in-won lee, professor, pe in-won lee, professor, pe structural dynamics & vibration control lab....

66
In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Structural Dynamics & Vibration Control Lab. Control Lab. Korea Advanced Institute of Science & Technology International Conference on Numerical Methods & Computational Mec International Conference on Numerical Methods & Computational Mec hanics hanics The University of Miskolc, Hungary The University of Miskolc, Hungary August 26, 1998 August 26, 1998 Efficient Free Vibration Analysis of Large Structures with Proportional and Non- Proportional Dampers

Upload: gervais-banks

Post on 03-Jan-2016

248 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

In-Won Lee, Professor, PEIn-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab.Structural Dynamics & Vibration Control Lab. Korea Advanced Institute of Science & Technology

International Conference on Numerical Methods & Computational MechanicsInternational Conference on Numerical Methods & Computational MechanicsThe University of Miskolc, HungaryThe University of Miskolc, HungaryAugust 26, 1998August 26, 1998

Efficient Free Vibration Analysis of Large Structures with Proportional and Non-Proportional Dampers

Page 2: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

2

Problem Definition

Proposed Method

Numerical Examples

Conclusions

OUTLINE

Page 3: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

3

PROBLEM DEFINITION

Dynamic Equation of Motion

where : Mass matrix, Positive definite

: Damping matrix

: Stiffness matrix, Positive semi-definite

: Displacement vector

: Load vector

: Order of K, C and M ( = 1,000 ~ 100,000)

)()()()( tftuKtuCtuM

M

C

K)(tu

)(tfn

(1)

Page 4: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

4

Methods of Dynamic Analysis Step by step integration method Mode superposition method

Mode Superposition Method Free vibration analysis must be first performed. Most of computation time is required for free

vibration analysis.

An efficient solution technique is required !!!An efficient solution technique is required !!!

Page 5: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

5

Condition of Proportional Damping

Ex. : Rayleigh Damping

CMKKMC 11

KMC

Page 6: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

6

),...,2,1( npiMK iii

i

Eigenvalue Problem ( Proportionally Damped Case )

(3): Orthogonality of eigenvector

: ith eigenvalue(real)

: ith eigenvector(real)

: Number of eigenpairs to be sought

i

),...,2,1,( pjiM ijjTi

p

where

(2)

Page 7: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

7

Current Methods for Proportionally Damped Case Subspace iteration method Determinant search method Householder-QR-inverse iteration method

Techniques Used by Commercial Programs ABAQUS - Subspace iteration method ADINA - Subspace iteration method

- Determinant search method ANSYS - Subspace iteration method - Householder-QR method NASTRAN - Givens method - Inverse power method SAP Series - Subspace iteration method

Page 8: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

8

npiBA iii 2,,2,1 (4)

(5)

: Orthogonality of eigenvector

pjiB ijjTi ,,2,1,

: ith eigenvalue(complex conjugate)

: ith eigenvector(complex conjugate)

: Number of eigenpairs to be sought

i

ii

ii

where

M

KA

0

0

0M

MCB

Eigenvalue Problem ( Non-Proportionally Damped Case )

p

Page 9: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

9

Current Methods for Non-Proportionally Damped Case

Transformation method: Kaufman (1974)

Perturbation method: Meirovitch et al (1979)

Vector iteration method: Gupta (1974; 1981)

Subspace iteration method: Leung (1995)

Lanczos method: Chen (1993)

Efficient Methods

Page 10: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

10

PROPOSED METHOD Find p Smallest Eigenpairs

p 21

iii BA Solve

ijjTi B Subject to

For i iand pi ,,2,1

: close or multiple roots

BA

pT IB

where

p ,,, 21

pdiag ,,, 21

If p=1, then distinct root

Page 11: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

11

For Proportionally Damped Case

(real)

For Non-Proportionally Damped Case

(complex conjugate)

KA

0M

MCB

ii

ii

M

KA

0

0

MB

ii

Page 12: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

12

Relations between and Vectors in the Subspace of

BA

p ,,, 21

pdiag ,,, 21 where

X

(6)

(7)

(8)

XZ

pT IBXX

Let be the vectors in the subspace of and be orthonormal with respect to , then

pxxxX ,,, 21

(9)

(10)

B

X

Page 13: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

13

ZDZ

where AXXdddD Tp ,,, 21 : Symmetric

Let (12)

Introducing Eq.(9) into Eq.(6)

BXZAXZ (11)

BXDZAXZ

BXDAX

or piBXdAx ii ,,2,1

Then

or

(13)

(14)

(15)

Page 14: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

14

Multiple or Close Eigenvalues

Multiple eigenvalues case : is a diagonal matrix. Eigenvalues :

Eigenvectors :

Close eigenvalues case : is not a diagonal matrix. Solve the small standard eigenvalue problem.

Get the following eigenpairs.

Eigenvalues :

Eigenvectors :

ZDZ

D

D

XZ

DX

(12)

(9)

Page 15: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

15

Find the Vectors in the Subspace of the Eigenvectors .

Rotate the Vectors in the Subspace to Find the Eigenvectors.

Strategy

),...,2,1( pixi ),...,2,1( pii

Page 16: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

16

pidXBxA ki

kki ,,2,10)1()1()1(

pkTk IXMX )1()1( )(

(16)

(17)

)()()1( ki

ki

ki ddd

)()()1( ki

ki

ki xxx

)1()1(2

)1(1

)1( ,...,, kp

kkk xxxX

,)(kid )(k

ix

where

: unknown incremental values

(18)

(19)

(20)

Newton-Raphson Technique

Page 17: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

17

)()()()( ki

kki

ki dXBAxr where : residual vector

)()()()()()( ki

ki

kki

kii

ki rdBXxBdxA

0)( )()( ki

Tk xBX

(21)

(22)

Introducing Eqs.(18) and (19) into Eqs.(16) and (17) and neglecting nonlinear terms

Matrix form of Eqs.(21) and (22)

pi

r

d

x

X

BXBdA ki

ki

ki

Tk

kkii

,,2,1

00B)(

)(

)(

)(

)(

)()(

(23)

Coefficient matrix : • Symmetric• Nonsingular

Page 18: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

18

Modified Newton-Raphson Technique

Coefficient matrix : • Symmetric• Nonsingular

pi

rdx

XBXBdA k

ik

i

ki

Tk

kii

,...,,

B)(

)(

)(

)(

)(

)()(

21

00

0

)()()1( ki

ki

ki ddd

)()()1( ki

ki

ki xxx

(24)

(19)

(18)

Page 19: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

19

Intermediate results by Subspace iteration method : Proportionally damped case Determinant search method

Results by Approximate Solution Methods such as Static or dynamic condensation method Lanczos method : Non-Proportionally damped case

Starting Eigenpairs

Page 20: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

20

Step

Step 2: Solve for and )(kix )(k

id

00B)(

)(

)(

)(

)(

)()0( ki

ki

ki

Tk

kii r

d

x

X

BXBdA

Step 3: Compute)()()1( k

ik

ik

i ddd

)()()1( ki

ki

ki xxx

Step 1: Start with approximate eigenpairs ,)0(X )0(D

,)()0( kiix pid k

iii ,,2,1)()0(

Page 21: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

21

Step 4: Check the error norm.

Error norm =

If the error norm is more than the tolerance, then go to Step 2 and if not, go to Step 5.

Step 5: Check if is a diagonal matrix, go to

Step 6, if not, go to Step 7.

2

)(2

)()()(

ki

ki

kki

xA

dXBxA

D

Page 22: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

22

Step 7: Close case

Step 6: Multiple case

XD

Go to step 8.

Go to step 8.

ZDZ

XZ

Step 8: Check the error norm.

2

2

i

iii

A

BA

Error norm =

Stop !

Page 23: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

23

NUMERICAL EXAMPLES: Proportionally Damped Case Structures

Three-dimensional framed structure(distinct) Simply-supported rectangular plate(multiple & close) Cooling tower(multiple)

Analysis Methods Proposed method Subspace iteration method Determinant search method

Comparisons CPU time Convergence

IRIS4D20-S17 with 10 MIPS, 0.9 MFLOPS

Page 24: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

24

Three-Dimensional Framed Structure (Distinct Case)

Elevation Plan

Material Property Young’s modulus : 2.068E10 Pa

Mass density : 5.154E2 kg/m3

- Column in Front Building

I : 8.631E-3 m4 , A : 0.2787 m2

- Column in Rear Building

I : 10.787E-3 m4 , A : 0.3716 m2

- All Beams into x-Direction

I : 6.473E-3 m4 , A : 0.6906 m2

- All Beams into y-Direction

I : 8.631E-3 m4 , A : 0.2787 m2

System Data Number of equations : 468

Number of matrix elements : 42498

Maximum half-bandwidth : 138

Mean half-bandwidth : 91

Page 25: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

25

Mode Number Eigenvalues

1 0.424

2 0.550

3 0.838

4 1.070

5 1.600

6 2.147

7 2.528

8 3.302

9 3.755

10 4.372

Eigenvalues (Distinct), 3-D. Frame

Page 26: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

26

Analysis p = 10 p = 15

Method EN=10-6 EN=10-9 EN=10-6 EN=10-9

Proposed

Method

133.9

(1.0)

144.4

(1.0)

193.8

(1.0)

217.4

(1.0)

Subspace

Iteration

209.1

(1.6)

245.1

(1.7)

621.4

(3.2)

723.9

(3.3)

Determinant

Search

619.1

(4.6)

636.2

(4.4)

1,090.7

(5.6)

1,111.4

(5.1)

)1(

)()1(

k

i

ki

ki

Starting values : Subspace iteration method Relative error = 10-1

Relative error =

Error norm = 2

)(2

)()( )(k

i

ki

ki

K

MK

p = No. of eigenpairs

Solution Time (sec), 3-D. Frame

Page 27: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

27

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5Itera tio n N u m b er

1 .0 E -1 1

1 .0E -1 0

1 .0 E -9

1 .0 E -8

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0E + 0E

rror

Nor

m

Convergence of the 12th eigenpair3-D. framed structure (distinct)

: Proposed Method : Subspace Iteration Method (q=2p) : Determinant Search Method

Error Limit

Page 28: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

28

Simply-Supported Rectangular Plate

Material Properties

Young’s Modulus: 2.0E11 Pa

Mass Density: 7.850E3 kg/m3

Poisson Ratio: 0.3

Thickness: 0.01m

System Data

Number of Equations: 701

Number of Matrix Elements: 62,301

Maximum Half Bandwidths: 133

Mean Half Bandwidths: 89

(a) Multiple eigenvalues (b) Close eigenvalues

Page 29: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

29

Mode Number Eigenvalues

1 4.44

2 29.14

3 29.14

4 73.66

5 130.48

6 130.48

7 208.66

8 208.66

9 400.98

10 441.73

Eigenvalues (Multiple), Square Plate

Page 30: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

30

Analysis p = 10 p = 15

Method EN=10-6 EN=10-9 EN=10-6 EN=10-9

Proposed

Method

138.1

(1.0)

172.4

(1.0)

213.5

(1.0)

245.9

(1.0)

Subspace

Iteration

221.0

(1.6)

274.6

(1.6)

487.4

(2.3)

607.2

(2.5)

Determinant

Search

1,072.4

(7.8)

1,118.6

(6.5)

1,570.2

(7.4)

1,618.8

(6.6)

)1(

)()1(

k

i

ki

ki

Starting values : Subspace iteration method Relative error = 10-1

Relative error =

Error norm = 2

)(2

)()( )(k

i

ki

ki

K

MK

p = No. of eigenpairs

Solution Time (sec), Square Plate

Page 31: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

31

1 2 3 4 5 6 7 8 9 1 0 1 1Ite ra tio n N u m b er

1 .0 E -1 1

1 .0 E -1 0

1 .0 E -9

1 .0 E -8

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0 E + 0E

rror

Nor

m

Convergence of the 8th eigenpairSquare plate (multiple)

: Proposed Method : Subspace Iteration Method (q=2p) : Determinant Search Method

Error Limit

Page 32: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

32

Mode Number Eigenvalues

1 4.07

2 27.24

3 28.17

4 69.62

5 125.93

6 128.48

7 199.86

8 200.93

9 362.45

10 384.55

Eigenvalues (Close), Plate

Page 33: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

33

)1(

)()1(

k

i

ki

ki

Starting values : Subspace iteration method Relative error = 10-1

Relative error =

Error norm = 2

)(2

)()( )(k

i

ki

ki

K

MK

p = No. of eigenpairs

Solution Time (sec), Plate

Analysis p = 10 p = 15

Method EN=10-6 EN=10-9 EN=10-6 EN=10-9

Proposed

Method

156.5

(1.0)

177.4

(1.0)

237.9

(1.0)

290.8

(1.0)

Subspace

Iteration

169.7

(1.1)

291.9

(1.7)

350.9

(1.5)

742.6

(2.6)

Determinant

Search

813.2

(5.2)

832.1

(4.7)

1,146.7

(4.8)

1,194.1

(4.1)

Page 34: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

34

1 3 5 7 9 1 1 1 3 1 5Itera tio n N u m b er

1 .0 E -1 1

1 .0E -1 0

1 .0E -9

1 .0 E -8

1 .0 E -7

1 .0 E -6

1 .0E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0 E + 0E

rror

Nor

m

Convergence of the 8th eigenpairPlate (close)

: Proposed Method : Subspace Iteration Method (q=2p) : Determinant Search Method

Error Limit

Page 35: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

35

Material Properties

Young’s Modulus: 4.32E8 lb/ft2

Mass Density: 4.66 slug/ft3

Poisson Ratio: 0.15

Shell Thickness: 0.583 ft

System Data

Number of Equations: 2,448

Number of Matrix Elements: 490,572

Maximum Half Bandwidths: 2,358

Mean Half Bandwidths: 201

Cooling Tower(Multiple Case)

Elevation Plan

Page 36: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

36

Mode Number Eigenvalues

1 2.323

2 2.323

3 2.428

4 2.428

5 2.571

6 2.571

7 3.302

8 3.302

9 4.015

10 4.015

Eigenvalues (Multiple), Cooling Tower

Page 37: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

37

)1(

)()1(

k

i

ki

ki

Starting values : Subspace iteration method Relative error = 10-1

Relative error =

Error norm = 2

)(2

)()( )(k

i

ki

ki

K

MK

p = No. of eigenpairs

Solution Time (sec), Cooling Tower

Analysis p = 10 p = 20

Method EN=10-6 EN=10-9 EN=10-6 EN=10-9

Proposed

Method

2,785.8

(1.0)

3,067.7

(1.0)

5,104.2

(1.0)

5,576.5

(1.0)

Subspace

Iteration

4,584.9

(1.6)

6,182.5

(2.0)

6,383.6

(1.3)

15,829.3

(2.8)

Determinant

Search

No Sol. No Sol. No Sol. No Sol.

Page 38: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

38

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 21 23 2 5 27 2 9Itera tio n N u m b er

1 .0 E -1 1

1 .0E -1 0

1 .0 E -9

1 .0 E -8

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0E + 0E

rror

Nor

m

Convergence of the 10th eigenpairCooling tower (multiple)

: Proposed Method : Subspace Iteration Method (q=2p)

Error Limit

Page 39: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

39

NUMERICAL EXAMPLES:Non-Proportionally Damped Case Structures

Cantilever beam(distinct) Grid structure(multiple) Three-dimensional framed structure(close)

Analysis Methods Proposed method Subspace iteration method (Leung 1988) Lanczos method (Chen 1993)

Comparisons Solution time(CPU) Convergence

Convex with 100 MIPS, 200 MFLOPS

Page 40: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

40

Cantilever Beam with Lumped Dampers (Distinct Case)

1 2 3 4 99 100 101

C

5

Material PropertiesTangential Damper :c = 0.3

Rayleigh Damping : = = 0.001

Young’s Modulus :1000

Mass Density :1

Cross-section Inertia :1

Cross-section Area :1

System DataNumber of Equations :200

Number of Matrix Elements :696

Maximum Half Bandwidths :4

Mean Half Bandwidths :4

Page 41: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

41

Proposed MethodMode

Number

Error Norm ofStarting Eigenpair(Lanczos method)

Number ofIterations

Eigenvalue Error Norm

12345678910

0.234069E-030.234069E-030.192793E-030.192793E-030.148072E-040.148072E-040.619329E-020.619329E-020.377004E+000.377004E+00

1111111111

-2.57457 + j 3.17201-2.57457 - j 3.17201-1.53800 + j 18.3566-1.53800 - j 18.3566-1.69581 + j 39.6477-1.69581 - j 39.6477-2.43492 + j 61.0104-2.43492 - j 61.0104-3.78360 + j 82.3222-3.78360 - j 82.3222

0.232258E-070.232258E-070.428428E-090.428428E-090.727353E-100.727353E-100.204824E-100.204824E-100.997372E-070.997372E-07

Results of Cantilever Beam Structure (Distinct)

Number of Lanczos vectors = 20

Page 42: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

42

Method CPU time in seconds Ratio

Proposed method(Lanczos method + Iteration scheme)

Subspace Iteration Method

76.10(10.42 + 65.64)

100.94

1.00

1.33

CPU Time for 10 Lowest Eigenpairs, Cantilever Beam

Page 43: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

43

2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 11 0

N u m b er o f G en era ted L a n czos V ecto rs

1 .0 E -8

1 .0E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0E + 0E

rror

Nor

m

E rror L im it

Convergence by Lanczos method(Chen 1993)Cantilever beam (distinct)

Starting values of proposed method

: 1st, 2nd eigenpairs : 3rd, 4th eigenpairs : 5th, 6th eigenpairs : 7th, 8th eigenpairs : 9th, 10th eigenpairs

Page 44: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

44

1 2 3 4 5

Itera tio n N u m b er

1 .0 E -9

1 .0 E -8

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0 E + 0E

rror

Nor

m

E rro r L im it

Convergence of the 1st eigenpairCantilever beam (distinct)

: Proposed Method : Subspace Iteration Method (q=2p)

Page 45: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

45

1 2 3 4 5 6 7 8 9

Ite ra tio n N u m b er

1 .0 E -11

1 .0E -1 0

1 .0E -9

1 .0 E -8

1 .0 E -7

1 .0 E -6

1 .0E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0 E + 0E

rror

Nor

m

E rror L im it

Convergence of the 5th eigenpairCantilever beam (distinct)

: Proposed Method : Subspace Iteration Method (q=2p)

Page 46: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

46

Grid Structure with Lumped Dampers (Multiple Case)

Material Properties

Tangential Damper :c = 0.3

Rayleigh Damping : = = 0.001

Young’s Modulus :1,000

Mass Density :1

Cross-section Inertia :1

Cross-section Area :1

System Data

Number of Equations :590

Number of Matrix Elements :8,115

Maximum Half Bandwidths :15

Mean Half Bandwidths :[email protected]=10

[email protected]=

10

Page 47: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

47

Proposed MethodMode

Number

Error Norm ofStarting Eigenpair(Lanczos method)

Number ofIterations

Eigenvalue Error Norm

123456789101112

0.467621E-070.325701E-050.467621E-070.325701E-050.170965E-060.823644E-060.170965E-060.823644E-060.250670E-040.786392E-000.250670E-040.786392E-00

010100001111

-0.09590 + j 8.66792-0.09590 + j 8.66792-0.09590 - j 8.66792-0.09590 - j 8.66792-0.60556 + j 15.5371-0.60556 +j 15.5371-0.60556 - j 15.5371-0.60556 - j 15.5371-0.57725 + j 20.7299-0.57725 + j 20.7299-0.57725 - j 20.7299-0.57725 - j 20.7299

0.467621E-070.805278E-100.467621E-070.805278E-100.170965E-060.823644E-060.170965E-060.823644E-060.344167E-100.432693E-090.344167E-100.432693E-09

Results of Grid Structure (Multiple)

Number of Lanczos vectors = 48

Page 48: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

48

Method CPU time in seconds Ratio

Proposed method(Lanczos method + Iteration scheme)

Subspace Iteration Method

872.67(214.28 + 658.39)

3,096.62

1.00

3.55

CPU Time for 12 Lowest Eigenpairs, Grid Structure

Page 49: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

49

24 3 6 4 8 6 0 7 2 84 96 10 8

N u m b er o f G en era ted L a n czos V ec to rs

1 .0 E -10

1 .0E -9

1 .0E -8

1 .0 E -7

1 .0E -6

1 .0 E -5

1 .0 E -4

1 .0E -3

1 .0 E -2

1 .0E -1

1 .0E + 0E

rror

Nor

m

E rro r L im it

Convergence by Lanczos method(Chen 1993)Grid structure (multiple)

: 1st, 3rd eigenpairs : 2nd, 4th eigenpairs : 5th, 7th eigenpairs : 6th, 8th eigenpairs : 9th, 11th eigenpairs : 10th, 12th eigenpairs

Starting values of proposed method

Page 50: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

50

Convergence of the 2nd eigenpairGrid structure (multiple)

: Proposed Method : Subspace Iteration Method (q=2p)

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 13 1 4 1 5

Itera tio n N u m b er

1 .0 E -1 1

1 .0 E -1 0

1 .0 E -9

1 .0 E -8

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0 E + 0E

rror

Nor

m

E rro r L im it

Page 51: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

51

Convergence of the 9th eigenpairGrid structure (multiple)

: Proposed Method : Subspace Iteration Method (q=2p)

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5 2 7 2 9 3 1 3 3 3 5 3 7 3 9 4 1 4 3 4 5 4 7 4 9

Itera tio n N u m b er

1 .0 E -1 1

1 .0 E -1 0

1 .0 E -9

1 .0 E -8

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0 E + 0E

rror

Nor

m

E rro r L im it

Page 52: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

52

Three-Dimensional Framed Structure with Lumped Dampers(Close Case)

[email protected]=6.02

6@3=

18

2@3=6

[email protected]=18.06

12@3=

36

Page 53: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

53

Material Properties

Lumped Damper :c = 12,000.0

Rayleigh Damping : =-0.1755 = 0.02005

Young’s Modulus :2.1E+11

Mass Density :7,850

Cross-section Inertia :8.3E-06

Cross-section Area :0.01

System Data

Number of Equations :1,128

Number of Matrix Elements :135,276

Maximum Half Bandwidths :300

Mean Half Bandwidths :120

Page 54: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

54

Proposed MethodMode

Number

Error Norm ofStarting Eigenpair(Lanczos method)

Number ofIterations

Eigenvalue Error Norm

123456789101112

0.579542E-060.579542E-060.567549E-060.567549E-060.929150E-050.929150E-050.767207E-030.767207E-030.910611E-000.910611E-000.920451E-000.920451E-00

00001133

11111111

-0.13763 + j 3.08907-0.13763 - j 3.08907-0.13803 + j 3.09109-0.13803 - j 3.09109-3.52574 + j 2.20649-3.52574 - j 2.20649-0.24236 + j 4.16556-0.24236 – j 4.16556-1.64294 + j 7.02958-1.64294 - j 7.02958-1.65070 + j 7.03590-1.65070 - j 7.03590

0.579542E-060.579542E-060.567549E-060.567549E-060.421992E-090.421992E-090.614880E-060.614880E-060.624657E-060.624657E-060.660196E-060.660196E-06

Results of Three-Dimensional Framed Structure (Close)

Number of Lanczos vectors = 48

Page 55: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

55

Method CPU time in seconds Ratio

Proposed method(Lanczos method + Iteration scheme)

Subspace Iteration Method

8,335.20(918.15 + 7,417.05)

9,644.75

1.00

1.16

CPU Time for 12 Lowest Eigenpairs, 3-D. Framed Structure

Page 56: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

56

Convergence by Lanczos method(Chen 1993)3-D. framed structure (close)

: 1st, 2nd eigenpairs : 3rd, 4th eigenpairs : 5th, 6th eigenpairs : 7th, 8th eigenpairs

: 9th, 10th eigenpairs : 11th, 12th eigenpairs

Starting values of proposed method

2 4 3 6 4 8 6 0 7 2 8 4 96 10 8

N u m b er o f G en era ted L a n czos V ecto rs

1 .0 E -8

1 .0E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0E + 0E

rror

Nor

m

E rror L im it

Page 57: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

57

Convergence of the 9th eigenpair3-D. framed structure (close)

: Proposed Method : Subspace Iteration Method (q=2p)

1 3 5 7 9 1 1 1 3 1 5 1 7 19 2 1 23 2 5 27 2 9

Ite ra tio n N u m b er

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0E -2

1 .0E -1

1 .0 E + 0E

rror

Nor

m

E rror L im it

Page 58: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

58

CONCLUSIONS

The proposed method is simple guarantees numerical stability converges fast.

An efficient solution technique !

Page 59: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

59

Thank you for your attention.

Page 60: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

60

0 2 4 6 8

Ite ra tio n N u m b er

1 .0 E -11

1 .0E -1 0

1 .0E -9

1 .0 E -8

1 .0 E -7

1 .0 E -6

1 .0E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0 E + 0E

rror

Nor

m

E rro r L im it

Convergence of the 3rd eigenpairCantilever beam (distinct)

: Proposed Method : Subspace Iteration Method

Page 61: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

61

0 2 4 6 8 1 0 12 1 4

Itera tio n N u m b er

1 .0 E -1 1

1 .0 E -1 0

1 .0 E -9

1 .0 E -8

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0 E + 0E

rror

Nor

m

E rro r L im it

Convergence of the 7th eigenpairCantilever beam (distinct)

: Proposed Method : Subspace Iteration Method

Page 62: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

62

0 2 4 6 8 1 0 1 2 14 16 1 8

Ite ra tio n N u m b er

1 .0 E -9

1 .0 E -8

1 .0 E -7

1 .0E -6

1 .0E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0 E + 0E

rror

Nor

m

E rror L im it

Convergence of the 9th eigenpairCantilever beam (distinct)

: Proposed Method : Subspace Iteration Method

Page 63: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

63

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

Itera tio n N u m b er

1 .0 E -1 1

1 .0 E -1 0

1 .0 E -9

1 .0 E -8

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0 E + 0E

rror

Nor

m

E rro r L im it

Convergence of the 10th eigenpairGrid structure (multiple)

: Proposed Method : Subspace Iteration Method

Page 64: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

64

0 2 4 6 8 1 0 12 1 4

Itera tio n N u m b er

1 .0 E -1 1

1 .0 E -1 0

1 .0 E -9

1 .0 E -8

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0 E + 0E

rror

Nor

m

E rro r L im it

Convergence of the 5th eigenpair3-D. framed structure (close)

: Proposed Method : Subspace Iteration Method

Page 65: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

65

0 2 4 6 8 10 12 1 4 1 6

Ite ra tio n N u m b er

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0E -2

1 .0E -1

1 .0 E + 0E

rror

Nor

m

E rror L im it

Convergence of the 7th eigenpair3-D. framed structure (close)

: Proposed Method : Subspace Iteration Method

Page 66: In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced

Structural Dynamics & Vibration Control Lab., KAIST, Korea

66

0 2 4 6 8 1 0 12 1 4 1 6 1 8 20 2 2 24 2 6 2 8 3 0 3 2

Ite ra tio n N u m b er

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0E -2

1 .0E -1

1 .0 E + 0E

rror

Nor

m

E rror L im it

Convergence of the 11th eigenpair3-D. framed structure (close)

: Proposed Method : Subspace Iteration Method