in measurements 10 hz data of 3d wind speed t sonic h 2 o co 2 pressure out fluxes 0.000556 hz data...

17
Methods for processing eddy Methods for processing eddy covariance data: (re-)inventing covariance data: (re-)inventing the wheel. the wheel. Asko Noormets Asko Noormets

Upload: doreen-lawson

Post on 19-Jan-2018

223 views

Category:

Documents


0 download

DESCRIPTION

Theoretical assumptions (D. Baldocchi, J. Finnigan et al.) Conservation of mass, i.e. input+output+storage=0 Reynolds’ decomposition Averaging done over long enough period (accommodate larger eddies), and over short enough periods (not be affected by diurnal patterns)

TRANSCRIPT

Page 1: IN Measurements 10 Hz data of 3D wind speed T sonic H 2 O CO 2 Pressure OUT Fluxes 0.000556 Hz data of Fc (carbon flux) LE (water flux) Hs (sensible heat

Methods for processing eddy covariance Methods for processing eddy covariance data: (re-)inventing the wheel. data: (re-)inventing the wheel.

Asko NoormetsAsko Noormets

Page 2: IN Measurements 10 Hz data of 3D wind speed T sonic H 2 O CO 2 Pressure OUT Fluxes 0.000556 Hz data of Fc (carbon flux) LE (water flux) Hs (sensible heat

IN

Measurements10 Hz data of • 3D wind speed• Tsonic

• H2O

• CO2

• Pressure

OUT

Fluxes0.000556 Hz data of • Fc (carbon flux)• LE (water flux)• Hs (sensible heat flux)

Proc

essi

ng

Page 3: IN Measurements 10 Hz data of 3D wind speed T sonic H 2 O CO 2 Pressure OUT Fluxes 0.000556 Hz data of Fc (carbon flux) LE (water flux) Hs (sensible heat

Theoretical assumptions (D. Baldocchi, J. Finnigan et al.)

• Conservation of mass, i.e. input+output+storage=0

• Reynolds’ decomposition• Averaging done over long enough period (accommodate larger

eddies), and over short enough periods (not be affected by diurnal patterns)

uuu

Page 4: IN Measurements 10 Hz data of 3D wind speed T sonic H 2 O CO 2 Pressure OUT Fluxes 0.000556 Hz data of Fc (carbon flux) LE (water flux) Hs (sensible heat

Flux = change in mixing ratio (I)+ advection (II)+ flux divergence (vertical, lateral & longitudinal) (III)+ biological source/sink strength (IV)

Ideally:I=0, II=0, III=0

In reality:I II III 0Measured covariance = true covariance + sensor bias

),,( zyxSyF

xF

zF

tcw

tcv

tcu

tc

dtcd

B

yxz

I II III IV

'' cwF

Page 5: IN Measurements 10 Hz data of 3D wind speed T sonic H 2 O CO 2 Pressure OUT Fluxes 0.000556 Hz data of Fc (carbon flux) LE (water flux) Hs (sensible heat

Processing steps (D. Billesbach)

1. Replace spikes (>6) with the moving window mean. 2. Correct sonic temperature (CSAT) for humidity & pressure (IRGA). 3. Calculate deviations of each measurement from a 30-minute block average. 4. Calculate rotation angles using the block means (vmean = 0; wmean = 0).

5. Calculate all possible covariance pairs and rotated covariances. 6. Calculate density correction terms for LE and Fc (WPL). 7. Calculate the frequency correction factor for the sonic anemometer. 8. Calculate the frequency correction factor for the sonic anemometer and IRGA

combination. 9. Adjust the WPL H term by the sonic frequency correction factor. 10. Adjust Fc and the WPL LE terms by the sonic-IRGA frequency correction factor. 11. Calculate final LE and Fc, that are rotated, adjusted for density and frequency bias.

******

*

Page 6: IN Measurements 10 Hz data of 3D wind speed T sonic H 2 O CO 2 Pressure OUT Fluxes 0.000556 Hz data of Fc (carbon flux) LE (water flux) Hs (sensible heat

Data processing

`

Page 7: IN Measurements 10 Hz data of 3D wind speed T sonic H 2 O CO 2 Pressure OUT Fluxes 0.000556 Hz data of Fc (carbon flux) LE (water flux) Hs (sensible heat

Coordinate rotation

u

vw

Rotation:

0''

0

0

wv

w

v

Page 8: IN Measurements 10 Hz data of 3D wind speed T sonic H 2 O CO 2 Pressure OUT Fluxes 0.000556 Hz data of Fc (carbon flux) LE (water flux) Hs (sensible heat

Fc+wpl+storage, July - w/o rotation

- rotated

s i t e=mhw

f c_ sum

- 1. 2

- 1. 1

- 1. 0

- 0. 9

- 0. 8

- 0. 7

- 0. 6

- 0. 5

- 0. 4

- 0. 3

- 0. 2

- 0. 1

0. 0

0. 1

0. 2

0. 3

0. 4

t i me

0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0

s i t e=mr p

f c_ sum

- 1. 5

- 1. 4

- 1. 3

- 1. 2

- 1. 1

- 1. 0

- 0. 9

- 0. 8

- 0. 7

- 0. 6

- 0. 5

- 0. 4

- 0. 3

- 0. 2

- 0. 1

0. 0

0. 1

0. 2

0. 3

0. 4

t i me

0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0s i t e=pb

f c_ sum

- 0. 8

- 0. 7

- 0. 6

- 0. 5

- 0. 4

- 0. 3

- 0. 2

- 0. 1

0. 0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

t i me

0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0s i t e=yhw

f c_ sum

- 0. 8

- 0. 7

- 0. 6

- 0. 5

- 0. 4

- 0. 3

- 0. 2

- 0. 1

0. 0

0. 1

0. 2

0. 3

0. 4

0. 5

t i me

0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0

s i t e=yr p

f c_ sum

- 0. 9

- 0. 8

- 0. 7

- 0. 6

- 0. 5

- 0. 4

- 0. 3

- 0. 2

- 0. 1

0. 0

0. 1

0. 2

0. 3

t i me

0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0

Page 9: IN Measurements 10 Hz data of 3D wind speed T sonic H 2 O CO 2 Pressure OUT Fluxes 0.000556 Hz data of Fc (carbon flux) LE (water flux) Hs (sensible heat

Fc+wpl+storage, November - w/o rotation

- rotated

s i t e=mhw

f c_ sum

- 0. 30

- 0. 28

- 0. 26

- 0. 24

- 0. 22

- 0. 20

- 0. 18

- 0. 16

- 0. 14

- 0. 12

- 0. 10

- 0. 08

- 0. 06

- 0. 04

- 0. 02

0. 00

0. 02

0. 04

0. 06

0. 08

0. 10

t i me

0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0

s i t e=mr p

f c_ sum

- 0. 5

- 0. 4

- 0. 3

- 0. 2

- 0. 1

0. 0

0. 1

t i me

0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0s i t e=pb

f c_ sum

- 0. 20- 0. 18- 0. 16- 0. 14- 0. 12- 0. 10- 0. 08- 0. 06- 0. 04- 0. 02

0. 000. 020. 040. 060. 080. 100. 120. 140. 160. 180. 200. 220. 240. 260. 280. 300. 32

t i me

0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0s i t e=yhw

f c_ sum

- 0. 14- 0. 12- 0. 10

- 0. 08- 0. 06- 0. 04- 0. 02

0. 000. 02

0. 040. 060. 080. 100. 12

0. 140. 160. 180. 200. 220. 24

0. 260. 28

t i me

0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0

s i t e=yr p

f c_ sum

- 0. 23- 0. 22- 0. 21- 0. 20- 0. 19- 0. 18- 0. 17- 0. 16- 0. 15- 0. 14- 0. 13- 0. 12- 0. 11- 0. 10- 0. 09- 0. 08- 0. 07- 0. 06- 0. 05- 0. 04- 0. 03- 0. 02- 0. 01

0. 000. 010. 020. 03

t i me

0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0

Page 10: IN Measurements 10 Hz data of 3D wind speed T sonic H 2 O CO 2 Pressure OUT Fluxes 0.000556 Hz data of Fc (carbon flux) LE (water flux) Hs (sensible heat

Respiration, with () and without () coordinate rotation

s i t e=mhw

r espi r

0. 10

0. 11

0. 12

0. 13

0. 14

0. 15

0. 16

0. 17

0. 18

0. 19

t i me

0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0

si t e=mhw

r espi r

0. 0120. 0130. 0140. 0150. 0160. 0170. 0180. 0190. 0200. 0210. 0220. 0230. 0240. 0250. 0260. 0270. 0280. 0290. 0300. 0310. 0320. 0330. 034

t i me

0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0

July

November

Page 11: IN Measurements 10 Hz data of 3D wind speed T sonic H 2 O CO 2 Pressure OUT Fluxes 0.000556 Hz data of Fc (carbon flux) LE (water flux) Hs (sensible heat

Rotation effect (rerel):

- uncorrected flux - wpl-corrected - wpl- & storage-

corrected, gapfilled

mont h=7

r ot eff 4

- 1. 1

- 1. 0

- 0. 9

- 0. 8

- 0. 7

- 0. 6

- 0. 5

- 0. 4

- 0. 3

- 0. 2

- 0. 1

0. 0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

t i me

0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0

mont h=11

r ot eff 4

- 3

- 2

- 1

0

1

2

3

t i me

0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1. 0

rotated

rawrotated

FcFc-Fc

relre

July

November

Page 12: IN Measurements 10 Hz data of 3D wind speed T sonic H 2 O CO 2 Pressure OUT Fluxes 0.000556 Hz data of Fc (carbon flux) LE (water flux) Hs (sensible heat

AQ parameters, MHW

- w/o rotation - rotated

0

1

2

3

4 6 8 10Month

Pmax

00.0010.0020.0030.004

4 6 8 10Month

Alph

a

-0.3

-0.2

-0.1

0

4 6 8 10Month

Respira

tion

Page 13: IN Measurements 10 Hz data of 3D wind speed T sonic H 2 O CO 2 Pressure OUT Fluxes 0.000556 Hz data of Fc (carbon flux) LE (water flux) Hs (sensible heat

Comparison of three methodsFc, July 21-26, 2002

C-1-rot. vs. C-2-roty = 0.6413x - 0.1867

R2 = 0.4917

-2

-1

0

1

2

-2 -1 0 1 2

SAS-1-rot. vs. C-2-roty = 0.855x - 0.1399

R2 = 0.6819

-2

-1

0

1

2

-2 -1 0 1 2

SAS-1-rot. vs. C-1-rot.y = 0.943x - 0.0164

R2 = 0.6933

-2

-1

0

1

2

-2 -1 0 1 2

Page 14: IN Measurements 10 Hz data of 3D wind speed T sonic H 2 O CO 2 Pressure OUT Fluxes 0.000556 Hz data of Fc (carbon flux) LE (water flux) Hs (sensible heat

Comparison of three methods, July 21-26, 2002

-2

-1

0

1

2

7/21 7/22 7/23 7/24 7/25 7/26 7/27

2 rotations, C+1 rotation, C+1 rotation, SAS

Page 15: IN Measurements 10 Hz data of 3D wind speed T sonic H 2 O CO 2 Pressure OUT Fluxes 0.000556 Hz data of Fc (carbon flux) LE (water flux) Hs (sensible heat

Comparison of three methodsLE, July 21-26, 2002

C-1-rot. vs. C-2-rot.y = 0.6856x + 28.778

R2 = 0.7051

0

100

200

300

400

500

600

0 100 200 300 400 500 600

SAS-1-rot. vs. C-2-rot.y = 0.7248x + 23.361

R2 = 0.728

0

100

200

300

400

500

600

0 100 200 300 400 500 600

SAS-1-rot. vs. C-1-rot.y = 0.9477x + 2.8615

R2 = 0.7988

0

100

200

300

400

500

600

0 100 200 300 400 500 600

Page 16: IN Measurements 10 Hz data of 3D wind speed T sonic H 2 O CO 2 Pressure OUT Fluxes 0.000556 Hz data of Fc (carbon flux) LE (water flux) Hs (sensible heat

Uncertainties remain

Flux = change in concentration (I)+ advection (II)+ flux divergence (vertical, lateral & longitudinal) (III)+ biological source/sink strength (IV)

Ideally:I=0, II=0, III=0

In reality:I II III 0Measured covariance = true covariance + sensor bias

(high- and low-pass filtering spectral correction factors 1.04-1.36 for Fc and LE)

),,( zyxSyF

xF

zF

tcw

tcv

tcu

tc

dtcd

B

yxz

Page 17: IN Measurements 10 Hz data of 3D wind speed T sonic H 2 O CO 2 Pressure OUT Fluxes 0.000556 Hz data of Fc (carbon flux) LE (water flux) Hs (sensible heat

For more comprehensive overview:

Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques - Part I: Averaging and coordinate rotation. Boundary-Layer Meteorology 107, 1-48.