influence of annealing temperatures on the structural, morphological… · 2020. 1. 29. · greatly...

6
Research Article Open Access Mgbemeje et al., J Material Sci Eng 2016, 5:5 DOI: 10.4172/2169-0022.1000277 Review Article Open Access Journal of Material Sciences & Engineering J o u r n a l o f M a t e r i a l S c i e n c e s & E n g i n e e r i n g ISSN: 2169-0022 Volume 5 • Issue 5 • 1000277 J Material Sci Eng ISSN: 2169-0022 JME, an open access journal Influence of Annealing Temperatures on the Structural, Morphological, Crystalline and Optical properties of BaTiO 3 and SrTiO 3 Nanoparticles Mgbemeje EA 1 *, Akhtar SM 2,3 , Bong YO 2,3 and Kue CD 4 1 Department of Energy Engineering, Chonbuk National University, Republic of Korea 2 New & Renewable Energy Material Development Center (NewREC), Chonbuk National University, Jeonbuk, Republic of Korea 3 School of Semiconductor and Chemical Engineering, Chonbuk National University, Republic of Korea 4 Advanced Materials Engineering Department, Chonbuk National University, Republic of Korea Abstract In this study, highly crystalline BaTiO 3 and SrTiO 3 nanoparticles were synthesized by bi-modal distribution solution process followed by annealing at different temperatures. The impact of annealing temperatures on the nanoparticles was investigated by their various chemical, structural and surface properties. The particle sizes of both BaTiO 3 and SrTiO 3 increased from 30-80 nm with increase in annealing temperature due to the agglomeration of the nanoparticles. It was found that the optical band gap of BaTiO 3 and SrTiO 3 was considerably decreased with the increase of annealing temperatures from 500 - 900°C. With the observed results, we can say that annealing BaTiO 3 and SrTiO 3 nanoparticles significantly enhance their optical, structural, morphological and crystalline properties. *Corresponding author: Mgbemeje EA, Department of Energy Engineering, Chonbuk National University, Jeonju, 54896, Republic of Korea, Tel: 821059590434; E-mail: [email protected] Received May 26, 2016; Accepted September 06, 2016; Published September 16, 2016 Citation: Mgbemeje EA, Akhtar SM, Bong YO, Kue CD (2016) Influence of Annealing Temperatures on the Structural, Morphological, Crystalline and Optical properties of BaTiO 3 and SrTiO 3 Nanoparticles. J Material Sci Eng 5: 277. doi:10.4172/2169-0022.1000277 Copyright: © 2016 Mgbemeje EA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Keywords: Perovskite materials; Nanoparticles; Optical properties; BaTiO 3 ; SrTiO 3 Introduction In this study, highly crystalline BaTiO 3 and SrTiO 3 nanoparticles were synthesized by bi-modal distribution solution process followed by annealing at different temperatures. Perovskite materials with the formula ABO 3 with A being a metal, B, Titanium and O, Oxygen had gained wide attention due to their applications in different technological field [1]. Perovskite generally have a cubic structure with an A site ion usually an alkaline earth or rare earth element, a B site ion located at the center of the lattice and composed generally of either 3d, 4d or 5d transition metal elements [2]. e A atoms are larger than the B atoms and have 12-fold cuboctahedral coordination. e B cation is in a 6-fold coordination surrounded by an octahedron of anions [3]. e relative ion size requirements for stability of the cubic structure of perovskite is quite stringent hence slight buckling and distortion can result in the production of several lower-symmetry distorted perovskite with a reduced A and B cation coordination numbers [4]. Metal oxide perovskite and synthetic perovskite have recently gained wide spread applications in electronics, ceramics, photovoltaic, nanotechnology and biotechnology industries [1]. Synthetic perovskite are currently been applied in high efficient solar cells as a possible less expensive base materials [5]. Barium titanate (BaTiO 3 ) a ternary perovskite metal oxide is been studied extensively due to its excellent ferroelectric, piezoelectric, dielectric, photo-refractive and superconductive properties [6,7]. Occurring in cubic, tetragonal and orthorhombic phases, BaTiO 3 has shown a wide range of applications in multi-layer ceramic capacitors, positive temperature coefficient devices, piezo-electric sensors, ferroelectric random access memories, printed circuit boards and electro-optical devices [8]. Research on BaTiO 3 shows that the photoluminescence (PL) properties are greatly affected by its growth routes [9]. Strontium titanate (SrTiO 3 ) perovskite material is a centrosymmetric quantum para-electric material with ferroelectric properties at low temperatures and very high dielectric properties [10]. ey are widely used in varistors, advanced ceramics, precision optics, diamond stimulation and in tunable high temperature superconducting microwave filters. Various synthesis routes can be used to synthesize both BaTiO 3 and SrTiO 3 nanoparticles [11]. Synthesis routes such as electrochemical, hydrothermal [12], sol-gel, solvothermal [13], polymeric precursor and solid state bi-modal distribution methods, play a huge role in the purity and crystallinity of the nanoparticles. e rapid advances in nanotechnology, nanomaterials and nanomechanics offer huge potentials in national defense, homeland security, and private industry. An emphasis on nanoscale entities will make our manufacturing technologies and infrastructure more sustainable in terms of reduced energy usage and environmental pollution. Recent advances in the research community on this topic have stimulated everbroader research activities in science and engineering devoted to their development and their applications. With the confluence of interest in nanotechnology, the availability of experimental tools to synthesize and characterize systems in the nanometer scale, and computational tools widely accessible to model microscale systems by coupled continuum/molecular/quantum mechanics, we are poised to unravel the traditional gap between the atomic and the macroscopic world in mechanics and materials. is in turn opens up new opportunities in education and research. In this work, BaTiO 3 and SrTiO 3 nanoparticles are synthesized via bi-modal distribution methods followed by annealing at different temperatures of 500 - 900°C and varied annealing times from 1 to 5 h. We investigate the effect of annealing temperature and time on the structural, morphological, optical and crystalline properties of synthesized BaTiO 3 and SrTiO 3 nanoparticles. e detailed properties of BaTiO 3 and SrTiO 3 nanoparticles have been characterized by various experimental characterization tools.

Upload: others

Post on 26-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Research Article Open Access

    Mgbemeje et al., J Material Sci Eng 2016, 5:5DOI: 10.4172/2169-0022.1000277

    Review Article Open Access

    Journal of Material Sciences & Engineering Jo

    urna

    l of M

    aterial

    Sciences & Engineering

    ISSN: 2169-0022

    Volume 5 • Issue 5 • 1000277J Material Sci EngISSN: 2169-0022 JME, an open access journal

    Influence of Annealing Temperatures on the Structural, Morphological, Crystalline and Optical properties of BaTiO3 and SrTiO3 NanoparticlesMgbemeje EA1*, Akhtar SM2,3, Bong YO2,3 and Kue CD41Department of Energy Engineering, Chonbuk National University, Republic of Korea2New & Renewable Energy Material Development Center (NewREC), Chonbuk National University, Jeonbuk, Republic of Korea3School of Semiconductor and Chemical Engineering, Chonbuk National University, Republic of Korea4Advanced Materials Engineering Department, Chonbuk National University, Republic of Korea

    AbstractIn this study, highly crystalline BaTiO3 and SrTiO3 nanoparticles were synthesized by bi-modal distribution

    solution process followed by annealing at different temperatures. The impact of annealing temperatures on the nanoparticles was investigated by their various chemical, structural and surface properties. The particle sizes of both BaTiO3 and SrTiO3 increased from 30-80 nm with increase in annealing temperature due to the agglomeration of the nanoparticles. It was found that the optical band gap of BaTiO3 and SrTiO3 was considerably decreased with the increase of annealing temperatures from 500 - 900°C. With the observed results, we can say that annealing BaTiO3 and SrTiO3 nanoparticles significantly enhance their optical, structural, morphological and crystalline properties.

    *Corresponding author: Mgbemeje EA, Department of Energy Engineering, Chonbuk National University, Jeonju, 54896, Republic of Korea, Tel: 821059590434; E-mail: [email protected]

    Received May 26, 2016; Accepted September 06, 2016; Published September 16, 2016

    Citation: Mgbemeje EA, Akhtar SM, Bong YO, Kue CD (2016) Influence of Annealing Temperatures on the Structural, Morphological, Crystalline and Optical properties of BaTiO3 and SrTiO3 Nanoparticles. J Material Sci Eng 5: 277. doi:10.4172/2169-0022.1000277

    Copyright: © 2016 Mgbemeje EA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

    Keywords: Perovskite materials; Nanoparticles; Optical properties; BaTiO3; SrTiO3

    Introduction In this study, highly crystalline BaTiO3 and SrTiO3 nanoparticles

    were synthesized by bi-modal distribution solution process followed by annealing at different temperatures. Perovskite materials with the formula ABO3 with A being a metal, B, Titanium and O, Oxygen had gained wide attention due to their applications in different technological field [1]. Perovskite generally have a cubic structure with an A site ion usually an alkaline earth or rare earth element, a B site ion located at the center of the lattice and composed generally of either 3d, 4d or 5d transition metal elements [2]. The A atoms are larger than the B atoms and have 12-fold cuboctahedral coordination. The B cation is in a 6-fold coordination surrounded by an octahedron of anions [3]. The relative ion size requirements for stability of the cubic structure of perovskite is quite stringent hence slight buckling and distortion can result in the production of several lower-symmetry distorted perovskite with a reduced A and B cation coordination numbers [4].

    Metal oxide perovskite and synthetic perovskite have recently gained wide spread applications in electronics, ceramics, photovoltaic, nanotechnology and biotechnology industries [1]. Synthetic perovskite are currently been applied in high efficient solar cells as a possible less expensive base materials [5]. Barium titanate (BaTiO3) a ternary perovskite metal oxide is been studied extensively due to its excellent ferroelectric, piezoelectric, dielectric, photo-refractive and superconductive properties [6,7]. Occurring in cubic, tetragonal and orthorhombic phases, BaTiO3 has shown a wide range of applications in multi-layer ceramic capacitors, positive temperature coefficient devices, piezo-electric sensors, ferroelectric random access memories, printed circuit boards and electro-optical devices [8]. Research on BaTiO3 shows that the photoluminescence (PL) properties are greatly affected by its growth routes [9]. Strontium titanate (SrTiO3) perovskite material is a centrosymmetric quantum para-electric material with ferroelectric properties at low temperatures and very high dielectric properties [10]. They are widely used in varistors, advanced ceramics, precision optics, diamond stimulation and in tunable high temperature superconducting microwave filters. Various synthesis routes can be used to synthesize both BaTiO3 and

    SrTiO3 nanoparticles [11]. Synthesis routes such as electrochemical, hydrothermal [12], sol-gel, solvothermal [13], polymeric precursor and solid state bi-modal distribution methods, play a huge role in the purity and crystallinity of the nanoparticles. The rapid advances in nanotechnology, nanomaterials and nanomechanics offer huge potentials in national defense, homeland security, and private industry. An emphasis on nanoscale entities will make our manufacturing technologies and infrastructure more sustainable in terms of reduced energy usage and environmental pollution. Recent advances in the research community on this topic have stimulated everbroader research activities in science and engineering devoted to their development and their applications. With the confluence of interest in nanotechnology, the availability of experimental tools to synthesize and characterize systems in the nanometer scale, and computational tools widely accessible to model microscale systems by coupled continuum/molecular/quantum mechanics, we are poised to unravel the traditional gap between the atomic and the macroscopic world in mechanics and materials. This in turn opens up new opportunities in education and research.

    In this work, BaTiO3 and SrTiO3 nanoparticles are synthesized via bi-modal distribution methods followed by annealing at different temperatures of 500 - 900°C and varied annealing times from 1 to 5 h. We investigate the effect of annealing temperature and time on the structural, morphological, optical and crystalline properties of synthesized BaTiO3 and SrTiO3 nanoparticles. The detailed properties of BaTiO3 and SrTiO3 nanoparticles have been characterized by various experimental characterization tools.

  • Citation: Mgbemeje EA, Akhtar SM, Bong YO, Kue CD (2016) Influence of Annealing Temperatures on the Structural, Morphological, Crystalline and Optical properties of BaTiO3 and SrTiO3 Nanoparticles. J Material Sci Eng 5: 277. doi:10.4172/2169-0022.1000277

    Page 2 of 6

    Volume 5 • Issue 5 • 1000277J Material Sci EngISSN: 2169-0022 JME, an open access journal

    ExperimentalMaterials

    For the bi-modal distribution method synthesis of BaTiO3 and SrTiO3 nanoparticles, Barium carbonate (BaCO3, sigma aldrich), Strontium carbonate (SrCO3, sigma aldrich and Titanium (TiO2 - P-25, sigma aldrich) were used as source materials for Barium, Strontium and Titanium respectively. Distilled water, glass beakers, magnetic stirrers, drying Oven and calcinations machine were also used.

    Synthesis of BaTiO3 and SrTiO3

    The experimental details are presented in the synthesis flow chart, as shown in Figure 1. In brief, the equi-molar BaCO3/SrCO3 and TiO2 powders were mixed together in 10 ml of de-ionized (DI) water in a beaker for 10 minutes. The solutions were stirred for 10 h and the slurry dried in an oven at 80°C for 10 h. After completion of synthesis, the dried powders were annealed at different temperatures and times ranging from 500-900°C and 1-5 h respectively.

    The BaTiO3 and SrTiO3 chemical reactions can be expressed as follows [14]:

    BaCO3 + TiO2 = BaTiO3 + CO2……..………..(1)

    SrCO3 + TiO2 = SrTiO3 + CO2………………. (2)

    The BaTiO3 and SrTiO3 nanoparticles were characterized.

    Characterization

    X-ray diffraction (XRD) patterns were measured using a Rigaku X-ray Diffractometer operating with Cu Kα radiation operating at 40 kV and 30 mA and the scans rates were carried out at 0.02° at 10° min-1 in a 2θ range from 20° to 70°. Particle surface morphology was carried out via HITACHI Su-70 Field Emission Scanning Electron Microscope (FESEM). Element analysis was carried out via an AMETEK EDAX with a 10 mm2 active area. The particle size, shape and morphology were also analyzed using a JEOL JEM 2010 Transmission Electron Microscope operating at 200 Kv. The particles surface areas were determined via Brunauer-Emmett-Teller (BET) test and Raman Spectroscopy was performed using a Nanofinder 30 Tokyo-Raman model with a 488 nm laser, a 1.0 mW laser power, a 5 second exposure, a 50X objective lens and a 600 Gmm grating. UV-vis spectra were measured by a JASCO V-670 spectrophotometer at a scan speed of 1000 nm/min and a UV-vis bandwidth of 0.2 nm and data interval of 1.0 nm.

    Results and DiscussionThe crystalline nature of synthesized BaTiO3 and SrTiO3

    nanoparticles has been examined by the XRD patterns. Figures 2 and 3 show the XRD patterns of BaTiO3 and SrTiO3 nanoparticles at different temperatures and times. BaTiO3 and SrTiO3 present the main diffraction peak at 32.3° (110), indicating the formation of perovskite materials. It can be seen that the intensity of diffraction peak at 22.4° (100) in both materials is drastically decreased with the increase of annealing temperature. The observed XRD peaks in Figures 2 and 3 confirm that BaTiO3 and SrTiO3 nanoparticles possess the cubic and tetragonal phases. Noticeably, the diffraction peak intensities also change markedly with an elevation of the annealing temperatures [15,16].

    The strong and sharp diffraction peaks in Figures 2 and 3 suggest that BaTiO3 and SrTiO3 nanoparticles have good crystalline nature. At high annealing temperatures (800 and 900°C), no diffraction peaks are seen for carbonates, confirming the complete removal of BaCO3 and SrCO3 impurities. Moreover, the high peak intensity at higher annealing temperature is related to the reduction of the hydroxyl (OH-) on the BaTiO3 and SrTiO3 unit cells in a lattice defect of their cubic structures.

    The UV-Vis absorption spectra of BaTiO3 and SrTiO3 nanoparticles are shown in Figures 4 and 5. The maximum absorption peaks in BaTiO3 and SrTiO3 nanoparticles are positively shifted with the variation of annealing temperatures. The optical band gaps were calculated using the maximum absorbance in UV-vis spectra. The calculated band gaps with different annealing temperatures at 500, 600, 700, 800, and 900°C are 3.88 eV, 3.86 eV, 3.75 eV, 3.52 eV, 3.47 eV for BaTiO3 and 3.73 eV, 3.71 eV, 3.66 eV and 3.43 eV for SrTiO3 at 500, 600°C, 700°C and 900°C respectively. The absorption peak shifting indicates that the optical properties of BaTiO3 and SrTiO3 nanoparticles are changed by the variation of annealing temperatures and time.

    The Optical absorption spectrum of BaTiO3 nanoparticles revealed that the particles were transparent in the visible region. The electron transition types and band structure were analyzed via the dependence of optical absorption coefficient on photon energy.

    Figures 6 and 7 shows the FESEM micrographs of BaTiO3 and SrTiO3 nanoparticles to explain the morphological changes upon the annealing. From Figure 6, the particles sizes are increased and agglomerated with the increase of annealing temperatures from 500-900°C. Figure 7 also presents the similar morphological changes as the increase of annealing temperatures. At low annealing temperature, small cluster of particles are visible. However, the less clustered spherical cubic nanoparticles are observed at 800°C and 900°C annealing temperature. The particle sizes of 32 nm at 500°C show a steady increase in particle size to 80 nm at 900°C. This sharp increase in size might occur due to sintering effect at high temperature.

    A JEM 2010 Transmission electron microscope was used to measure the size and morphology of both nanoparticles. The TEM image measure via a bright-field low magnification revealed that both BaTiO3 and SrTiO3 nanoparticles are spherical in shape while the Selective Area Electron Diffraction Pattern (SAED) showed the presence of polycrystalline diffraction rings composed of continuous discrete diffraction dots in both nanoparticles although more diffraction rings are observed in BaTiO3 nanoparticles. The average estimated particle size of SrTiO3 and BaTiO3 was 37 and 38 nm respectively. The TEM images are shown in Figure 8. The chemical compositions and elemental analysis were measured via EDX and the results depicted in the Figures 9 and 10. Both spectra show Ba, Sr and Ti peaks along with O peak. The existence of these elements in the synthesized samples confirms the formation of BaTiO3 and SrTiO3. The appearance of C peak suggests the presence of carbonate traces.

    BaTiO3 SrTiO3BaCO3/BaNO3/

    1M

    BaCO3/BaNO3/

    1M

    TiO21M

    D.H2O

    Mixture wasstirred

    vigorouslyfor 10h

    Slurry was driedat 800C for 10h

    Calcined at500,600,700,800

    and 9000C

    SrCO31M

    TiO21M

    D.H2O

    Mixture wasstirred

    vigorouslyfor 10h

    Slurry was driedat 800C for 10h

    Calcined at500,600,700,800

    and 9000C

    Figure 1: Schematic diagrams of BaTiO3 and SrTiO3 nanoparticles synthesis.

  • Citation: Mgbemeje EA, Akhtar SM, Bong YO, Kue CD (2016) Influence of Annealing Temperatures on the Structural, Morphological, Crystalline and Optical properties of BaTiO3 and SrTiO3 Nanoparticles. J Material Sci Eng 5: 277. doi:10.4172/2169-0022.1000277

    Page 3 of 6

    Volume 5 • Issue 5 • 1000277J Material Sci EngISSN: 2169-0022 JME, an open access journal

    600

    500

    400

    300

    200

    100

    0

    Degree (2θ)

    20 30 40 50 60 70

    Inte

    nsity

    (a.u

    )In

    tens

    ity (a

    .u)

    Inte

    nsity

    (a.u

    )In

    tens

    ity (a

    .u)

    Degree (2θ)

    Degree (2θ) Degree (2θ)20 30 40 50 60 70

    20 30 40 50 60 7020 30 40 50 60 70

    600

    500

    400

    300

    200

    100

    0

    1400

    1200

    1000

    800

    600

    400

    200

    0

    -200

    1800

    1600

    1400

    1200

    1000

    800

    600

    400

    200

    0

    -200

    BaTiO3 6000C 4h BaTiO3 7000C 3h

    S r Ti O 3 8 0 0 0C 2 h S r T i O 3 9 0 00 C 1 h

    (100)

    (110-BaTiO3)

    (111)

    (200)

    (210)

    (211)

    (220)(221)

    (a) (b)

    (c) (d)

    (100)

    (110)

    (111) (200)

    (210)

    (211)

    (220)

    (221)

    (100)

    (110)

    (111)(200)

    (210)

    (211)

    (220)

    (100)

    (110)

    (111)

    (200)

    (210)(100)

    (211)

    (220)

    Figure 2: XRD peak patterns for BaTiO3 nanoparticles synthesized at different annealing temperatures and time. (a) 600°C 4h, (b) 700°C 3h, (c) 800°C 2h and (d) 900°C 1h.

    (100)

    (110)

    (111)(200)

    (210) (211)(220)

    1000

    800

    600

    400

    200

    0

    (100)

    (110)

    (111)

    (200)(211)

    (220)

    (100)

    (110)

    (111)

    (200)

    (210)

    (211)

    (220)

    100

    110

    111

    200

    210

    211

    220

    SrTiO3 6000C 4h SrTiO3 7000C 3h

    S r T i O 3 9 0 0 0 C 1 hS r Ti O 3 8 0 0 0C 2 h

    1600

    1400

    1200

    1000

    800

    600

    400

    200

    0

    -200

    2000

    1500

    1000

    500

    0

    1800

    1600

    1400

    1200

    1000

    800

    600

    400

    200

    0

    -200

    20 30 40 50 60 70Degree (2θ) 20 30 40 50 60 70Degree (2θ)

    20 30 40 50 60 70Degree (2θ)

    20 30 40 50 60 70Degree (2θ)

    Inte

    nsity

    (a.u

    )In

    tens

    ity (a

    .u)

    Inte

    nsity

    (a.u

    )In

    tens

    ity (a

    .u)

    Figure 3: XRD peak patterns for SrTiO3 nanoparticles synthesized at different annealing temperatures and time. (a) 600°C 4h, (b) 700°C 3h, (c) 800°C 2h and (d) 900°C 1h.

    The Raman spectra of BaTiO3 nanoparticles are represented in Figure 11. BaTiO3 nanoparticles exhibit the several Raman bands centered at 247, 253, 254, 261 and 517 cm-1 peaks, which are in conformation with reported peak ranges of ~285-520 cm-1. These bands are associated to the displacement of Ti4+ ions at high temperatures. The Raman bands at 304, 307, 395, 639 and 712 cm-1 are the indicative of the presence of tetragonal BaTiO3 phases [9]. Small Raman band at 1058 cm

    -1 represents the presence of some BaCO3 impurities in BaTiO3 samples annealed at 600, 700, 800°C while Raman bands at 805 and 856 cm-1 for BaTiO3 samples annealed at 900°C are related to the oxygen deficiencies. The

    observed Raman bands are consistent with the standard peaks reported for BaTiO3 [17]. The appearance of Raman bands at 712 cm

    -1 and 304 cm-1 can be attributed to the highest longitudinal optical mode with A1 symmetry and the B1 mode indicating the presence of asymmetry within the TiO6 octahedra of BaTiO3, respectively.

    Figure 12 shows the Raman spectra of synthesized SrTiO3 nanoparticles. In general, bulk SrTiO3 particles exhibit a centrosymmetric cubic structure at room temperature, as a result, the first order Raman scattering peaks are not observed. From Figure 11,

  • Citation: Mgbemeje EA, Akhtar SM, Bong YO, Kue CD (2016) Influence of Annealing Temperatures on the Structural, Morphological, Crystalline and Optical properties of BaTiO3 and SrTiO3 Nanoparticles. J Material Sci Eng 5: 277. doi:10.4172/2169-0022.1000277

    Page 4 of 6

    Volume 5 • Issue 5 • 1000277J Material Sci EngISSN: 2169-0022 JME, an open access journal

    SrTiO3 nanoparticles obtain the first order peaks at 152, 182, 183, 187 and 518 cm-1. The Raman shifts at 152 and 182 cm-1 can be ascribed to the band gap (Eg) mode of non-centrosymmetric [18] while, the latter two peak modes (183 and 187 cm-1) is resulted from the polar TO2 and TO4 phonons. SrTiO3 nanoparticles present few second order Raman peaks at 292, 301, 397, 629, 637, 645 cm-1 peaks [4,19], indicating the

    330nm

    1.0

    200 300 400 500 600 700 800

    Wavelength (nm)

    Abs

    orba

    nce

    (a.u

    )

    0.5

    0.0

    357nm

    319nm

    321nm

    352nm

    (BaTiO3 5000C 5h)

    (BaTiO3 6000C 4h)

    (BaTiO3 7000C 3h)

    (BaTiO3 8000C 2h)

    (BaTiO3 9000C 1h)

    Figure 4: UV-visible spectroscopy peaks of BaTiO3 nanoparticles at different annealing temperatures.

    361nm

    334nm

    332nm

    339nm

    2

    1

    0200 300 400 500 600 700 800

    Wavelength (nm)

    Abs

    orba

    nce

    (a.u

    )

    (SrTiO3 5000C 5h)(SrTiO3 6000C 4h)

    (SrTiO3 7000C 3h)

    (SrTiO3 9000C 1h)

    Figure 5: UV-visible spectroscopy peaks of SrTiO3 nanoparticles at different annealing temperatures.

    (a) (b) (c)

    (d)

    CBNU 5.0kV 5.8mm×100k SE(M)

    (e)

    500nm CBNU 5.0kV 5.8mm×100k SE(M) 500nm

    CBNU 5.0kV 5.8mm×50.0k SE(M) 1.00nm CBNU 5.0kV 5.8mm×100k SE(M) 500nm CBNU 5.0kV 5.8mm×100k SE(M) 500nm

    Figure 6: FESEM micrographs of BaTiO3 nanoparticles synthesized at different annealing temperature and time (a) 500°C 5h, (b) 600°C 4h, (c) 700°C 3h, (d) 800°C 2h, and (e) 900°C 1h.

    (a) (b) (c)

    (d)

    CBNU 5.0kV 5.7mm×100k SE(M)

    (e)

    500nm CBNU 5.0kV 5.7mm×100k SE(M) 500nm

    CBNU 10.0kV 5.7mm×100k SE(M) 500nm CBNU 5.0kV 7.9mm×100k SE(M) 500nm CBNU 5.0kV 5.8mm×100k SE(M) 500nm

    Figure 7: FESEM micrographs of SrTiO3 nanoparticles synthesized at different annealing temperature and time (a) 500°C 5h, (b) 600°C 4h, (c) 700°C 3h, (d) 800°C 2h, and (e) 900°C 1h.

    (a) (b) (c)

    (d) (e) (f)

    Figure 8: TEM and SAED images of BaTiO3 and SrTiO3 nanoparticles (a and b) TEM images of BaTiO3, (c) SAED of BaTiO3 (d and e) TEM images of SrTiO3 (f) SAED of SrTiO3.

    4.32k

    3.84k

    3.36k

    2.88k

    2.40k

    1.92k

    1.44k

    0.96k

    0.48k

    0.00k0.00 0.67 1.34 2.01 2.68 3.35 4.02 4.69 5.36 6.03

    Lsec: 27.80 Cnts 0.000 keV Det: Octane Pro Det

    C T

    O

    Ba

    Ti

    Ba

    Ba

    Ba Ba

    Ti

    Figure 9: EDX spectrum of BaTiO3 nanoparticles at 700°C.

    formation of SrTiO3. Moreover, the Raman peaks at 1028, 1292 and 1610 cm-1 belong to the carbonate (SrCO3) impurities in samples, respectively.

    The BET and Langmuir surface area of synthesized BaTiO3 and SrTiO3 nanoparticles are lowered with the increase of annealing temperatures from 600 to 700°C. In general, the particle BET was measured from the N2 adsorption/desorption isotherms at 77.35 K.

    The surface to volume properties of synthesized BaTiO3 and SrTiO3 nanoparticles have been analyzed by measuring the BET specific surface areas (SBET). The surface properties results are summarized in Table 1.

  • Citation: Mgbemeje EA, Akhtar SM, Bong YO, Kue CD (2016) Influence of Annealing Temperatures on the Structural, Morphological, Crystalline and Optical properties of BaTiO3 and SrTiO3 Nanoparticles. J Material Sci Eng 5: 277. doi:10.4172/2169-0022.1000277

    Page 5 of 6

    Volume 5 • Issue 5 • 1000277J Material Sci EngISSN: 2169-0022 JME, an open access journal

    It is assumed that internal pores are absent from the powders, then the average particle sizes of both powders are calculated via the following formula;

    dBET = 6/(ρ × SBET)

    Where ρ is the theoretical density of BaTiO3 which is 6.017 g/cm3

    and that of SrTiO3 is 4.81 g/cm3 [11]. The estimated results are shown in

    Table 1 above. The average particle sizes are increased with the increase of annealing temperature. The estimated values are in excellent with the particle sizes observed in FESEM results. The decrease in surface area at high annealed temperature is usually associated to the removal of surface hydroxyl group on BaTiO3 and SrTiO3 nanoparticles, which might cause the agglomeration of particles.

    ConclusionBaTiO3 and SrTiO3 nanoparticles were successfully synthesized by

    bi-modal distribution solution and which performed the annealing at different temperatures ranging from 500-900°C. The morphological observations shown that BaTiO3 and SrTiO3 nanoparticles increase with increase in annealing temperature. The cubic and tetragonal phases of BaTiO3 and SrTiO3 perovskites were deduced by the XRD and Raman spectra studies. The optical band gap varied from 3.88-3.47 eV for BaTiO3 and 3.73- 3.43 eV for SrTiO3 as the annealing temperature increased. Surface properties shows that the surface areas of BaTiO3 and SrTiO3 nanoparticles gradually decreased as the annealing temperature increased from 500 to 900°C. From this study, we can conclude that both BaTiO3 and SrTiO3 nanoparticles showed similar impact on annealing temperature in terms of their morphological, structural, crystalline and optical properties.

    Acknowledgement

    This work was supported by the Energy Efficiency and Resources of the Korean Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of knowledge Economy (NO. 2013T100200119).

    References

    1. Chien AT, Xu X, Kim JP, Lange FF (1999) Electrical characterization of BaTiO3 heteroepitaxial thin films by hydrothermal synthesis. J Mater Res 14: 3330-3339.

    2. Raveau B (2007) The perovskite history: More than 60 years of research from the discovery of ferroelectricity to colossal magnetoresistance via high T-C superconductivity - preface. Prog Solid State Chem 35: 171-173.

    3. Fuentes S, Muñoz P, Barraza N, Chávez-Ángel E, Sotomayor Torres CM (2015) Structural characterisation of slightly Fe-doped SrTiO3 grown via a sol-gel hydrothermal synthesis. J Sol-Gel Sci Technol 75: 593-601.

    4. Johnston K, Huang X, Neaton JB, Rabe KM (2005) First-principles study of symmetry lowering and polarization in BaTiO3/SrTiO3 superlattices with in-plane expansion. Physical Review B 71.

    5. Kato Y (2015) Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv Mater Interfaces 2: 1500195.

    6. Kamalasanan MN, Chandra S, Joshi PC, Mansingh A (1991) Structural and optical-properties of sol-gel-processed BaTiO3 Ferroelectric Thin-Films. Appl Phys Lett 59: 3547-3549.

    7. Marquez-Herrera A (2012) Effect of substrate temperature on the structural properties, optical and ferroelectric BaTiO3 thin films deposited by RF sputtering. Revista Mexicana De Fisica 58: 308-312.

    8. Mao YB, Banerjee S, Wong S (2003) Hydrothermal synthesis of BaTiO3 and SrTiO3 nanotubes. Abstracts of Papers of the American Chemical Society 226: U690-U690.

    9. Zhan H, Xiangping J, Mianxia Z, Xiaohong L, Zhiyun L (2016) Photoluminescence activity of BaTiO3 nanocrystals dependence on the structural evolution. Journal of Crystal Growth 433: 80-85.

    7.38k

    6.56k

    5.74k

    4.92k

    4.10k

    3.28k

    2.46k

    1.64k

    0.82k

    0.00k0.00 0.67 1.34 2.01 2.68 3.35 4.02 4.69 5.36 6.03

    Lsec: 27.40 Cnts 0.000 keV Det: Octane Pro Det

    CT

    O

    Ti

    Ti

    Sr

    Sr

    Figure 10: EDX Spectrum of SrTiO3 nanoparticles at 700°C.

    BaTiO3 6000C 4h

    0 500 1000

    30000

    25000

    20000

    15000

    10000

    Inte

    nsity

    (a.u

    )

    Raman shift (cm-1)

    BaTiO3 7000C 3h

    BaTiO3 8000C 2h

    BaTiO3 9000C 1h

    261

    304

    517

    254307

    253

    247395

    712

    805856

    1058639

    Figure 11: Raman Spectra of BaTiO3 nanoparticles at different annealing temperatures of 600, 700, 800 and 900°C.

    16000

    14000

    12000

    10000

    8000

    Inte

    nsity

    (a.u

    )

    SrTiO3 7000C 3h

    0 500 1000 1500

    Raman shift (cm-1)

    SrTiO3 8000C 2h

    SrTiO3 9000C 1h

    301

    182

    152

    292

    187

    183 397

    518

    637

    645

    496

    629

    1028

    1028 1292 1610

    Figure 12: Raman Spectra of SrTiO3 nanoparticle at different annealing temperatures of 600, 700, 800 and 900°C.

    Sample name/Temp(°C)

    BET Surface Area (m2g)

    Langmuir Surface Area (m2g) dBET (nm)

    BaTiO3- 600 16.70 23.82 59.7BaTiO3- 700 11.00 15.60 90.6SrTiO3- 600 18.49 26.39 67.0SrTiO3- 700 16.80 23.96 74.0

    Table 1: BET and dBET surface areas of BaTiO3 and SrTiO3 annealed at 600°C and 700°C.

    http://dx.doi.org/10.1557/JMR.1999.0451http://dx.doi.org/10.1557/JMR.1999.0451http://dx.doi.org/10.1557/JMR.1999.0451http://dx.doi.org/10.1016/j.progsolidstchem.2007.04.001http://dx.doi.org/10.1016/j.progsolidstchem.2007.04.001http://dx.doi.org/10.1016/j.progsolidstchem.2007.04.001http://dx.doi.org/10.1007/s10971-015-3730-4http://dx.doi.org/10.1007/s10971-015-3730-4http://dx.doi.org/10.1007/s10971-015-3730-4http://dx.doi.org/ 10.1103/PhysRevB.71.100103http://dx.doi.org/ 10.1103/PhysRevB.71.100103http://dx.doi.org/ 10.1103/PhysRevB.71.100103http://dx.doi.org/10.1002/admi.201500195http://dx.doi.org/10.1002/admi.201500195http://dx.doi.org/10.1063/1.105653http://dx.doi.org/10.1063/1.105653http://dx.doi.org/10.1063/1.105653http://dx.doi.org/10.1039/b210633ghttp://dx.doi.org/10.1039/b210633ghttp://dx.doi.org/10.1039/b210633ghttp://dx.doi.org/10.1016/j.jcrysgro.2015.10.009http://dx.doi.org/10.1016/j.jcrysgro.2015.10.009http://dx.doi.org/10.1016/j.jcrysgro.2015.10.009

  • Citation: Mgbemeje EA, Akhtar SM, Bong YO, Kue CD (2016) Influence of Annealing Temperatures on the Structural, Morphological, Crystalline and Optical properties of BaTiO3 and SrTiO3 Nanoparticles. J Material Sci Eng 5: 277. doi:10.4172/2169-0022.1000277

    Page 6 of 6

    Volume 5 • Issue 5 • 1000277J Material Sci EngISSN: 2169-0022 JME, an open access journal

    10. Huang ST, William Lee WL, Chang JL, Chen CC (2014) Hydrothermalsynthesis of SrTiO3 nanocubes: Characterization, photocatalytic activities, anddegradation pathway. Journal of the Taiwan Institute of Chemical Engineers45: 1927-1936.

    11. Zeng M (2011) Surface reaction characteristics at low temperature synthesisBaTiO3 particles by barium hydroxide aqueous solution and titaniumtetraisopropoxide. Appl Surf Sci 257: 6636-6643.

    12. Zhang YF, Xu G, Wei X, Ren ZH, Liu Y, et al. (2012) Hydrothermal synthesis,characterization and formation mechanism of self-assembled mesoporousSrTiO3 spheres assisted with Na2SiO3 center dot 9H(2)O. CrystEngComm 14:3702-3707.

    13. Xu G, Tao Z, Zhao Y, Zhang Y, Ren Z (2013) Solvothermal synthesis,characterization and formation mechanism of single-crystalline SrTiO3 densespheres with monoethanolamine as reaction medium solvent. CrystEngComm15: 1439-1444.

    14. Manzoor U, Kim DK (2007) Synthesis of nano-sized barium titanate powder by

    solid-state reaction between barium carbonate and titania. J Mater Sci Technol 23: 655-658.

    15. Ren XC, Nie WL, Bai Y, Qiao LJ (2015) Effect of sintering temperature andoxygen atmosphere on electrocaloric effect of BaTiO3 ceramics. EuropeanPhysical Journal B 88: 232.

    16. Saleem M, Song JS, Kim I, Jeong SJ (2015) effect of sintering temperature onelectrical and dielectric properties of Ni based BaTiO3 composite. Journal ofNanoelectronics and Optoelectronics 10: 386-390.

    17. Chinchamalatpure VR, Ghosh SA, Chaudhari GN (2010) Synthesis andelectrical characterization of BaTiO3 thin films on Si(100). Materials Sciences and Applications 1: 187-190.

    18. Sirenko AA, Akimov IA, Fox J, Xi XX (1999) Observation of the first-order Raman scattering in SrTiO3 thin films. Phys Rev Lett 82: 4500-4503.

    19. Maddaiah M, Babu Naidu KC, Rani DJ, Subbarao T (2015) Synthesis andcharacterization of Cuo-Doped SrTiO3 ceramics. Journal of Ovonic Research11: 99-106.

    http://dx.doi.org/10.1016/j.jtice.2014.02.003http://dx.doi.org/10.1016/j.jtice.2014.02.003http://dx.doi.org/10.1016/j.jtice.2014.02.003http://dx.doi.org/10.1016/j.jtice.2014.02.003http://dx.doi.org/10.1016/j.apsusc.2011.02.090http://dx.doi.org/10.1016/j.apsusc.2011.02.090http://dx.doi.org/10.1016/j.apsusc.2011.02.090http://www.medsci.cn/sci/show_paper.asp?id=64122904110http://www.medsci.cn/sci/show_paper.asp?id=64122904110http://www.medsci.cn/sci/show_paper.asp?id=64122904110http://www.medsci.cn/sci/show_paper.asp?id=64122904110http://dx.doi.org/10.1039/C2CE26808Fhttp://dx.doi.org/10.1039/C2CE26808Fhttp://dx.doi.org/10.1039/C2CE26808Fhttp://dx.doi.org/10.1039/C2CE26808Fhttp://dx.doi.org/10.1039/C2CE26808Fhttp://dx.doi.org/10.1039/C2CE26808Fhttp://dx.doi.org/10.1039/C2CE26808Fhttp://dx.doi.org/10.1140/epjb/e2015-60445-2http://dx.doi.org/10.1140/epjb/e2015-60445-2http://dx.doi.org/10.1140/epjb/e2015-60445-2http://dx.doi.org/10.1166/jno.2015.1755http://dx.doi.org/10.1166/jno.2015.1755http://dx.doi.org/10.1166/jno.2015.1755http://dx.doi.org/10.4236/msa.2010.14029http://dx.doi.org/10.4236/msa.2010.14029http://dx.doi.org/10.4236/msa.2010.14029http://dx.doi.org/10.1103/PhysRevLett.82.4500http://dx.doi.org/10.1103/PhysRevLett.82.4500http://www.chalcogen.ro/99_Naidu.pdfhttp://www.chalcogen.ro/99_Naidu.pdfhttp://www.chalcogen.ro/99_Naidu.pdf

    TitleCorresponding authorAbstractKeywordsIntroductionExperimentalMaterialsSynthesis of BaTiO3 and SrTiO3 Characterization

    Results and DiscussionConclusionAcknowledgementFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7Figure 8Figure 9Figure 10Figure 11Figure 12Table 1References