weinberger,

t 1 D.A., and Wojrlaw, R.S. 1976, Nature, 264, 345.

a i Rorre, A: 1977a, Ph.D. Ther i s , Un ive r s i ty of Minnerota, i t

i Minneapolis.

1977b, .- Icarur (submitted) . Ruasell, R.W., S o i f e r , B.T., and F o r r e s t , 1V.J. 1975,

Ap.J. ( L e t t e r r ) , - 198, L41. - Rus8el1, R.W., S o i f e r , B.T. and Merrill, K.M. 1977,

1

Ap.J., 213, 66. - Russell , Raw., Soifer, B.T. and Willner, s'.P. 1977a,

1 A ~ . J . ( L e t t e r s ) , ( i n press).

Russe l l , R.W., S o i f e r , B.T. and Wil lner , S . P . 1977b,

i Ap. J. (submit ted) . S a l p e t e r , E.E. 1974, Ap.J., 193, 585. - Scale, J . M . 1974, Ap.J., 194, 361. -

Page 41: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

Schmid-Burgk, J. and Scholz, M. 1976, Ast~:on. - we- &

Astrophys., 51, 209. 'lul

Schu l t z , G.V., Kreysa, E. and Sherwood, W.A. 1976,

Astron. L Aatrophys., 50 , 171. - 1 Smyth, M.J . , Cork, G.M.W., Harris, J . , and Wallace, T.

1971, Nature (Phys ica l Sc ience ) , 231, 104. - Bpinrad, H., Pyper, D.M., Newburn, R.L., and Younkin,

I

b R.L. 1966, ApmJ., w, 291. - Steyer , T.R., 1974, Ph.D. Thes is , Un ive r s i ty of Arizona.

S t e y e r , T.R., Day, K.L., and Hufiman, D.R. 1974,

Applied Optics, 13, 1586. = Stover , R.J. and S i v e r t s e n , S. 1977, A p . J . ( L e t t e r e ) ,

S t r e c k e r , D.W., Erickson, E.F., and Witteborn, F.C.

S t r e c k e r , D.W. and Ney, E.P. 1974a, Astron. J., 79, 797. - - Button, E.C., Betz, A.L., Townes, C.H., and Spears, D.L.

1976, Bull . A.A:s., 8, 525. - Taam, R.E., and Schwartz, R.D. 1976, Ap.J . , 204, 842. - Tolesco, C.M., and Harper, D.A.

%Bhomas, J .A. , Robinson, G., and Hyland, A.R. 1976,

M.N.R.A.S . , 174, 711. - - Toombs, R.I., Becklin, E.E., Frogel , J . A . , Law, S.K.,

Porter, F . C . , and Westphal, J . A . 1972, Ap.J.

( L e t t e r s ) , 173, L71. - -

Page 42: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

Tre f fo r s , R., and Cohen, b!. 1974, Ap.J., - 188, 545. - T s u i j i , T. 1973, Astron. L Astrophys., 23, 411. - Walker, R.G., and Pr ice , 8.D. 1975, AFCRt In f r a r ed

Sky Survey, V o l . 1, AFCR&-TR-0373.

Wing, R.P., andYorka, 8.8. 1977, M.N.R.A.S., 138, 383, - Wollman, E.R. , Geballe, TOR,, Greenberg, L.T., Holtz,

J.Z., and Rank, D.M. 1973, Ap.J, (Letters), e, - t 8 5 ,

Woolf, N.J. 1973, i n I n t e r s t e l l a r Dust and Related

Topic., Greenberg and Van de Hulst (eds. ) , (Reidel

Pub1 . Co. , Dorbrscht) p. 485.

Woolf, N.Jb and Ney, E.P. 1969, Ap.J. (Letters) 1 - 155, 7

Zaikowski, A., and Knacke, R.P. 1975, Astrophys. & Space

sic., 37, 3. - - Z a i k o ~ s k i ~ A., 'Knacke, R.F., and Porco, C.C. 1975,

c.

Astrophys. & Space S C L ~ ~ x, 7. - Zuckerman, B., Palmer, P., Morris, M., Turner, B.E.,

Gilra, D.P., Bowers,,P.F., Cilmore, W. 1977,

Ap.J. ( L e t t e r s ) , 211, L97. -

Page 43: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

. --- -- - - - - - ----.

FIGURE 1

Page 44: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

FIGURE 2

Page 45: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

RELATIVE X F ~ (ergs ~ r n ' ~ sol)

Page 46: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool
Page 47: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

FIGURE 5

6, I I I 1 I I I I " I P

. c . ++. *+ + ++

IRC+68370 +* + . .

KBIa+ +

t H3IcrIab I.

*+ M Tau

n H2Iab-Ib

6 +. + cn + 0 ., +* - 2 . .

***

0, I I I I I I I I 1 1 1 , 2 4 6 8 10 12 14

X (pm)

-.rr

Page 48: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

FIGURE. 6

Page 49: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool
Page 50: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool
Page 51: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool
Page 52: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

FIGU

RE

1

0

2. I l i

llll

I

a 4 I

I B

a b

a B

I.

a B

a b

I.

4889K b

lw

-

.

4 b

. . . . . D

. b

b I

8

5 I

b

Nova Vul

1976 I

I

I

b

b

. .

Page 53: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool

0 HM Sge % CRL 1274 + V1016 Cyg

I I I I I l l I I I I I 1 1 8

Id8

10-9

16'~-

r*, 4 -

/:2 a 0

C

looo Y: - - m ./: + - LI .I

- I + - m JJ * 4

- k .I

*I 8 t' C - I I I I I I I t I I I t 1 1 1 J

0.3 (X4Q5 I 2 3 4 5 10

X(pm)

Page 54: Infrared - NASA in normal abundance ("oxygen-rich") stars. Clearly the 2.7~ water absorption band, noticeably present at low resolution by type M3II1, dominates the spectra of cool